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1. Proof of Theorem 1
Theorem 1 (Submodularity on Anisotropic Diffusion).
Suppose that the system undergoes linear anisotropic diffu-
sion. Let u(x, t;S) be the temperature at position x at time
twhen identical heat sources are attached to S(⊂ Ω). Then,
the following statements hold for ∀x ∈ Ω,∀t ∈ [0,∞].

(T1) u(x, t; ∅) = 0
(T2) u(x, t;S) is nondecreasing and submodular.

Proof. Here we consider the discrete case where time and
space are discretized; it is not difficult to draw the same con-
clusion for the continuous case. Without loss of generality,
we assume that the source temperature is one and the envi-
ronment temperature is zero. Then, the temperature can be
interpreted as a probability. During the proof we drop t in
the notation because the following arguments always hold
for any t.

Note that the system is under linear anisotropic diffu-
sion, which means that the system Ω and the diffusivity
D(x) including the dissipation diffusivity z(x) are invari-
ant for any t.

(T1) u(x; ∅) = 0 is obvious because without a source the
system has zero temperature (i.e. the same temperature with
that of environment).

(T2) u(x;A) is nondecreasing (i.e. u(x;A) ≤ u(x;B)
for allA ⊆ B ⊆ V) because the temperature of the system is
always higher with more heat sources. Physically, it means
the energy conservation law.

The u(x;A) is submodular if Eq.(1) holds for all place-
ments A ⊆ B ⊆ V and a new source s ∈ V\B :

u(x;A ∪ {s})− u(x;A) ≥ u(x;B ∪ {s})− u(x;B) (1)

We shall prove the submodularity of u by induction on
the distance d(x, s). The induction proof consists of two
steps, which are (a) base step showing that Eq.(1) holds for
d(x, s)=0, and (b) induction step showing that if Eq.(1)

holds for d(x, s) ≤ r, then it is true for d(x, s) ≤ r+δr
with a small δr > 0 as well.

(a) Base step: For x with d(x, s) = 0 (i.e. x = s),
u(x;A∪{s})−u(x;A) ≥ u(x;B∪{s})−u(x;B) because
(i) u(s;A ∪ {s}) = u(s;B ∪ {s}) = 1 and (ii) u(s;A) ≤
u(s;B) since u(x;A) is nondecreasing for all x ∈ V .

(b) Induction step: Suppose that for all xwith d(x, s) ≤
r, Eq.(1) holds. We need to show that Eq.(1) is true for all
x′ with d(x′, s) = r + δr with a small δr > 0 as well.

If the system undergoes diffusion, as shown in Eq.(2),
the temperature at point x is represented by the weighted
sum of the temperatures of its neighbors N (x) [1, 2]. It is
based on the physical fact that the heat diffusion is driven
by thermal non-equilibrium and converges to local energy
balance.

u(x) =
∑

p∈N (x)

g(p)u(p) for ∀x ∈ Ω (2)

where p ∈ N (x) is a point of the neighbor set of x and g(p)
is a Kernel function describing how much the temperature
at p (u(p)) contributes to the temperature at x (u(x)). g(p)
is the function of the diffusivity and the distance between
p and x1. Therefore, g(p) is invariant for any t under the
linear anisotropy assumption (i.e. the system and the diffu-
sivity are fixed for any t).

For a position x′ with d(x′, s) = r + δr, N (x′) can be
divided into two sets P = {p|p ∈ N (x′), d(p, s) ≤ r}
andQ = {q|q ∈ N (x′), d(q, s) > r}. Therefore, u(x′;A∪
{s})−u(x′;A) ≥ u(x′;B∪{s})−u(x′;B) holds by Eq.(2)
and induction hypotheses of (i) u(p;A∪ {s})− u(p;A) ≥
u(p;B∪{s})−u(p;B) for all p ∈ P and (ii) u(q;A∪{s}) =
u(q;A) and u(q;B ∪ {s}) = u(q;B) for all q ∈ Q.

1The simplest discrete form of Eq.(2) with a 2D regular grid is
u(i, j) =

`
u(i−1, j)+u(i+1, j)+u(i, j−1)+u(i, j+1)

´
/4 with x =

(i, j). In this case, N (x) = {(i, j−1), (i, j+1), (i−1, j), (i+1, j)}
and g(p) = 1/4 for ∀p ∈ N (x). In a more accurate discretization [1],
the Gaussian Kernel is used: g(p) = exp

`
− (x−p)TD(p)(x−p)/σp

´
where σp is a normalization constant so that

P
p∈N (x) g(p) = 1.
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