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ABSTRACT
Motivation: Clustering of genotype data is an important way of
understanding similarities and differences between populations. A
summary of populations through clustering allows us to make
inferences about the evolutionary history of the populations. Many
methods have been proposed to perform clustering on multi-locus
genotype data. However, most of these methods do not directly
address the question of how many clusters the data should be divided
into and leave that choice to the user.
Methods: We present StructHDP, which is a method for automatically
inferring the number of clusters from genotype data in the presence
of admixture. Our method is an extension of two existing methods,
Structure and Structurama. Using a Hierarchical Dirichlet Process,
we model the presence of admixture of an unknown number of
ancestral populations in a given sample of genotype data. We use
a Gibbs sampler to perform inference on the resulting model and infer
the ancestry proportions and the number of clusters that best explain
the data.
Results: To demonstrate our method, we simulated data from an
island model using the neutral coalescent. Comparing the results
of StructHDP with Structurama shows the utility of combining HDPs
with the Structure model. We used StructHDP to analyze a data
set of 155 Taita thrush, Turdus helleri, which has been previously
analyzed using Structure and Structurama. StructHDP correctly picks
the optimal number of populations to cluster the data. The clustering
based on the inferred ancestry proportions also agrees with that
inferred using Structure for the optimal number of populations. We
also analyzed data from 1048 individuals from the Human Genome
Diversity project from 53 world populations. We found that the clusters
obtained correspond with major geographical divisions of the world,
which is in agreement with previous analyses of the dataset.
Availability: StructHDP is written in C++. Please contact the authors
for the source code.
Contact: suyash@cs.cmu.edu

1 INTRODUCTION
The clustering of individuals into populations is a frequently-
undertaken task in studies of genetic data. Clustering allows
the summarization of individuals into groups based on genetic
similarity. Such a summary is easy to visualize and understand.
It enables us to make simple inferences about the similarities and
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differences between different groups of individuals. We can also
make inferences about evolutionary history of populations. An
understanding of the population stratification present in a set of
individuals is also required for avoiding false positives in genetic
association studies.

Phenomena like migration and admixture make the clustering
problem harder, since individuals need not belong to exactly one
population cluster, but can have partial membership in multiple
clusters. Different parts of an individual’s genome can be inherited
from individuals belonging to different populations. The problem
of clustering individuals while allowing partial membership in
multiple clusters was addressed using a Bayesian model by
Pritchard et al. [13]. Extensions to the underlying model that
account for other evolutionary processes such as mutation [17] and
recombination [5] have also been proposed.

An important question that needs to be addressed when solving
the problem of population stratification is deciding how many
populations are required to best explain the variation observed in
a given set of individuals. The Bayesian models mentioned earlier
require the user to specify a number of clusters (also called ancestral
populations) into which the individuals are divided. However, this
might not always be possible or desirable. To address this problem,
an extension of Structure was developed by Pella et al. [12]. Based
on their method, Huelsenbeck et al. [9] developed Structurama.
Structurama automatically infers the number of population clusters
into which a given data set should be divided provided individuals
only belong to a single population. A commonly-used solution to
this problem is to use fixed-dimensionality models in combination
with an information criterion [1, 16] to decide the optimal number
of populations.

In this paper, we present StructHDP, a method for automatically
inferring the number of population clusters present in a group
of individuals, while accounting for admixture between ancestral
populations. Using the Hierarchical Dirichlet Process framework
for clustering developed by Teh et al. [20], we extend the Structure
model so that the number of populations is inferred by the model
and need not be specified by the user. This work is also an extension
of the Dirichlet process model developed by Pella et al. [12] which
has been implemented in Structurama.

We simulated data from an island model using the neutral
coalescent to test the performance of our method at recovering
the true number of ancestral populations. Comparing the results
of StructHDP with Structurama shows the utility of combining
HDPs with the Structure model. We used StructHDP to analyze
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a set of 155 Taita thrush individuals, Turdus helleri. This dataset
has been previously analyzed using Structure and Structurama. We
found that StructHDP correctly identifies the optimal number of
populations to cluster the data. The clustering enforced by the
inferred ancestry proportions for individuals also agrees with that
inferred using Structure with the appropriate choice of the number
of populations K. We also analyzed a set of 1048 individuals from
the Human Genome Diversity Project (HGDP) using StructHDP.
We found that the clusters inferred coincide with the major
geographical divisions present in the data. We also observed that the
distance between populations (based on their cluster memberships)
is strongly positively correlated with Fst between populations,
which suggests that the inferred cluster memberships capture the
genetic variation present in the data well.

