1 Applications to hierarchical Dirichlet process and nonnegative matrix factorization

A. Hierarchical Dirichlet process topic models

Hierarchical Dirichlet process topic models uses two-level Dirichlet process [1]. The base distribution H of the top-level DP is a symmetric Dirichlet over the vocabulary simplex—its atoms are topics. We draw once from this DP, $G_0 \sim \text{DP}(\omega, H)$. In the second level, we use G_0 as a base measure to a document-level DP, $G_d \sim \text{DP}(\alpha, G_0)$, which has the same set of atoms as G_0. We then draw the words of each document d from topics from G_d. However, this representation is difficult for variational inference. Next, we review the stick-breaking construction representation for the (HDP) topic model used in [2, 3], which is convenient for developing variational inference algorithm.

The stick-breaking generative process of the HDP topic model is as follows.

1. Draw an infinite number of topics, $\beta_i \sim \text{Dir}(\eta)$ for $k = \{1, 2, 3, \ldots\}$.
2. Draw corpus breaking proportions, $v_k \sim \text{Beta}(1, \omega)$ for $k = \{1, 2, 3, \ldots\}$.
3. For each document d:
 (a) Draw document-level topic indices, $c_{di} \sim \text{Mult}(\sigma(v))$ for $i = \{1, 2, 3, \ldots\}$.
 (b) Draw document breaking proportions, $\pi_{di} \sim \text{Beta}(1, \alpha)$ for $i = \{1, 2, 3, \ldots\}$.
 (c) For each word n:
 i. Draw topic assignment $z_{dn} \sim \text{Mult}(\sigma(\pi_d))$.
 ii. Draw word $w_n \sim \text{Mult}(\beta_{c_{di}, z_{dn}})$.

Here the notation $\sigma(v)$ and $\sigma(\pi_d)$ are stick-breaking proportions defined as,

$$
\sigma_i(v) = v_i \prod_{j=1}^{i-1} (1 - v_j), \\
\sigma_i(\pi_d) = \pi_{di} \prod_{j=1}^{i-1} (1 - \pi_{dj}).
$$

As in [2, 3], we use a truncated variational family. At the corpus level, we truncate at K, fitting posteriors up to K topics. At the document level we truncate at T, letting each document take T topic indices. The variational distribution is as follows,

$$
q(\beta, v, z, \pi) = \left(\prod_{k=1}^{K} q(\beta_k | \lambda_k) q(v_k | a_k) \right) \left(\prod_{d=1}^{D} \prod_{i=1}^{T} q(c_{di} | \xi_{di}) q(\pi_{di} | \gamma_{di}) \prod_{n=1}^{N} q(z_{dn} | \phi_{dn}) \right),
$$

where the variational parameters are λ_k (Dirichlet, corpus-level), a_k (Beta, corpus-level), ξ_{di} (multinomial, document-level), γ_{di} (Beta, document-level) and ϕ_{dn} (multinomial, word-level). We omit the detailed coordinate ascent updates for these parameters. Interested readers can refer to [3] for more information.
In stochastic variational inference, for a random sampled document \(d\), we write down the noisy natural gradient for corpus-level variational parameters,

\[
\begin{align*}
g_d(\lambda_{kv}) &= -\lambda_{kv} + \eta + D \sum_{i=1}^{T} c_{di} \sum_{n=1}^{N} \phi_{dn}^i I[w_{dn} = v], \\
g_d(a_{k}^{(1)}) &= -a_{k}^{(1)} + 1 + D \sum_{i=1}^{T} c_{di}^k, \\
g_d(a_{k}^{(2)}) &= -a_{k}^{(2)} + \omega + D \sum_{i=1}^{T} \sum_{\ell=k+1}^{K} c_{di}^\ell.
\end{align*}
\]

Control variates. For parameter \(\lambda_{kv}, \sum_{i=1}^{T} c_{di}^k\) indicates the popularity of the topic \(k\) in document \(d\) by considering all topic indices. This could have a high correlation with the number of words assigned to topic \(k\) in document \(d\). Thus we control variates are

\[
\begin{align*}
h_d(a_{k}^{(1)}) &= D \sum_{v=1}^{V} \phi_{v}^k n_{dv}, \\
h_d(a_{k}^{(2)}) &= D \sum_{\ell=k+1}^{K} \sum_{v=1}^{V} \phi_{v}^\ell n_{dv}.
\end{align*}
\]

B. Nonnegative matrix factorization

Now we show we can use the same idea for nonnegative matrix factorization (NMF) [4] given the connections between NMF, LDA and probabilistic semantic indexing [5, 6].

