ALL Publications (in Chronical Order):
Z. Hu, H. Shi, B. Tan, W. Wang, Z. Yang, T. Zhao, J. He, L. Qin, D. Wang, X. Ma, Z. Liu, X. Liang,
W. Zhu, D. Sachan, and E. P. Xing, Texar: A Modularized, Versatile, and Extensible Toolkit for Text
Generation,
Proceedings of The 57th Annual Meeting of the Association for Computational Linguistics, 2019
(ACL 2019). (Nomination for the Best Paper Award)
K. Xu, M. Lam, J. Pang, X. Gao, C. Band, P. Mathur, F. Papay, A. K. Khanna, J. B. Cywinski, K.
Maheshwari, P. Xie, E. P. Xing, Multimodal Machine Learning for Automated ICD Coding,
Conference on Machine Learning for Healthcare, 2019
(MLCH 2019).
Y. Li, X. Liang, Z. Hu, Y. Chen, and E. P. Xing, Graph Transformer,
Proceedings of Seventh International Conference on Learning Representations
(ICLR 2019).
- J. Oliva, A. Dubey, M. Zaheer, B. Poczos, R. Salakhutdinov, E. P. Xing and J. Schneider Transformation Autoregressive Networks,
Proceedings of the 35th International Conference on Machine Learning
(ICML '18)
- L. Lee, E. Parisotto, D. S. Chaplot, E. P. Xing and R. Salakhutdinov Gated Path Planning Networks,
Proceedings of the 35th International Conference on Machine Learning
(ICML '18)
- S. Xu, H. Zhang, G. Neubig, W. Dai, J. Kim, Z. Deng, Q. Ho, G. Yang, and E. P. Xing, Cavs: An Efficient Runtime System for Dynamic Neural Networks,
Proceedings of USENIX Annual Technical Conference 2018
(ATC'18)
- Z. Hu, Z. Yang, X. Liang, R. Salakhutdinov, and E. P. Xing, On Unifying Deep Generative Models,
Proceedings of 6th International Conference on Learning Representations
(ICLR'18)
- H. Zhang, Z. Deng, X. Liang, L. Yang, S. Xu, J. Zhu, and E. P. Xing, Structured Generative Adversarial Networks,
Proceedings of Advances in Neural Information Processing Systems 31
(NIPS '17). (Recipient of the Nvidia Pioneering Research Award)
- Z. Hu, Z. Yang, X. Liang, R. Salakhutdinov and E. P. Xing, Controllable Text Generation,
The 34th International Conference on Machine Learning.
(ICML 2017).
- X. Liang, L. Lin, X. Shen, J. Feng, S. Yan and E. P. Xing, Interpretable Structure-Evolving LSTM,
Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition
(CVPR 2017).
- A. Dubey, J. Oliva, A. Wilson, E. P. Xing, B. Poczos, and J. Schneider, Bayesian Nonparametric Kernel-Learning,
Proceedings of the 19th International Conference on Artificial Intelligence and Statistics.
(AISTATS 2016).
- L. Song, H. Liu, A. Parikh, and E. P. Xing, Nonparametric Latent Tree Graphical Models: Inference,
Estimation, and Structure Learning,
Journal of Machine Learning Research, in press, 2016. (
arXiv:1401.3940, communicated 16 Jan 2014.)
- A. Wilson, C. Lucas, C. Dann and E. P. Xing, The Human Kernel,
Advances in Neural Information Processing Systems 29 (eds. Daniel Lee and Masashi Sugiyama), MIT Press, 2015.
(NIPS 2015).
- Z. Hu, P. Huang,
Y. Deng, Y. Gao and E. P. Xing,
Entity Hierarchy Embedding,
53rd Annual Meeting of the Association for Computational Linguistics.
(ACL 2015).
- J. Oliva, W. Neiswanger, B. Poczos, E. P. Xing and J. Schneider, Fast Function to Function Regression,
Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics.
(AISTATS 2015).
- J. B. Oliva, W. Neiswanger, B. Poczos, J. Schneider and E. P. Xing, Fast Distribution To Real Regression,
Proceedings of the 17th International Conference on Artificial Intelligence and Statistics
(AISTATS 2014).
- A.
F.T. Martins, D. Das, N. A. Smith, and E. P. Xing, Stacking
Dependency Parser,
Proceedings of Conference on Empirical Methods in Natural Language
Processing, (EMNLP 2008).
- A.
Martins, M. Figueiredo, P. Aguiar, N. A. Smith and E. P. Xing,
Nonextensive Entropic Kernels,
Proceedings of the 25th International Conference on Machine Learning (ICML
2008). (A longer version
is available soon in CMU-MLD Technical
Report 08-106 with
the same title.)
- W.
Wu and E. P. Xing, A Survey of cDNA
Microarray Normalization and a Comparison by k-NN Classification,
in Methods in
Microarray Normalization (Ed. S. Phillip), CRC Press. p81-120, 2008.
2006
- F.
Guo, W. Fu, Y. Shi and E. P. Xing,
Reverse engineering temporally
rewiring gene networks,
The NIPS workshop on New Problems and Methods in Computational Biology
(NIPS2006).
- E.M. Airoldi, D.M.
Blei, S.E.
Fienberg, E.P. Xing, Latent mixed-membership
allocation models of relational and multivariate attribute data, Valencia
& ISBA Joint World Meeting on Bayesian
Statistics (2006).
- E.P. Xing, A.Y. Ng,
M.I. Jordan and S. Russell, Distance
Metric Learning, with application to Clustering with side-information,
Advances
in Neural Information Processing
Systems 16 (NIPS2002),
(eds. Becker
et
al.) MIT Press, 521-528, 2002. (ps,
data,
code.)
- E.P. Xing, D. Wolf, I.
Dubchak, S. Spengler, M. Zorn, C.
Kulikowski,
I. Muchnik, Automatic discovery
of sub-molecular
sequence domains in multi-aligned sequences: a dynamic programming
algorithm
for multiple alignment segmentation, Journal of Theoretical
Biology,
21;212(2):129-39, 2001.
pre2000
- E.P. Xing, C.
Kulikowski, I. Muchnik, I. Dubchak, D. Wolf, S. Spengler and M. Zorn, Analysis of
ribosomal RNA sequences by combinatorial clustering, Proceedings, The
Seventh
International Conference on Intelligence Systems for Molecular Biology (ISMB99),
(Eds. T. Lengauer et al.) AAAI/MIT
Press, Menlo
Park, CA. P. 287-296, 1999.
- E.P. Xing, Y. Nie, Y-L
Song, G-Y. Yang, C. C. Cai, L-D.
Wang, C. S. Chung, Mechanisms of
inactivation of p14ARF, p15INK4b and p16INK4a
genes in human esophageal squamous cell carcinoma: p14ARF
is potentially another inactivation hotspot within the 9p21 gene
cluster,
Clinical Cancer Research, 1999 Oct; 5(10): 2704-13.
Back to top
|