2 RELATED WORK
Model-based clustering methods have become popular since the
Structure model by Pritchard et al. [13]. The method uses a
Bayesian model to capture admixture in populations, with model
parameters inferred by Markov Chain Monte Carlo (MCMC)
sampling. Extensions to the underlying model that account for other
evolutionary processes such as mutation [17] and recombination [5]
have also been proposed. These methods have the advantage that
they use an explicit demographic model of population stratification.
However, they are not efficient for large datasets.

Population clustering methods have also been developed in a
complementary direction, using low-dimensional projections and
eigenanalysis to cluster individuals [11]. These methods assume no
underlying evolutionary model but have been shown to be good at
modeling population structure. They are efficient and also allow the
user to compute the statistical significance of the results obtained.

Recently, a set of methods such as Admixture [2] and Frappe [19]
have been developed that use the likelihood model of Structure but
use faster optimization methods for estimating model parameters.
Frappe uses an expectation-maximization algorithm to determine
individual ancestries. Admixture uses a block relaxation algorithm
to speed up the optimization. Both these models are faster than
Structure and allow the analysis of large datasets with hundreds of
thousands of markers.

In all the models mentioned above, an important choice that must
be made by the user is the number of populations (K) or clusters that
the dataset must be divided into. To help the user make this choice,
some methods provide an approximation to the posterior probability
of the number of populations given the data. Alternatively, the
user can use information criterion such as the Akaike Information
Criterion (AIC) [1] or the Bayesian Information Criterion (BIC) [16]
to choose the number of populations that best explain the data.
The choice of number of populations is a trade-off between model
expressiveness (how well the model captures the variation in the
data) and model complexity (how many parameters the model needs
to capture the variation).

Huelsenbeck et al. [9] developed an extension to Structure, called
Structurama, that automatically infers the number of populations
that are present in the data. Their method assumes that an individual
only belongs to a single cluster and that the number of populations
is also a random variable. They use a Dirichlet process prior to infer
the number of populations automatically. Coalescent simulations by

Huelsenbeck et al. [9] using island models show that inference of
the number of populations is accurate when migration rates are low
and differentiation between populations is high.

We propose to extend the Structure model beyond Structurama to
allow for admixture between ancestral populations. An individual
can have membership in multiple clusters and the number of
populations will automatically be inferred by the model. In the
following sections, we describe the model and discuss the results
of analyzing some simulated and real data using StructHDP.

3 APPROACH
Bayesian models for clustering of genotype data use the framework
of mixture models to model individuals. In a mixture model, an
individual is assumed to be made up of a number of genetic markers.
Each of those markers is assumed to originate from one of a finite
number of ancestral populations. Ancestral populations are usually
defined as a collection of allele frequencies at the markers under
consideration. An individual can thus be considered to be a mixture
of one or more ancestral populations, which explicitly accounts
for admixture between populations. The proportions of different
populations within an individual’s genome are usually individual-
specific and provide a compact summary of the individual’s genome.
This is the basis of the Structure model by Pritchard et al. [13].

We approach the problem of finding the optimal number of
ancestral populations by extending the above model to a setting
where there are potentially infinite ancestral population components
in the mixture. Performing inference then allows us to examine the
number of ancestral populations that have a non-zero contribution to
the set of individuals under consideration. We use the Hierarchical
Dirichlet Process framework [20] to model the mixture of infinite
ancestral populations.

Consider the problem of clustering the markers within a single
individual based on their population of origin. We can assume that
the number of populations that contribute to the single individual’s
genome is unknown and is a random variable. The Dirichlet process
(DP) [6] was proposed to solve a problem of this nature, where
objects (genetic markers) belong to one of a potentially infinite
number of mixture components (ancestral populations). In the
case of multiple individuals, we can posit multiple DPs, one for
each individual, that will address the problem of not knowing
the optimal number of populations. We also require that the
ancestral populations inferred for the DPs be the same across all
the individuals. Mathematically, this is analogous to ensuring that
mixture components are shared across DPs.

