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Abstract

With the continuous improvement in genotyping and molecular phenotyping technology and the decreasing typing cost, it
is expected that in a few years, more and more clinical studies of complex diseases will recruit thousands of individuals for
pan-omic genetic association analyses. Hence, there is a great need for algorithms and software tools that could scale up to
the whole omic level, integrate different omic data, leverage rich structure information, and be easily accessible to non-
technical users. We present GenAMap, an interactive analytics software platform that 1) automates the execution of
principled machine learning methods that detect genome- and phenome-wide associations among genotypes, gene
expression data, and clinical or other macroscopic traits, and 2) provides new visualization tools specifically designed to aid
in the exploration of association mapping results. Algorithmically, GenAMap is based on a new paradigm for GWAS and
PheWAS analysis, termed structured association mapping, which leverages various structures in the omic data. We
demonstrate the function of GenAMap via a case study of the Brem and Kruglyak yeast dataset, and then apply it on a
comprehensive eQTL analysis of the NIH heterogeneous stock mice dataset and report some interesting findings. GenAMap
is available from http://sailing.cs.cmu.edu/genamap.
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Introduction

Advancements in high-throughput sequencing and molecular

profiling technologies have made it both affordable and efficient to

record DNA sequence variations over millions of genomic loci, to

measure the abundance of transcripts of virtually all known coding

sequences, and to collect a wide range of pathological phenotypes

in statistically meaningful disease/control populations. This deluge

of inter-related omic-scale data offers an unprecedented opportu-

nity to investigate how organismal functions respond to molecular-

level alterations and how network disorders affect phenotypic-level

phenomena, which are fundamental to the understanding,

diagnoses and treatments of complex diseases such as asthma,

obesity, and cancer.

Many complex disease syndromes consist of a large number of

highly related, rather than independent phenotypes. Differences

between these syndromes involve the complex interplay of a large

number of genomic variations that perturb the function of disease-

related genes in the context of a regulatory network, rather than

individually. Thus unraveling the causal genetic variations and

understanding the mechanisms of consequent cell and tissue

transformation requires an analysis that jointly considers the

epistatic, pleiotropic, and plastic interactions of elements and

modules within and between the genome (G), transcriptome (T),

and phenome (P). For example, a plethora of evidence suggests

that SNPs associated with complex traits are likely to be expression

quantitative trait loci (eQTLs) [1], necessitating inclusion of gene

expressions instead of (or in addition to) phenotypic traits as

association responses. Indeed, gene expression data are now

commonly used to integrate transcriptome information into

association studies [2,3,4]. Successful integration of eQTL analysis

into genome-wide association studies (GWAS) has led to the

identification of new disease genes in humans and mice [5,6,7,8].

However, until now, most popular approaches for genetic and

molecular analysis of genetic associations were mainly based on

classical statistical techniques, such as linkage analysis of selected

markers [9], quantitative trait locus (QTL) mapping conducted

over one phenotype and one marker genotype at a time and then

corrected by multiple hypothesis testing [10], or indirect associ-

ation analysis between markers and statistical representations of

expression or clinical trait groups such as cluster means or

principal components [11]. Such approaches yield crude, often
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either highly noisy or over-stringent signals of causal genetic

variations. For example, a recent analysis showed that in adipose

tissue, at a 5% FDR, expression levels of 17,080 (72.0%) genes

were correlated with BMI [12]. Another analysis concluded that

the identification of 164 genes in the expression intersection of four

co-expression networks in human breast cancer ‘‘could not be

expected by chance’’ [13]. In this paper, we present GenAMap, a

statistically sound and computationally efficient machine learning

platform and software system to address the theoretical and

practical challenges involved in unraveling the interplay between

disease-relevant elements in the genome, transcriptome, and

phenome.

GenAMap is a software system built on principled machine

learning algorithms that detect genome and phenome wide

associations (GWA and PheWA) [14,15,16] among genotypes

(SNPs), gene expression data, and clinical or other macroscopic

traits for a given disease, taking into account the structural

information within each of the three data types. GWA analysis is a

popular strategy to determine how sequence variation affects the

inheritance of phenotypic traits [14,15]. Traditional GWA

mapping usually screens for candidate SNPs using either an

association test statistic between SNPs and clinical traits or case/

control status [10], or via sparse regression to select causal SNPs

[17]. These approaches have led to the successful identification of

many so-called disease genes and susceptibility loci for a variety of

diseases such as prostate cancer [18], diabetes [19], and

Alzheimer’s disease [20]. However, the success of these studies

(and other studies based on these approaches) is limited [21]

because the discovered SNPs only explain a fraction of the disease

heritability [14] or identify SNPs that do not affect protein

sequence and thus have no known role that would affect the actual

disease [2].

One of the major limitations of most traditional approaches that

look for pairwise associations between SNPs and genes or multiple

phenotypic traits is that they ignore the structural information

within the genome, transcriptome, or phenome, such as linkage

disequilibrium (LD) due to non-random recombination and

modularity in co-expressed genes in common biological pathways.

Such information holds the key to boosting the statistical power for

GWA mapping because co-occurring weak signals, which inde-

pendently can be mistaken as noise, become statistically significant

when examined jointly in light of such prior structural informa-

tion. The recent development of a new generation of GWAS

algorithms, termed structured association mapping algorithms,

utilizes structural and other prior information to discover genome-

transcriptome-phenome associations [22,23]. Initial studies have

suggested that structured association mapping indeed leads to

increased insight and greater statistical power in association

studies. In this paper, we will systematically explore and integrate

these new approaches.

Another barrier preventing more effective GWA mapping with

modern statistical and machine learning technology is the lack of

accessible software tools built on these new technologies such as

structured association mapping. This problem has received even

less attention from methodologists, and prevents widespread use of

new GWA models and algorithms. For example, the power of

structured association mapping comes with more sophisticated

machine learning techniques that require greater specialization to

run and interpret. Moreover, due to the data complexity, results

from these algorithms become a sea of data that can be

challenging to explore. The necessity to involve multi-omic scale

data sets in modern GWA analysis can be operationally complex

and confounding due to potentially overwhelming amount of

patterns and signals and the lack of a handy software platform for

analysis. In this paper, we address this issue with a highly

integrated and general-purpose software system that allows

knowledge about genome, transcriptome, or phenome structures

to be leveraged algorithmically and visually to improve and

enhance discovery in GWAS.

The GenAMap system we present in this paper offers a new

paradigm for GWAS and eQTL studies. GenAMap provides a

rich collection of structured association mapping algorithms we

have recently developed, along with classical GWA methods still

widely in use, through a highly efficient and user-friendly human-

computer interface. Through a graphical user interface, a user can

invoke a combination of advanced algorithms and run them as a

pipeline on complex datasets to map a set of co-expressed genes to

a block of markers in the genome. More specifically, GenAMap

focuses on building multivariate structured association models

encompassing all three sources of omic data, relating sets of

genotype markers (genome), to sets of gene expression measure-

ments (transcriptome), and to sets of clinical trait measurements

(phenome) in a joint genome-transcriptome-phenome association

model. So far, there has been very little work analyzing these three

resources under a unified framework to detect joint associations

[19,21], and no existing work considering the modules and

structures in all three omics for association mapping. To our

knowledge, GenAMap represents an initial foray into the

development of a comprehensive statistical and visual analytics

software system for structured association mapping that can 1)

automate the execution of structured association mapping

algorithms, and 2) provide new visualization tools specifically

designed to aid in the exploration of association mapping results. A

glimpse of the functions of GenAMap can be seen in Figure 1.

In the remainder of the paper, we present an overview of the

statistical models and algorithms for structured association

mapping built into GenAMap, followed by a discussion of the

design and implementation of our system. Then we demonstrate

GenAMap and the suite of new machine learning and visualiza-

tion tools therein for GWAS and eQTL analysis through a case

study using yeast data. Finally, we use GenAMap to analyze the

NIH heterogeneous stock mice data [24]. By using structured

association mapping and visualization in GenAMap, we find an

Figure 1. GenAMap is a visual analytics system for structured
association mapping. Through the UI, users can explore the
population and network structures of the data and determine which
association analyses to run. Users can also take advantage of new,
intuitive visualizations to explore the structures inherent in the data
while simultaneously exploring the results from association analysis. All
jobs are run on a remote cluster, and the results are displayed from the
front end, linking out to external databases for further information and
analysis.
doi:10.1371/journal.pone.0097524.g001

GWAS in a Box
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eQTL hotspot on the mouse chromosome 14 that is associated

with axon genes. We further investigate this eQTL hotspot and

find specific genes associated with anxiety traits in mice. The

three-way analysis using structured association mapping provides

additional mechanistic insight into the SNP-to-clinical-trait

association that has not been possible using other state-of-the art

methods.

