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1 Applications to hierarchical Dirichlet process and nonnegative matrix
factorization

A. Hierarchical Dirichlet process topic models

Hierarchical Dirichlet process topic models uses two-level Dirichlet process [1]. The base distribution
H of the top-level DP is a symmetric Dirichlet over the vocabulary simplex—its atoms are topics.
We draw once from this DP, G0 ∼ DP(ω,H). In the second level, we use G0 as a base measure
to a document-level DP, Gd ∼ DP(α,G0), which has the same set of atoms as G0. We then draw
the words of each document d from topics from Gd. However, this representation is difficult for
variational inference. Next, we review the stick-breaking construction representation for the (HDP)
topic model used in [2, 3], which is convenient for developing variational inference algorithm.

The stick-breaking generative process of the HDP topic model is as follows.

1. Draw an infinite number of topics, βi ∼ Dir(η) for k = {1, 2, 3, . . .}.

2. Draw corpus breaking proportions, vk ∼ Beta(1, ω) for k = {1, 2, 3, . . .}.

3. For each document d:

(a) Draw document-level topic indices, cdi ∼ Mult(σ(v)) for i = {1, 2, 3, . . .}.
(b) Draw document breaking proportions, πdi ∼ Beta(1, α) for i = {1, 2, 3, . . .}.
(c) For each word n:

i. Draw topic assignment zdn ∼ Mult(σ(πd)).
ii. Draw word wn ∼ Mult(βcd,zdn ).

Here the notation σ(v) and σ(πd) are stick-breaking proportions defined as,

σi(v) = vi
∏i−1
j=1(1− vj),

σi(πd) = πdi
∏i−1
j=1(1− πdj).

As in [2, 3], we use a truncated variational family. At the corpus level, we truncate at K, fitting
posteriors up to K topics. At the document level we truncate at T , letting each document take T
topic indices. The variational distribution is as follows,

q(β, v, z, π) =
(∏K

k=1 q(βk |λk)q(vk | ak)
)(∏D

d=1

∏T
i=1 q(cdi | ζdi)q(πdi | γdi)

∏N
n=1 q(zdn |φdn)

)
,

where the variational parameters are λk (Dirichlet, corpus-level), ak (Beta, corpus-level), ξdi (multi-
nomial, document-level), γdi (Beta, document-level) and φdn (multinomial, word-level). We omit the
detailed coordinate ascent updates for these parameters. Interested readers can refer to [3] for more
information.
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In stochastic variational inference, for a random sampled document d, we write down the noisy
natural gradient for corpus-level variational parameters,

gd(λkv) = −λkv + η +D
∑T
i=1 ζ

k
di

∑N
n=1 φ

i
dnI[wdn = v],

gd(a
(1)
k ) = −a(1)k + 1 +D

∑T
i=1 ζ

k
di,

gd(a
(2)
k ) = −a(2)k + ω +D

∑T
i=1

∑K
`=k+1 ζ

`
di.

Control variates. For parameter λkv ,
∑T
i=1 ζ

k
di

∑N
n=1 φ

i
dnI[wdn = v] gives the expected number

of times that term v in document d is assigned to topic k according to the variational distribution.
This is similar to the natural gradient in Eq. 18 in the main paper used in LDA except that in HDP
topic models, this is calculated via the topic indices cdi. So we choose the same control variates φkv
as that in LDA as in Eq. 19 in the main paper.

For parameter ak,
∑T
i=1 ζ

k
di indicates the popularity of the topic k in document d by considering all

topic indices. This could have a high correlation with the number of words assigned to topic k in
document d. Thus we control variates are

hd(a
(1)
k ) = D

∑V
v=1 φ

k
vndv,

hd(a
(2)
k ) = D

∑K
`=k+1

∑V
v=1 φ

`
vndv.

B. Nonnegative matrix factorization

Now we show we can use the same idea for nonnegative matrix factorization (NMF) [4] given the
connections between NMF, LDA and probabilistic semantic indexing [5, 6].

Suppose we have a non-negative dataset, x = {x1, x2, ..., xD}, and each xd is a length-V vector. We
assume the factorization is obtained by minimizing

D(x||βθ) ,
∑D
d=1D(xd||βθd),

where θdk ≥ 0, for k = 1, ...,K, where K is the latent dimensions of NMF. Let β = [β1, ..., βK ] be
the basis, ∑V

v=1 βkv = 1 and βkv ≥ 0. (1)

The distance metric is the generalized KL-divergence [4],

D(xd||βθd) =
∑V
v=1

(
xdv log xdv∑K

k=1 βkvθdk
− xdv +

∑K
k=1 βkvθdk

)
=
∑V
v=1

(
xdv

(
log xdv − log

∑K
k=1 βkvθdk

)
− xdv

)
+
∑K
k=1 θdk.

To minimize this metric, we choose to use an EM-style algorithm as follows. Let
∑K
k=1 φ

k
dv = 1,

then we can lower bound it using the Jensen’s inequality

log
∑K
k=1 βkvθdk = log

∑K
k=1

βkvθdk
φk
dv

φkdv ≥
∑K
k=1(φkdv log βkvθdk − log φkdv),

where the optimal φkdv is
φkdv ∝ βkvθdk,

and this gives the tight bound. Then the update for θd and β is

θdk =
∑V
v=1 xdvφ

k
dv,

βkv ∝
∑D
d=1 xdvφ

k
dv. (2)

However, the update βkv does not allow us easily to use a natural gradient algorithm that is similar to
LDA or HDP. We change the objective as follows. Assume

p(β | η) =
∏
k Dir(βk | η).

We will find q(β) =
∏
k q(βk |λk) that minimizes∑D

d=1 Eq[D(xd||βθd)] +KL (q(β|λ)||p(β | η)) .

2



Minimizing this leads to the updates

φkdv ∝ θdk exp {Ψ(λk,v)−Ψ (
∑
v λkv)} ,

θdk =
∑V
v=1 xdvφ

k
dv,

The natural gradient with respect to λkv is

gd(λkv) = −λkv + η +
∑D
d=1 xdvφ

k
dv. (3)

Eq. 3 lets us use the variance reduction technique presented in the main paper.
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