Suppose we have a non-negative dataset, \(x = \{x_1, x_2, \ldots, x_D\}\), and each \(x_d\) is a length-\(V\) vector. We assume the factorization is obtained by minimizing

\[
D(x||\beta) \triangleq \sum_{d=1}^{D} D(x_d||\beta_d),
\]

where \(\theta_{dk} \geq 0\) for \(k = 1, \ldots, K\), where \(K\) is the latent dimensions of NMF. Let \(\beta = [\beta_1, \ldots, \beta_K]\) be the basis,

\[
\sum_{v=1}^{V} \beta_{kv} = 1 \text{ and } \beta_{kv} \geq 0.
\]

The distance metric is the generalized KL-divergence [4].

\[
D(x_d||\beta_d) = \sum_{v=1}^{V} \left(x_{dv} \log \frac{x_{dv}}{\sum_{k=1}^{K} \beta_{kv} \theta_{dk}} - x_{dv} + \sum_{k=1}^{K} \beta_{kv} \theta_{dk} \right) = \sum_{v=1}^{V} \left(x_{dv} \left(\log x_{dv} - \log \sum_{k=1}^{K} \beta_{kv} \theta_{dk} \right) - x_{dv} \right) + \sum_{k=1}^{K} \theta_{dk}.
\]

To minimize this metric, we choose to use an EM-style algorithm as follows. Let \(\sum_{k=1}^{K} \phi_{v}^k = 1\), then we can lower bound it using the Jensen’s inequality

\[
\log \sum_{k=1}^{K} \beta_{kv} \theta_{dk} = \log \sum_{k=1}^{K} \frac{\beta_{kv} \theta_{dk} \phi_{dv}^k}{\phi_{dv}^k} \geq \sum_{k=1}^{K} (\phi_{dv}^k \log \beta_{kv} \theta_{dk} - \log \phi_{dv}^k),
\]

where the optimal \(\phi_{dv}^k\) is

\[
\phi_{dv}^k \propto \beta_{kv} \theta_{dk},
\]

and this gives the tight bound. Then the update for \(\theta_{dk}\) and \(\beta_{kv}\) is

\[
\begin{align*}
\theta_{dk} &= \sum_{v=1}^{V} x_{dv} \phi_{dv}^k, \\
\beta_{kv} &\propto \sum_{d=1}^{D} x_{dv} \phi_{dv}^k.
\end{align*}
\]

However, the update \(\beta_{kv}\) does not allow us easily to use a natural gradient algorithm that is similar to LDA or HDP. We change the objective as follows. Assume

\[
p(\beta | \eta) = \prod_k \text{Dir}(\beta_k | \eta).
\]

We will find \(q(\beta) = \prod_k q(\beta_k | \lambda_k)\) that minimizes

\[
\sum_{d=1}^{D} \text{Eq}[D(x_d||\beta_{dk})] + KL(q(\beta|\lambda)||p(\beta | \eta)).
\]
Minimizing this leads to the updates

$$
\phi_{dv}^k \propto \theta_{dk} \exp \{ \Psi(\lambda_{k,v}) - \Psi \left(\sum_v \lambda_{kv} \right) \},
$$

$$
\theta_{dk} = \sum_{v=1}^V x_{dv} \phi_{dv}^k,
$$

The natural gradient with respect to $\lambda_{k,v}$ is

$$
g_d(\lambda_{k,v}) = -\lambda_{k,v} + \eta + \sum_{d=1}^D x_{dv} \phi_{dv}^k.
$$

(3)

Eq. 3 lets us use the variance reduction technique presented in the main paper.

References