Figure 2. GenAMap Overview. GenAMap is run locally as a desktop application. It communicates directly with our cluster through Auto-SAM, an
automatic system for running structured association algorithms. GenAMap executes all tasks, returning to the user a set of visualizations to explore
and analyze the results to find interesting signals in the data.
doi:10.1371/journal.pone.0097524.g002

Table 1. Algorithms available to run in GenAMap.

Type Algorithm

Structured Association Mapping GFLasso [22]

MPGL [23]

TreeLasso [33]

AMTL [31]

gGFlasso [34]

Pairwise Association Wald Test [10]

Lasso [36]

Association by population [84]

Network Generation Correlation

Glasso [49]

Scale-free network [69]

Tree Generation Hierarchical clustering

Population Assignment Structure [88]

Gene network analysis Gene module discovery [64]

Hierarchical clustering

doi:10.1371/journal.pone.0097524.t001

GWAS in a Box
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Methods

Structured Association Mapping
The main statistical paradigm upon which GenAMap is built is

a new statistical formalism for GWA known as the sparse

structured multivariate and multi-task regression (S2M2R). This

emerging paradigm departs significantly from the traditional test-

statistics-based [25] or PCA-based [26] methods (though they are

also supported in our toolbox), which do not strongly leverage

various structural information present in the genome, phenome,

and transcriptome to improve the accuracy of identifying

candidate causal variations in the DNA at a full-genome scale.

S2M2R complements such inadequacy by exploiting a wide

spectrum of omic structures available with the data as exemplified

in this paper using a principled mathematical formalism that

enjoys strong statistical guarantees and efficient computational

algorithms, rather than using ad hoc heuristics of unknown

asymptotic properties.

Specifically, the S2M2R formalism is built on the basic ideas

behind lasso regression [27]. Lasso is advantageous in association

mapping as it selects the most informative predictors (SNPs) for

each response (gene expression or clinical trait) and eliminates false

positives. Unlike single SNP analysis, the S2M2R formalism does

not make the assumption that SNPs are independent and performs

joint analysis considering all SNPs.

Let us begin with the following general definition of the

association mapping problem. Let X be an N|P genotype matrix

for N individuals and P SNPs and let Y be an N|J gene

expression matrix where expression levels of J genes are measured

for the same individuals, and let be an N|K phenotype matrix

where each row records K phenotypic traits of an individual. The

basic lasso approach to finding associations between SNPs X and

traits amounts to solving the optimization problem defined by

the following equation:

B̂B~argmin Z
B

{XBk k2
F zl

X
k

X
p

Dbk
p D ð1Þ

where :k kF is the Frobenius norm of the matrix, the first term

represents a penalty based on prediction error, and the second

term is a sparsity-inducing L1 penalty that shrinks the strengths of

irrelevant SNPs towards zero. In this scenario, B is a P|K

matrix, of which the non-zero elements represent the associations

between SNPs and phenotypes.

In a more general setting, the first term in (1), known as the loss

function, can be further elaborated to achieve various desirable

effects, such as distinguishing continuous (e.g., a dose effect on

traits) versus discrete (e.g., a binary effect on traits) responses [28]

weakening assumption on noise and signal distribution [29],

capturing non-linear effects [30], etc. In GenAMap, we follow

common practice in the field and use a simple squared loss as

shown above, but it is possible to update to more powerful forms

by allowing the plug-in of alternative loss functions. The second

term in Eq. (1), known as the shrinkage or penalty function, is

where structural knowledge of the data can be systematically

explored and exploited through the GenAMap. Below, we provide

examples for the incorporation of the genome, phenome, and

transcriptome structure, respectively, into the model.

Incorporation of genome structure. An important source

of genome structural information is genome annotations that

include known transcription factor binding sites, exon regions,

transposable element locations, and conservation scores. These

data can be considered as prior knowledge about SNPs that can be

used to guide the search for association SNPs. For example, SNPs

in highly conserved regions are more likely to be true association

SNPs, as conserved regions are often functionally important.

Table 2. Major data set types available to import/create via an algorithm in GenAMap.

Name Description Importing Creation

Marker Data SNP values of samples yes no

Trait Data Gene expression or phenotypic trait data yes no

Trait Network Network representing relatedness between traits (e.g. genes, phenotypes) yes yes

Association Data Pairs of SNPs and traits; Result of association analysis yes yes

3-way Association Data Associations between SNPs, genes and phenotypic traits no yes

Population Structure Assignment of individual samples to populations yes yes

SNP features Quantitative SNP information used as input to AMTL algorithm yes no

Trait Tree Tree structure over traits indicating relatedness yes yes

Trait Clustering Linear ordering of traits indicating relatedness yes yes

Trait Module Group of highly related traits no yes

doi:10.1371/journal.pone.0097524.t002

Figure 3. GenAMaps genome browser. GenAMap provides a simple genome browser that allows analysts to explore the mutation marker data
that they load into GenAMap. SNPs are represented by green circles across the genome. Analysts can use these SNPs to directly link to external
databases, such as SGD or dbSNP. SNP labels are displayed as the analyst hovers over the SNPs.
doi:10.1371/journal.pone.0097524.g003
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Taking advantage of genome annotation, Adaptive Multi-Task

Lasso (AMTL) finds genome-transcriptome or genome-phenome

associations [31]. AMTL defines different penalties to SNPs

according to genome annotation (SNPs with small penalties are

more likely to be selected), and simultaneously incorporates L1/L2

penalty to perform multi-task learning on correlated traits (to be

discussed in the phenome structure section):

(B̂B,v̂v,k̂k)~argmin
B,v,k

Y{XBk k2
F

zl1

X
p

X
j

hpDbj
pDzl2

X
p

X
h[H

cp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j[h

(bj
p)2

s

z log Z(h,c),

ð2Þ

where hp~
P

t vtfp,t, cp~
P

t ktfp,t and

Z(h,c)~

ð
B

P
p
P
j

exp ({hpDbj
pD)|P

p
P

h[H
exp {cp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j[h

(bj
p)2

r !" #
dB: ð3Þ

fp,t represents the t-th feature score (e.g. conservation score) for the

p-th SNP, and vt and kt are the weights of the t-th feature for the

two penalties, respectively. The model learns B, fvtg and fktg
simultaneously. This is made possible by the term Z, which acts as

a regularizer on h and c and hence on v and k. Z takes the form

of a normalization term in a Bayesian probabilistic model for B.

AMTL gives small penalty to SNPs with features desirable for

association mapping and thus incorporates bias based on genome

annotation.

The L1/L2 term employed above is also known as group lasso

penalty [32], an extension of lasso, which can encourage

simultaneous shrinkage of a set of SNPs known to be related

from prior knowledge, and thereby enhance the statistical power of

Figure 4. GenAMap trait overview exploration. GenAMap provides an overview of gene and phenotypic trait networks to aid analysts in their
exploration of the networks. Here, we present a genetic network generated from the yeast data. The network has been further organized by
hierarchical clustering, and twenty highly connected gene modules have been automatically identified by GenAMap (outlined in color). As the analyst
clicks in these different modules, an information display appears to report the GO and eQTL enrichment of the genes that belong to the particular
module.
doi:10.1371/journal.pone.0097524.g004
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a GWA on high-dimensional genomic data based on a wide

variety of structural knowledge beyond what is mentioned above.

For example, in GenAMap, we also consider genome structures

revealed through LD, biological pathways, and synthetic lethal

gene-gene interactions. SNPs interrelated by such structures are

likely to affect a gene expression value or a clinical trait in the same

way, and the group lasso penalty captures such relatedness

effectively and elegantly.

Another type of genome structural information is from the

population structure. While many SNPs may be population-

specific, some SNPs may have similar effects across populations.

The multi-population group lasso (MPGL) is a sparse-regression

method also built on the group lasso that allows associations to be

discovered in different populations independently, while incorpo-

rating information across all populations [23].
Incorporation of transcriptome and phenome

structure. Related clinical traits or gene expressions as revealed

in a phenotypic network or a gene-expression clustering tend to be

influenced by a common and small subset of SNPs. Biologically,

this might be the case when a mutation in a genetic regulator

affects expression levels of multiple genes in a common pathway.

Such structural information present in the transcriptome or

phenome introduces constraints on the output Y or (instead of

on X as seen in the genome case) of the S2M2R problem. Such

structure bearing networks or clustering can be obtained using

well-known machine learning techniques based on correlation or

partial correlation, or from known gene-gene or protein-protein

interactions that are experimentally validated.

The graph-guided fused lasso (GFlasso) [22] extends the lasso

such that a network structure over the gene expressions is used to

guide the discovery of associations. We define GG~(VG,EG) as a

relevance graph where each node represents a gene in Y and each

edge represents a weighted relationship between two nodes in the

network graph. GFlasso is then described by the following

optimization problem:

B̂B~argmin
B

Y{XBk k2
F

zl1

X
p

X
j

Dbj
pDzl2

X
fu,vg[EG

X
p

Dbu
p{sign(ruv)bv

pD:
ð4Þ

In Eq. (4), B is a P|J matrix representing genome-transcriptome

associations. Here the second penalty term consists of a sum of the

so-called total variation penalties defined over each edge of the

network graph. This type of penalty encourages elements in B,

which correspond to the association strength of a SNP to a gene

expression value, that are linked by the edge in the graph to attain

similar magnitude, i.e., jointly zero or non-zeros. This strategy

thereby enables structure information of the relationships between

the gene expressions to influence the estimation of association

signals. Similarly, we can create a network graph GT~(VT ,ET )
for clinical traits and substitute for Y and GT for GG to find a

P|K matrix representing genome-phenome associations.

A related approach to GFlasso is the TreeLasso [33]. TreeLasso

builds a hierarchical clustering tree from the gene expression

network (or clinical trait network) and uses the tree to represent the

relationships between gene expressions or traits to guide the

association discovery. Accordingly, a tree-penalty function built on

a nested sum of L1/L2 norms over elements on different rows of B
can be introduced to induce a hierarchical group sparsity pattern

on B.
Incorporation of genome-transcriptome or genome-

phenome structure. So far, we have seen that genome

structure and transcriptome/phenome structure can be incorpo-

rated into a regression model on the input or output side, rather

than both. A natural extension of the two previous approaches is to

incorporate both genome and transcriptome/phenome structures

into a single model and exploit the synergistic effects of both

structures. Suppose that groups of SNPs and groups of gene

expressions/traits are determined a priori by a genome structure

and gene expression or trait network. Then structured input/

output multi-task regression [30] solves the following problem

considering both structures simultaneously:

B̂B~argmin
B

Y{XBk k2
F

zl1

X
p

X
j

Dbj
pD

zl2

X
j

X
g[G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
p[g

(bj
p)2

s
zl3

X
p

X
h[H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j[h

(bj
p)2

s
,

ð5Þ

where H is the set of groups of gene expressions/phenotypic traits,

and h is a member of the set H. Under this model, coefficients for

a set of correlated SNPs (g[G) and a set of correlated gene

expressions or phenotypic traits (h[H) tend to be zero together due

to the L1/L2 penalties, and at the same time, individual

coefficients can be zero due to the L1 penalty. This model takes

advantage of both genome structure and transcriptome/phenome

structure in a sense that it can set coefficients to zero guided by

both SNP groups and gene expression or phenotypic trait groups.

Joint three-way analysis. Finally, we consider a structured

association mapping approach that uses combined genome,

transcriptome, and phenome data to perform a joint three-way

association analysis, GFlasso-gGFlasso [34]. This is done through

a two-stage process. First, we find genome-transcriptome associ-

ations using GFlasso as just described. Next, we find transcrip-

tome-phenome associations using the graph-Graph-guided fused

lasso (gGFlasso):

B̂B~argmin
B

{YBk k2
F zl1

X
j

X
k

Dbk
j D ð6aÞ

zl2

X
fu,vg[EG

X
k

Dbk
u{sign(ruv)bk

v D ð6bÞ

zl3

X
fm,lg[ET

X
j

Dbm
j {sign(rml)b

l
j D: ð6cÞ

In gGFlasso, we add a second fusion penalty to the GFlasso

framework to encourage related genes in the gene-expression

network to influence related traits in the trait network. This model

assumes that genes in the same pathways might have similar effects

on multiple related traits.

Optimization algorithms. For all aforementioned models,

we can represent the optimization problems in the form of:

B̂B~argmin
B

Y{XBk k2
F zl (B), ð7Þ

where l (B) is non-differentiable and often non-separable convex

penalty. Classical convex optimization techniques such as

quadratic programming [35] and the subgradient descent method

[35] do not scale well to large problems with hundreds of

GWAS in a Box
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thousands of SNPs and traits. The coordinate descent method [36]

is very efficient for lasso problems, however, it is not applicable to

our models because the penalty of GFlasso and the TreeLasso is

non-separable, and in such a case, coordinate descent does not

guarantee convergence [37].

The key idea behind our optimization is as follows. We

transform a non-smooth/non-separable form of penalties into a

smooth/separable form which is easy to deal with. (Transforma-

tion can be done at the cost of approximation such as a proximal

smoother [38], or adding additional constraints such as dual

decomposition [39].) We then solve Eq. (7) using an efficient

optimization technique such as a coordinate descent [36] or

FISTA [40]. For example, in case of GFlasso/GFlasso-gGFlasso,

we transform the non-smooth form of penalty into a smooth form

with additional variables in constraints [22,34]. Then the

coordinate descent method is used to optimize the smooth

objective, and estimate additional variables. In case of the

TreeLasso, we adopt the smoothing proximal gradient method

[38]. This method first makes the non-separable penalty separable

by converting it into its dual form, and then makes it smooth by

using a general smoothing technique [41]. After the transforma-

tion, the FISTA [40] method is employed to optimize the

separable and smooth objective function. For AMTL, we deal with

the non-separable penalty by checking group sparsity and

individual sparsity consecutively. This technique can be applied

due to special form of the penalty [42]. We alternatively estimate B
using a coordinate descent method, and estimate the weights of

SNP features using a gradient descent method. The penalty of

MPGL is non-smooth and separable, and thus we can optimize

MPGL objective using an efficient method for standard group

lasso [43] that solves the dual form of the original problem.

Estimation of significance. An attractive property of the

traditional methods particularly adored in the medical genetics

community is that they offer a p-value that reflects the significance

of the findings. Quantifying statistical significance of the results

from S2M2R remains an open problem that is actively studied in

the statistics community [44], but we argue that in the nowadays

ultra high-dimensional GWAS era (i.e., millions of SNPs and tens

of thousands of traits) where statistical significance scores

computed by classical means become less meaningful and usually

inaccurate, S2M2R offers many unique advantages by allowing the

abundance of biological prior knowledge on the data to be easily

and directly incorporated (rather than used in pre-screening data

or post-processing results) in the detection of association signals

with enhanced signal to noise ratio. Recently, several methods

have been proposed to compute p-values for high-dimensional

regression [44,45], and we can further advance these techniques to

compute p-values for S2M2R. For example, the ‘screen and clean’

procedure [46] enables p-value computation by randomly dividing

samples into two sets. However, this method may generate

unstable p-values due to random splitting procedure. The ‘multi-

split’ method aggregates p-values from multiple data splitting, and

was shown to be more robust to noise induced by random

permutation [44]. In the current version of GenAMap, the p-value

computation is not included, but it will be incorporated in our next

release.

Figure 5. Using GenAMap to explore genetic networks. We demonstrate using GenAMap visualizations to explore a genetic network. A) From
the overview of the network, the analyst can see the different gene modules in the network. B) The analyst zooms into a module of interest in the
network. C) The analyst switches to a node-edge representation of this sub-network and adjusts the edge threshold, layout, and labels. D) The analyst
uses GenAMap to link directly to external data sources for more information.
doi:10.1371/journal.pone.0097524.g005
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The GenAMap Software System
In addition to the needs for high-performance structured

association tools for GWAS, there remains a huge gap between

the active invention of new models and algorithms from the

methodological community and the adoption of these new

methods in the genetics and medical community. Two key

obstacles hinder these advances from being widely accepted in

practice: the expertise required to run structured association

mapping algorithms, often from command-line implementations;

and the lack of a convenient human-computer interface to explore

the results after the algorithms complete.

We present a portable software suite called GenAMap that

packages all the S2M2R GWA mapping tools we have developed

so far, and new tools to come in the future, as well as traditional

association methods such as PLINK’s WALD test [10] into a

highly standardized, user interface (UI)-enabled platform that

supports flexible data/result management, automatic task distri-

bution in a multicore parallel computing environment, powerful

visualization and interactive analysis, and a rich suite of graphical

result formats. An overview of GenAMap can be seen in Figure 2.

GenAMap is run locally as a downloadable software. It interfaces

directly with an online computer cluster to run structured

association mapping jobs and to collect and interpret the results.

It allows users to import their own data for visualization and

analysis. Below, we detail the two key components of GenAMap:

automation of the S2M2R and selected GWA algorithms, and

visualization tools needed to explore the results.

Automation. Most, if not all, mathematically sophisticated

structured association mapping algorithms are generally made

available as crude, command-line implementations (if they are

made available at all). Thus, for a geneticist to use these

algorithms, one must download a rough implementation of the

algorithm and customize the code to fit his/her study. In contrast

to this unfortunate state-of-the-art practice, as part of the

GenAMap system, we incorporate an end-user-friendly strategy

for the deployment of new statistical and machine learning

algorithms to increase their accessibility for geneticists and

biologists.

GenAMap runs structured association mapping algorithms

through an automatic backend processing system called Auto-

SAM [47]; additionally it also supports a variety of functions

including structure-generating algorithms and other classical

association algorithms (listed in Table 1). In contrast to the

general strategy of posting a raw implementation on the web, we

systematically develop and deploy each algorithm so that it will

automatically run in a distributed parallel-computing environ-

ment. Thus, little technical specialization is required for a genetics

analyst to pick up GenAMap and run the algorithms.

To generate structure, Auto-SAM provides algorithms to build

networks and cluster trees, and find population structure.

GenAMap runs baseline association methods through Auto-

SAM including PLINK’s chi-square and Wald tests [10]. Most

notably, GenAMap automates five structured association mapping

algorithms: GFlasso, TreeLasso, AMTL, MPGL, and gGFlasso.

Analysts can also load their own structures and results into

GenAMap, bypassing Auto-SAM and using GenAMap’s visuali-

zations to analyze the association results from any algorithm.

Figure 6. GenAMap overview of association results. GenAMap provides a heat chart visualization to explore the results from an eQTL
association analysis. SNPs are plotted along the x-axis and genes are clustered along the y-axis. This view allows the analyst to explore the overview of
the results. For example, in these results from running TreeLasso on the yeast data, many SNPs are associated with all the genes in a gene module,
and some gene modules are associated with many different SNPs in different genomic locations.
doi:10.1371/journal.pone.0097524.g006
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Our approach of distributing structured association mapping

algorithms through Auto-SAM has several advantages over other

distribution methods such as CRAN-R [48] (for examples see

glasso [49] or bioconductor [50]): 1) By running algorithms on a

distributed system with access to a cluster-computing system,

Auto-SAM is able to handle much larger datasets and run

algorithms in parallel; 2) through the use of a database, analyses

are made available to entire teams of analysts; 3) the integration of

Auto-SAM with GenAMap provides state-of-the-art visual analytic

tools that enable the analyst to explore and analyze the data and

results, including links to external databases and integration with

gene ontology (GO) resources.

Visualization. Another key challenge in GWAS is the

creation of a rich and unified visualization framework for a

diverse spectrum of analytical and graphical needs. The vast

amount of input and output to the structured association mapping

algorithms and the sparseness of useful output classically suggests

that a visualization strategy will aid analysts in the exploration of

these data to identify the links between SNPs, gene expressions

data, and clinical traits to eventually produce new treatments for

disease.

Our design of the visualization scheme for analyzing GWA is

built on the following insights. Once an analyst has run structured

association mapping algorithms, the focus of the investigation

becomes more exploratory than query driven [51]. Information

visualization, ‘‘the use of computer-supported, interactive visual

representations of data to amplify cognition’’, as a field, touts its

strengths as generating exploration-based insights, explanatory

and persuasive interaction, and aesthetic representations [52].

Visualization techniques, therefore, excel when providing an

explanation of the overall structure of the data or guiding analysts

to weak or unexpected patterns most easily recognized by humans

[52]. These are critical requirements for association analysis.

Indeed, the success of visualization strategies has emerged

already in many areas of biology. For example, Cytoscape [53] has

become an extremely popular application for visualizing biological

networks and exploring relationships between genes. In other

domains, the recent development of ABySS-Explorer [54] has

shown that visualization can enhance the analysis of complex

biological tasks like genome assembly through a visual represen-

tation of the contigs. Another recent approach to visualization in

biology, MulteeSum, demonstrated the potential for visualization

to aid in the identification of spatial and temporal patterns in gene

expression data [55]. For simple GWA with one trait, excellent

visualization tools have been built to explore LD, strength of

associations, and surrounding genes in the association results

[56,57]. In GenAMap, we use multiple coordinated views to

enable analysts to explore the structures of the genome,

transcriptome, and phenome simultaneously when performing

association analysis. In our experience, in a structured association

study, researchers first need to get an overall picture of the patterns

of associations in the data, and then they need to focus their

attention on specific, important signals in the data. This

immediately suggests a visualization strategy following Shneider-

man’s well-known mantra: overview first, zoom and filter, details

on demand [58]. As we will show, this mantra provides an

excellent strategy for the development of the visualizations that

guide discovery in association studies.

The GenAMap front-end interface is implemented in Java SE.

To facilitate the rapid development of high-quality visualizations,

Figure 7. Using GenAMap to find eQTLs in yeast data. GenAMap provides many tools for analysts to explore association results while using the
structure of the data to guide the discovery of associations. We demonstrate some of these tools. A) The analyst can zoom into certain regions to see
finer detail of the SNP-phenotypic trait associations. This panel is a zoomed-in region from Figure 6. B) The analyst switches to the JUNG view to
explore the genes associated with the region and perform a GO enrichment test. C) The analyst colors the genes by strength of association to the
genomic region. D) The analyst selects up to ten interesting genes (salmon colored) and views the Manhattan plot of associations from these genes
across the genome. E) The analyst zooms into interesting regions in the genome view. F) The analyst can switch between association tests for further
insight into the associations.
doi:10.1371/journal.pone.0097524.g007
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we integrate and customize open-source visualization Java toolkits

into GenAMap, including JUNG [59] for network visualization,

JHeatChart [60] for an overview of network and association

analyses, and JFreeChart [61] for detailed histograms and other

scatter plots. The UI front-end of GenAMap communicates with

Auto-SAM, the automatic processing system, through an Apache

web-interface to our computing cluster. All data used by

GenAMap are stored via MySQL. Auto-SAM executes algorithms

from whatever technology they come from, including Java, C++,

R [48], and MATLAB. Algorithms are parallelized and run using

Condor [62]. Auto-SAM itself is written in Java.

In the following sub-section, we will demonstrate the capabilities

of GneAMap using a yeast data set. While we only have space to

discuss a single data set, users of GenAMap are free to upload their

own data into the software, which can take any of the forms

discussed in this paper. They may upload raw data in the form of

SNP data, gene expression data or phenotype data. They may also

upload the results of externally conducted analyses. This may take

the form of a gene networks or of SNP-gene associations as

discussed in the following section but also, for example, of a

population structure as discussed later in this paper. A list of the

major data set types available in GenAMap is shown in Table 2.

All data sets, whether internally generated or externally generated

and uploaded, can be viewed with the visualization tools as well as

used for follow-up algorithmic analysis in GenAMap. Further-

more, GenAMap is fully applicable to data from a wide spectrum

of sources including human subject data.

Illustration: Analyzing Yeast Gene Networks and eQTLs
We now demonstrate GenAMap through an illustrative

analysis. We use the Saccharomyces cerevisiae dataset from

[63]. This dataset was generated by crossing a laboratory strain

(BY4716) of yeast with a wild-type vineyard strain (RM11-1a) to

create 112 progeny yeast strains. Each of the 114 strains were

genotyped by microarray for 1260 unique SNP markers. Hence, if

a true causal SNP was not genotyped, we can only hope to detect a

proxy SNP that is correlated to the causal SNP. Gene expression

data was also collected from each strain for over 6000 genes.

Because this dataset has been extensively studied [64,63,65,66], it

serves as an excellent benchmark dataset to highlight the

capabilities of structured association mapping and GenAMap in

a scenario where plenty is already known about the associations in

the data for verification, but additional patterns could still be

uncovered due to systematic use of structural knowledge about the

data via GenAMap. After preprocessing the gene expression data,

we used 5637 gene expression measurements for each yeast strain.

The data collection and preprocessing steps were completed

independently outside of the GenAMap software system.

Importing SNP data and preparing for AMTL

analysis. We import the SNP data as a tab-delimited file into

GenAMap using the import wizard. When the import finishes, we

can explore the data using GenAMap’s genome browser (Figure 3).

It is a simple chromosome-by-chromosome browser that displays

each SNP as a green circle, and can be used to check the

distribution of SNPs on each chromosome and to directly link to

the Saccharomyces Genome Database (SGD) [67] or dbSNP [68]

for more information about the SNPs.

To prepare for in-depth analyses, we download and standardize

twelve features from the SGD for each SNP and add these features

to the dataset in GenAMap. These features include eleven discrete

variables describing the locations of the SNPs (intron region,

binding site, exon, etc.) and one continuous variable (conservation

score) [31]. These features can be used as prior knowledge in

AMTL in such a way that a priori belief on SNP associations is
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determined by weighted combination of the SNP features. Thus

SNPs in annotated genomic regions (e.g. exon) are more likely to

be selected than SNPs in unknown regions. As we browse through

the SNPs, we can request to see the values of these features for a

particular SNP by right-clicking on a selected SNP (or many

selected SNPs) in the genome browser.

A problem may arise in case a causal SNP was not genotyped

and we hope to detect it through a proxy SNP. If the features of

these SNPs were highly dissimilar, using them in our analysis

might hinder discovery. In order to have any hope to discover a

causal SNP through a proxy SNP, they must be highly correlated.

This implies, with high probability, that they both lie on the same

LD structure. This, in turn, means that their features are likely to

be similar. We believe that this similarity justifies the use of proxy

SNP features in the AMTL regression model.

Network inference and exploration of expression

traits. From a UI menu, one can easily load the gene expression

data into GenAMap using the import wizard. Once uploaded,

GenAMap provides several options for the analyst to automatically

build a gene network, including the soft-thresholding method for

scale-free network [69], pairwise correlation for correlation

network, or glasso for Markov network [49]. An overall picture

of the gene interactions is provided to help understand the network

structure. GenAMap supports this type of analysis through the

discovery of gene modules within the network. A gene module in

GenAMap is a group of genes that cluster together. GenAMap

analyzes these modules automatically to find GO functional

enrichment and eQTL enrichment (when available).

We use GenAMap to run hierarchical clustering to cluster

highly connected genes in the network and identify top twenty

gene modules. This can be achieved on a parallel computing

Table 4. Gene modules with GO enrichment in the liver network.

Module
number

#genes in
module eQTL location

eQTL
p-value GO Category GO p-value

1 446 11 (4877160) 1.47E-57 mitochondrion 3.80E-04

2 104 17 (61151939) 6.10E-07 catalytic activity 1.96E-04

4 201 14 (9353843) 7.42E-114 ion channel activity 2.02E-04

5 97 19 (20354841) 3.38E-31 mitochondrion 1.11E-13

8 89 17 (61151939) 1.81E-07 cytoplasm 3.73E-04

12 45 13 (56818025) 2.56E-10 regulation of gene expression epigenetic 5.59E-05

14 22 1 (76152963) 8.61E-07 generation of metabolites and energy 6.28E-04

15 34 19 (21138174) 4.18E-10 ER 7.08E-04

20 20 6 (42868138) 1.31E-11 nucleic acid binding 2.34E-04

doi:10.1371/journal.pone.0097524.t004

Figure 8. Association of axon genes to chromosome 14. We found that rs8244120 on chromosome 14 was associated with 140 genes enriched
for cell projection, implying function in neuronal axons. Here, we show 22 of the genes with the strongest associations in GenAMap’s node-link view,
colored by the strength of association to rs8244120. White genes are strongly associated and black genes are weakly associated (gray is intermediate).
We found that some of the genes were also associated with another SNP on chromosome 14 (shown) and some of the genes were associated with a
SNP on chromosome 18 (not shown).
doi:10.1371/journal.pone.0097524.g008

GWAS in a Box

PLOS ONE | www.plosone.org 11 June 2014 | Volume 9 | Issue 6 | e97524



cluster by using an algorithm previously described in [64], which is

supported by GenAMap. Simultaneously, GenAMap calculates

the GO enrichment (using BiNGO [70]) for each discovered

module. The GenAMap visualization tools allow us to interactively

explore this gene network and the modules. Figure 4 shows a

screen-shot of an overview visualization of the gene network. It is

presented as a heat map, where darker pixels represent a weighted

relationship between genes. The genes in the heat map have been

clustered, and 20 identified modules are outlined in color. As we

select different gene modules in the network, GenAMap displays

the module’s GO enrichment results (and eQTL enrichment when

available). In the yeast dataset we analyzed, we find that the

modules are significantly enriched for certain GO categories,

consistent with previous reports [64]. For example, we see that the

blue module in Figure 4 is enriched for the GO category ribosome

biogenesis.

As we mentioned in the design section, all of GenAMap’s

visualization tools are developed to give an overview first, provide

tools to zoom and filter, and then link to details on demand. The

network view follows this pattern. Once we have an overview

picture of the gene network, we use GenAMap to drill down into

the data to explore interesting sub-networks. We provide one

simple example of this type of top-down exploration.

From the network overview, we observe that the largest sub-

network is the blue sub-network, made up of 788 genes. This sub-

network is enriched for many GO categories including ‘‘ribosome

biogenesis’’ (p-value = 4.06e-169). To explore this sub-network

further, we manually zoom into this region of the heat map

display. GenAMap displays gene-expression and trait networks at

a series of resolutions, so as we zoom into this region of the

network we see the finer detail of the gene-gene relationships

(Figure 5). We select the most highly connected part of the network

and switch to the JUNG view, which displays sub-networks of up

to 200 traits/gene-expressions in a ball and stick representation.

We summarize this process in Figure 5.

In the JUNG view, genes are represented as circle nodes, and

relationships between genes in the network are represented as

weighted lines. Thicker lines imply a strong weight/degree of

connection/correlation between genes. There are several different

layouts available in this view, which include a simple circle layout

and the KK-layout [71] shown in Figure 5C. Now that we have

zoomed into this region, we use GenAMap to get details about

these genes. We perform a GO enrichment analysis which finds

that the selected genes are enriched for the GO category ribosome

(p-value = 4.89e-169). We adjust the edge threshold manually to

remove edges with lower weights. Because the top-connected

genes in this network may be important players in the sub-

network, we right-click on the labels of these genes to link directly

to Google search and to UniProt [72]. These details on demand

help us understand functions of the genes in this sub-network; for

example RPS24A, a ribosomal protein from chromosome V, is the

one with the most connections in the studied network.

Finding eQTLs through S2M2R. Given the high modularity

of the gene network, we decide to run the TreeLasso [33] to find

SNPs associated with the genes that are inter-correlated under the

cluster hierarchy produced in the earlier step. In Figure 6, we

present an overview of the results from running the TreeLasso

automatically in GenAMap. This view shows a heat map where

SNPs are plotted along the y-axis and the genes plotted along the

x-axis. The discovered associations between SNPs and genes are

represented by the dark pixels in the plot, whereas white pixels

represent no associations.

From the results shown in Figure 6, we observe that many SNPs

are associated with clusters of genes, meaning that the associations

follow the modular structure of the data. We also observe that

many of the gene sub-networks are associated with more than one

SNP, suggesting some kind of interaction between the SNPs to

regulate or affect the gene expression of the modules. We zoom

into the heat map to see the finer structure of the associations in

the largest cluster (Figure 7A), and notice that there are ten SNPs

in the same genomic region that are associated with these genes.

To explore these associations, we select the 131 genes in the cluster

with strong associations and switch to the JUNG view.

Once in the JUNG view, we perform a GO enrichment test to

see if the selected genes have common functions. Indeed, the genes

are enriched for the GO annotations ‘‘nucleolus’’ (p-value = 2.09e-

107), ‘‘ribosome biogenesis’’ (p-value = 2.62e-99) and ‘‘RNA

metabolic process’’ (p-value = 7.08e-66). Figure 7B shows these

genes color-coded by GO category, e.g., all genes with the GO

annotation ‘‘nucleus’’ are shown in blue. These results suggest that

the selected genes are involved in ribosome biogenesis in the

nucleolus.

From the earlier exploration we performed with the functional

gene modules and the gene interaction network, we know that

these functionally coherent genes have strong associations to at

least ten SNPs on chromosome II (Figure 7A). We select half of

chromosome II and color the genes by degrees of associations to

the selected SNPs (Figure 7C), e.g., genes with strong associations

Table 5. GFlasso-gGFlasso results for the association analysis of the mice dataset.

SNP Chromosome Gene Trait

rs13459079 4 C1qb Alkaline phosphatase

rs4226889 7 Nsmce1 Weight at 6 weeks

rs3718803 11 Pcdh20 Aspartate Transaminase

rs3023277 11 Psmb6 Mean corpuscular haemglobin

rs6326787 11 Gabrd Startle response

rs6380524 11 Ube2g1 Startle response

rs4229111 11 Mpp3 Startle response

rs1348295 17 H2-T22 CD4+/CD8+

rs1348295 17 H2-T22 %CD4+/CD3+

rs1348295 17 H2-T22 %C8+ cells

We show GFlasso-gGFlasso associations that match the previously identified associations by Valdar et al. [74].
doi:10.1371/journal.pone.0097524.t005
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to these SNPs are shown in white, with weaker associations shown

in gray. In this view, the SNPs being considered are shown as

yellow triangles at the bottom of each panel for our reference. We

find that expressions of most of the genes in this sub-network are

associated to the same region on chromosome II. To further

explore these associations, we select ten genes in the module

(highlighted in salmon in Figure 7D) and view the association

strengths of these genes across chromosome II using the

Manhattan plot (Figure 7D, below). Then we zoom into the

region with the strongest associations, and notice that these genes

are associated with many SNPs (Figure 7E).

Since we have already added feature data to the SNPs, we run

AMTL to find the SNPs most likely to be associated with the genes

in this module. Unlike the TreeLasso, AMTL takes into account

SNP features instead of genetic structure, and selects SNP-gene

expression associations with bias toward SNPs having genomic

annotations (e.g. SNPs on exon regions); this allows us to filter out

many false positive SNPs with weak associations in unknown

regions. Once the AMTL analysis is complete, GenAMap allows

us to switch between the TreeLasso- and the AMTL results

(Figure 7E and 7F), and even to combine the results from both

methods if desired. Indeed, compared to the TreeLasso, AMTL

finds associations to far fewer SNPs on chromosome II for the

selected ten genes. To further explore the two SNPs on

chromosome II as revealed by AMTL, we look into their

information on the SGD, which GenAMap links to, and find that

one of the SNPs is in RPB5, a component of RNA polymerases,

and the other SNP is in PYC2.

In summary, in this demonstration using the yeast data, we have

shown how GenAMap enables an analyst to inspect a gene

expression network to find modules of interest and then drill down

further to get details about them. We have also demonstrated how

we can use GenAMap to explore association results and gene

modules under the regulation of eQTL hotspots. Furthermore, we

have shown how GenAMap allows analysts to compare the results

from different structured association mapping methods to better

understand association signals.

Obtaining GenAMap and Further Information
GenAMap is readily available for download from our Website

[73]. The software comes complete with installation instructions

and a range of video and text-based tutorials. If users have any

further questions, they can contact the corresponding authors for

more information.

Results

In this section, we apply GenAMap to a case study on the NIH

heterogeneous stock mice dataset [24] to further demonstrate the

function of this software system, and also to report interesting

biological findings from the study. Here, we highlight the

structured association mapping methods available to run in

GenAMap, and also describe the visualization tools available to

explore the results from these analyses. Due to the space limit,

some of the graphical illustrations that resemble others that were

previously shown can be found in the online supporting

information.

The mice dataset consists of more than 2500 mice that have

been genotyped for 12,545 markers and phenotyped for more than

150 traits [74]. Additionally, gene expression profiling data were

Figure 9. Overview of three way GFlasso-gGFlasso association analysis. We show the overview of the phenotypic trait-network and gene-
network from GenAMap for the GFlasso-gGFlasso analysis; associations are not shown. In this visualization, circles represent groups of genes,
associated to the same regions in the genome. Hexagons represent phenotypic traits. The edges between genes or between phenotypic traits
represent the connections in the gene or trait network. In this data, we note that there are very few edges between gene groups. The largest gene
group is the teal group, representing genes associated with the eQTL hotspot on chromosome 14. The phenotypic trait network consists of small
sub-groups of related traits.
doi:10.1371/journal.pone.0097524.g009
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generated from the liver and the lung for 260 genotyped mice and

also from the brain for 460 mice [75]. This dataset has been well

studied for SNPs associated with the mouse phenotypic traits and

gene expressions, and thus, it provides an excellent test bed to

demonstrate the strength of structured association analyses.

To prepare the data for analysis, we preprocess the expression

data from each tissue (liver, lung, and hippocampus) using lumi

[76]. We retain all probes that have a significant signal (dv0.05)

for at least 95% of the mice in each tissue, and keep the data from

mice that have gene expression data across all three tissues. We

impute missing phenotypic traits using k-nearest neighbor

imputation [77], and exclude all phenotypes with missing values

in more than 30% of the mice. In summary, our dataset contains

218 mice, each genotyped for 12545 SNPs, having measurements

for 173 phenotypic traits, and having gene expression data from

the liver (7102 probes), lung (9698 probes) and hippocampus (9733

probes).

Our analysis consists of four steps. First, we perform a network

analysis of the gene expressions to uncover and visualize the

correlation and cluster structures of the genes, which can in turn

be used as prior information for the subsequent eQTL mapping.

Then, we carry out a genome-wide eQTL analysis, using the

S2M2R tool provided in GenAMap, to detect SNPs significantly

associated with the gene expressions of interest. Next, we perform

a three-way genome-transcriptome-phenome analysis in an

Figure 10. Analyzing population structure in GenAMap. GenAMap provides an interactive view for analysts to explore population structure.
Population assignments are plotted by individual by Eigenvalue. The analyst can adjust the 2D plot to adjust between the first five Eigenvalues. Here,
we present the results from a population analysis on the mouse data. The population label for each individual predicted by Structure is plotted
according to the first two Eigenvalues. The plot shows clear separation between the populations.
doi:10.1371/journal.pone.0097524.g010

Figure 11. Interactive Manhattan plot for population data. GenAMap provides an interactive Manhattan plot for exploring associations in
population data. Here we show the results of MPGL looking for genetic associations associated with the gene expression Mapk1 in the hippocampus
gene expression data. The four colors represent the four populations in the data detected by Structure. The strength of the association in population
1 is significantly higher for all SNPs than in the other 3 populations.
doi:10.1371/journal.pone.0097524.g011
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attempt to establish a more complete picture of the statistical inter-

dependencies between eQTLs, gene expressions, and the mouse

phenotypic traits that suggest causal relationships between genetic

variations and phenotypic diversity. Finally, we conduct a

population analysis to explore the population structures in this

dataset and their effects on associations.

Network Analysis
After importing the data, we use GenAMap to construct gene

expression networks for each tissue using the soft-thresholding

method described in [69]. On each network, we performed

hierarchical clustering and ran a dynamic programming algorithm

[64] to find the top 20 connected gene modules. As a baseline, we

used GenAMap to run PLINK [10] to find pairwise SNP-gene

associations. GenAMap automatically considers all p-values less

than 1e-3 to be significant, which, although naive in its approach,

is a sufficient cutoff that allows us to get an overall idea of the

associations in the dataset. For each of the 20 modules, GenAMap

does eQTL and GO enrichment analyses. We use the GO slim

annotation and the associations found by PLINK for this analysis.

Figure S1 shows the annotated network generated from the gene

expression data from the brain. The top connected modules

GenAMap identifies are outlined in color.

Overall, we find that the gene networks in different tissues to be

quite different. We identify a number of unique genes and unique

edges between genes in the network of each tissue (see Table 3 for

a summary of the comparison of the three networks). While many

genes (e.g., 78% of the genes in the liver network) are shared

between the three networks, few edges are common across the

networks (e.g., only 14% of the edges in the liver network are

common across all three tissues), suggesting the three tissue types

have different regulatory patterns of expression.

Also, we notice the gene expression networks in different tissues

contain modules enriched with different GO groups and eQTLs.

In the liver, we find nine gene expression sub-networks enriched

for a GO groups including mitochondrion, catalytic activity, and

generation of metabolites and energy (Table 4); whereas the

hippocampus network has eight sub-networks enriched for GO

groups, including ribosome, calcium ion binding, and transport.

The eQTL enrichments for the modules are also different across

the three tissues. Of note, we find five modules in the lung gene

expression network significantly enriched with genes having

association to the SNP rs3023797. No modules in the liver or

brain are significantly enriched for association with this SNP.

Interestingly, this SNP is located in the exon region of the gene

Ttf1, which is a transcription termination factor of RNA

polymerase I [78]. Ttf1 has previously been shown to play

important regulatory roles in lung function and development in

mice [79]. These results, therefore, suggest that mutations in Ttf1

affect expression patterns in the lung, but not in the other tissue

types. Similarly, six gene expression sub-networks in the lung

network also have an enrichment for association to chromosome

12, base pair 26000000, which is not seen in the other two tissues.

This suggests that there is a second mutation that affects gene

expression in the lung, but not in the liver or hippocampus.

Structured Association Analysis of eQTLs
To leverage the network structure derived from the gene

expression profiling data, which reveals potential correlational,

regulatory, or even pleiotropic relationships among the gene

expressions we employ the GFlasso algorithm [22] supported in

GenAMap to identify eQTLs for each tissue type with enhanced

statistical power over PLINK. GenAMap uses 10-fold cross-

validation to find optimal values for the sparsity-inducing

regularization coefficients l and c with a linear search strategy

(documented at http://sailing.cs.cmu.edu/genamap). We down-

load all results from GenAMap and collect all the identified SNP-

gene associations. SNPs within 2 MB of each other and associated

with the same gene are considered as the same association. In

order to classify associations as cis- or trans-associations, we identify

genomic locations of all genes [80].

Our results show significant differences in the eQTL patterns in

the different tissues. In the liver, GFlasso identified six SNP-

transcriptome associations, all of which are cis associations. (We

define an association as a cis association when a SNP and its

associated gene are located on the same chromosome and within

10MB of each other). The results from the lung were similarly

sparse; GFlasso found 25 SNP-gene expression associations, one

trans association and 24 cis associations. Overall, GFlasso identies

two cis SNP-gene expression associations common across all three

tissues (Gps2 and Psmb6), one cis association common between liver

Figure 12. Frequency distribution of phenotypic trait by genotype. When exploring SNP-gene expression associations, GenAMap provides
links to tools that allow the analyst to explore the discovered association. For example, consider a case where the analyst considers a discovered SNP-
phenotypic trait association. The analyst can query dbSNP to find out information about the SNP, and the analyst can use GenAMap to visualize the
frequency distribution of the phenotypic trait by genotype.
doi:10.1371/journal.pone.0097524.g012
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and lung (C4b), and four cis associations common between lung

and hippocampus (Mrpl15, Hsd17b11, Rpl21, Hbb-b1).

In contrast to the sparsity of the structured association results in

liver and lung, GFlasso found many eQTLs using the hippocam-

pus data. Specifically, we identified 467 SNP-gene expression

associations for 103 SNPs and 268 genes, among which 138 are

cis- and 329 are trans associations, 79 genes are associated with

more than one SNP, and 6 SNPs are associated with more than 20

genes. Although the sparsity of the results for liver and lung is

unexpected, our results are consistent with previous reports [75]

that found that ‘‘trans-eQTLs are twice as common as cis-’’ in the

brain, and that trans-eQTLs are much more common in the brain

than in the other two tissues. It is the particular strength of GFlasso

to detect associations between SNPs and multiple correlated traits

as the algorithm combines the evidence for these by encouraging

corresponding coefficients to have similar values through the

fusion penalty. Since correlated traits are likely to be in different

genomic locations, it is expected that GFlasso uncovers many trans

associations. Because the results from the hippocampus are the

most interesting, we will focus on these signals in the remainder of

this section.

An overview of the SNP-gene expression association results for

the hippocampus is presented in Figure S2. In particular, we

notice one long horizontal line in the plot, suggesting the presence

of an eQTL hotspot that regulates many genes in trans. We also

notice the presence of other shorter horizontal lines, including

some overlapping with some of the genes of the largest eQTL

hotspot. Using GenAMap, we identify the SNP associated with

these genes as rs8244120 located on chromosome 14. We used

GenAMap to find the SNP (rs8244120) in dbSNP and find that it

is located in the exon coding region of two genes: Tmem55b and

Apex1. Apex1, apurinic/apyrimidinic endonuclease 1, has been

implicated in playing key roles in neuronal survival during

ischemic brain injuries [81].

To better understand the genes associated with this genomic

region, we use GenAMap to create a subset of all genes associated

with rs8244120. GenAMap identifies 140 genes associated with

rs8244120 in the GFlasso results. Further GO analysis using

GenAMap revealed that these associated genes are enriched with

the genes involved in ‘‘cell projection’’ (p-value = 2.65e-5), which is

defined as ‘‘A prolongation or process extending from the cell, e.g.

a flagellum or axon’’ [82]. Indeed, many of the genes in this subset

are annotated to GO categories indicating involvement in brain

function, e.g. Gas7, Nrp1, Stx1a are annotated to the GO category

neuron projection development. We select the 22 genes involving

in ‘‘cell projection’’ and save them as a subset for further analysis.

These 22 genes are enriched for many GO annotations including

cell projection (p-value = 1.49e-27), neuron projection (p-va-

lue = 5.32e-17), axon (p-value = 3.30e-9) and dendrite (p-va-

lue = 2.65e-7).

To further investigate the associations of the identified cell

projection genes to the SNPs, we generate a Manhattan plot of the

associations for the genes across GenAMap’s genome browser

(Figure 8). We notice that all of the genes were associated with

rs8244120, as expected, but that many genes had associations with

other SNPs as well, e.g., two of the genes are also associated with

rs13482353 on chromosome 14, and three of the genes were

associated with rs3722205 on chromosome 18. We look into these

two SNPs in more detail and find that 27 genes are associated with

rs13482353, 25 of which are also associated with rs8244120.

Likewise, 25 of the 27 genes associated with rs3722205 are also

associated with rs8244120. These results suggest that these SNPs

may interact in some way to regulate gene expression in the mouse

hippocampus.

Furthermore, we investigated an unrelated set of 41 genes

associated with rs1348069 on chromosome 10 in the GFlasso

results. We find that these genes are enriched for several GO

categories including extracellular ligand-gated ion channel activity

(p-value = 2.20e-4), membrane depolarization (p-value = 2.54e-4),

and synaptic transmission (p-value = 5.17e-4). rs1348069 is in the

intron region of Slc5a8, a gene involving in ion transport,

suggesting that this SNP plays a role in ion-related activities by

affecting these genes through altering the expression or function of

Slc5a8.

Three-way Genome-transcriptome-phenome Analysis
Given the results of our eQTL analysis, we decide to further run

a three-way association analysis using GFlasso-gGFlasso to find

multi-level associations from the clinical phenotypic traits to the

genes in the brain and to the potential causal SNPs in the genome.

We ignore all clinical traits that are marked as ‘‘Covariates,’’ since

these are largely dates, experimenter ids, and other variables such

as gender and litter. Overall, GFlasso-gGFlasso found 759

genome-transcriptome-phenome associations. These associations

included 138 associations to the X chromosome, which we ignored

due to possible gender effects. Thus, the results consist of 621

associations between 98 SNPs on 18 chromosomes to 156 gene

expressions that are associated with 94 phenotypic traits.

We compare the GFlasso-gGFlasso results with those reported

using a SNP-phenotypic trait association method [74]. We found

nine matches where GFlasso-gGFlasso identified a SNP-gene

expression-phenotypic trait association that matched the previ-

ously reported SNP-phenotypic trait associations (Table 5). While

the previous analysis focused on SNP-to-phenotypic trait associ-

ations, the GFlasso-gGFlasso results suggest associated genes that

help explain the previously discovered SNP-phenotypic trait

associations. This is a particular strength of GFlasso-gGFlasso.

We use GenAMap to further explore the identified associations

in the results. First, we consider the overall structure of the gene

expressions and phenotypic trait data (Figure 9), noting that the

largest gene group was associated with the eQTL hotspot on

chromosome 14 as discovered in the previous section. To better

understand the associations of these gene expressions to the

phenotypic traits, we use GenAMap to zoom into these genes and

the associated phenotypic traits and to filter out all other genes,

phenotypic traits, and associations (Figure S3). After exploring the

results, we are particularly interested in six genes that we find to be

associated with sub-networks of anxiety traits (Elevated plus maze

open arm time, distance, latency, etc.) due to the probable links

between the brain and the traits. Figure S4 shows these traits, the

correlations between traits (represented as gray lines between

phenotypic traits), and the gene expression-phenotypic trait

associations (pink lines between genes and phenotypic traits). We

also find that the genes are associated with two regions on

chromosome 14, which is consistent with previous findings

showing two peaks on chromosome 14 associated with these

phenotypic traits [74]. Furthermore, the results suggest potential

mechanisms for these associations. For example, consider Calb1, a

gene associated with the two eQTL hotspots and the anxiety traits.

Calb1 has been annotated to the axon, and Calb1 knockout mice

are known to show severe impairment in motor coordination [80].

Similarly, Gabrd, which is involved in ion transport [80], is also

associated with one eQTL hotspot and the anxiety traits. Gabrd

knockout mice have increased postpartum depression and anxiety.

Thus, biological evidence supports the GFlasso-gGFlasso results

suggesting mutations on chromosome 14 affect the expression

levels of Calb1 and Gabrd in the hippocampus, which in turn affect

the anxiety traits.
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We also consider other associations that GFlasso-gGFlasso

uncovered. For example, the GFlasso-gGFlasso results find an

association between chromosome 17 and immunology traits

(CD4+/CD8+, CD4+/CD3+, and CD8+), which was also

reported as a strong signal using the simple SNP-phenotypic trait

association method [74]. To find out if GFlasso-gGFlasso can

provide further mechanistic insight into this association, we use

GenAMap to drill down to this association (Figure S5). We identify

a gene group consisting of four genes that were associated with

these immunology traits. One of the genes, H2-T22, is associated

with all three correlated immunology traits. It is also associated

with rs13482952 on chromosome 17, which is 3.2MB away from

the H2-T22 coding region. Given that the resolution for this cross

is about 2MB, this SNP likely affects expression of H2-T22 in cis.

In fact, this region on chromosome 17 is part of the mouse H2

region, the major histocompatibility complex (MHC). The H2

region is the mouse ortholog to the human HLA region and

encodes genes involved in the mouse immune response [83]. The

immunology traits associated with H2-T22: CD8+, CD4+, and

CD3+, refer to the proteins on the surface of immune response

cells that bind to the antigens on the surface of other cells in the

organism. H2-T22 is a membrane protein [80], and likely

participates in this immune response pathway. As the immune

response is common across all cell types, we would expect to find

this association in all cells, including the brain tissues.

Population Structure and its Effect on Associations
It is known that genetic admixing within complex populations

can potentially confound association patterns. Therefore in this

section we leverage another function of GenAMap to investigate

such population structural effects.

While analyzing the Hippocampus SNP-gene expression

associations, GenAMap finds a set of 22 genes highly correlated

with SNP rs8244120 on chromosome 14 (Figure 8). We ask

whether the strength of these associations differs within heterog-

enous populations in the data. GenAMap uses Structure to

automatically detect and stratify the population structure of the

data. It then allows the user to explore the population structure by

plotting the individuals by Eigenvalue. The analyst can explore 2D

plots for the first five Eigenvalues to compare different numbers of

populations in the data. In this dataset, we find that the

populations separate into four distinct populations (Figure 10).

Given the strong separation between populations, we choose to

perform multi-population group lasso (MPGL), which can analyze

association differences across populations. In addition to MPGL,

GenAMap also provides three other simple statistics to explore

associations by population [84]. The three analyses are 1) the

Wald (qualitative traits) or chi-squared likelihood (binary traits) test

as implemented by PLINK [10], 2) a two-sided t-test on the

phenotype distribution by genotype, and 3) a likelihood test [17].

Once this analysis completes, GenAMap provides visualization

tools to explore the differences in association by population and by

test; and an analysis tool to explore the similarities and differences

in the results.

In Figure 11, we present GenAMap’s visualizations built to

explore association by population. Figure 11 shows a region on

chromosome 14 where many associations were found to the gene

expression Mapk1 in the hippocampus gene expression data, one

of the 22 genes found to be associated with this region of the

chromosome 14 (Figure 8). 19 out of the 22 genes were found to

have a significant difference in the strength of the association

across the 4 populations. In this interactive Manhattan plot, we

can add and remove populations, as well as tests. For example, in

Figure 11 we show the results from the MPGL for 4 populations,

but we can also plot the PLINK and likelihood tests for these

populations in the same figure.

From this view, GenAMap provides other tools for the analyst

that link to further details about the SNPs and associations.

Directly from this view, the analyst can query for and link to the

dbSNP [78] page of any SNP. For binary traits, the analyst can

select a SNP and request to view the frequency table of the trait by

genotype. For continuous traits, the analyst can compare the

distributions of the trait by genotype (Figure 12).

Discussion

In this paper, we described the development and usage of

GenAMap, a visual analytics software platform for GWAS and

eQTL studies. GenAMap is a suite of algorithmic tools that

provide ready-to-use access to cutting edge machine learning

research in GWAS and eQTL analysis. Not only have we built

GenAMap to provide access to state-of-the art analytic methods,

we have designed visualizations to enable analysts to explore the

sea of data that results from these types of algorithms. By building

on tried-and-tested visualization principles, we have developed

visualization strategies that will enable analysts to explore

association results from any analysis. Through multiple-coordi-

nated views, we provide analysts with the ability to explore the

structure in the genome, transcriptome, and phenome simulta-

neously, while considering associations between the data types. We

provide instant access to online databases, GO annotations, and

association strengths. These tools enable the analyst to explore the

data in ways that would not be possible using command-line query

tools.

Furthermore, we have shown that GenAMap enables biological

discovery through an analysis on the NIH heterogeneous stock

mice dataset. By using the sparse structured multivariate and

multitask regression (S2M2R) algorithms provided in GenAMap

for structured association mapping, we have not only uncovered

SNP-phenotypic trait associations, but have identified specific

genes that are associated with the eQTL hotspots and the clinical

traits themselves. Indeed, using additional data and more

sophisticated techniques allows us to understand the biological

mechanisms behind SNP-phenotypic trait associations. Under-

standing the biological mechanisms behind SNP-phenotypic trait

associations brings us one step closer to the prevention and

treatment of complex diseases.

To combat the increasing complexity of genetics analysis, we

believe that research must follow a pattern of collaboration and

cooperation between disciplines, even those as vastly different as

genetics, information visualization, and machine learning. We

expect that GenAMap serves as an exemplary foray into this type

of multi-disciplinary collaboration to build a suite of tools and

visualizations based on cutting-edge machine learning technology.

The problems facing geneticists today are a near perfect-fit for

visualization and machine learning. As these fields come together

with solid collaboration, the potential for discovery will continue to

accelerate.

In the future, we plan to include other advanced structured

association algorithms such as GroupSpAM [85] that allow for

nonlinear genetic effects, as well as mStruct [86], Spectrum [87],

and structured input-output lasso [30] that explore populational,

genomic, and transcriptomic structures more comprehensively.

Supporting Information

Figure S1 Mouse gene network analysis.
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Figure S2 eQTLs found in hippocampus tissue.
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