The Hierarchical Dirichlet process (HDP) is a framework for
clustering of observations when the observations are present in
groups. Each group can be modeled using a finite mixture model
or a Dirichlet process. The mixture models or DPs across groups
are linked by sharing mixture components. It is useful to think of
each group as having its own Dirichlet processes, with the processes
linked to each other by the parameters of the HDP. StructHDP is
based on the Hierarchical Dirichlet process described by Teh et
al. [20]. In the following section, we provide a description and
mathematical representation of the HDP model.
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4 METHODS
A commonly used analogy for representing HDPs is the Chinese Restaurant
Franchise (CRF). This is an extension of the representation of the
Dirichlet process (DP) as a Chinese restaurant with customers. The DP
representation and its application to Structurama are described in more
detail by Huelsenbeck et al. [9]. A CRF comprises of a number of Chinese
restaurants which share a common (possibly infinite) menu of dishes. In
a CRF, each restaurant corresponds to a group of observations, and the
customers are observations. The dishes served in the restaurant are the
mixture components, and sharing of mixture components across groups
corresponds to sharing of dishes across restaurants. In the CRF metaphor,
a new customer (observation) arrives at the restaurant corresponding to its
group. The customer chooses a previous occupied table in the restaurant
with a probability proportional to the number of customers already at the
table, or, with a constant probability, chooses a new table. Every table serves
a dish from the possible set of dishes, and every customer at the table is
assigned that particular dish, i.e, the observation is assigned the particular
mixture component that is associated with the table. All observations that
are assigned to a particular table are considered to originate from the same
mixture component, clustering the observations within the group. The same
mixture component might also be shared across multiple tables within a
group. The method of choosing a table for a new customer is similar to a
“rich gets richer” model which is regulated by the probability of starting
a new table. This is the property of the HDP that is responsible for its
clustering behavior.

This analogy can be easily extended to the case of genetic data, with every
individual considered to be a separate group corresponding to a restaurant.
The loci within an individual are the customers in the restaurant, and the
ancestral populations are the mixture components or the dishes in the CRF. A
minor subtlety that arises in this case is that the set of possible alleles at each
locus might be different, which needs to be accounted for in the inference
process. This can be accomplished easily with some minor bookkeeping
without changing the inference process significantly.

Consider a dataset having N individuals genotyped at M loci. The
observed allele for individual j at locus i is denoted by xji. For ease
of representation, we will ignore the diploid nature of genotype data. In
implementation, we shall allow our method to handle data of any fixed
ploidy. The HDP can then be used to generate the allele xji for the jth

individual at the ith locus as follows:

G0|γ,Hi ∼ DP (γ,Hi)

Gj |α0, G0 ∼ DP (α0, G0)

θji|Gj ∼ Gj

xji|θji ∼ F(θji)

Here, Hi is the base distribution over alleles at locus i, commonly a
Dirichlet distribution. γ and α0 are parameters of the HDP that control
how fast new populations are added to the model. G0 is an intermediate
probability distribution over alleles at locus i andGj is a distribution specific
to individual j. The individual-specific distributions Gj are connected
to one another through G0 and α0, ensuring the sharing of ancestral
populations across individuals. G0 and Gj are both generated by Dirichlet
processes (DP) that use γ and α0 as parameters. The θs denotes the mixture
components. xji is a sample from a distribution F (θji), a multinomial
distribution over alleles in our case.

For modeling purposes, it is helpful to modify the representation of the
HDP so that the generative process looks as follows.

β|γ ∼ GEM(γ) (1)

πj |α0, β ∼ DP(α0, β) (2)

φik|Hi ∼ Hi (3)

zji|πj ∼ πj (4)

xji|zji, (φik)∞k=1 ∼ F(φzji ) (5)
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Fig. 1. Graphical model representation of the generative process of
StructHDP. Nodes represent random variables and edges indicate
dependencies between random variables. The shaded circle indicates the
observed alleles. The dataset has N individuals, each genotyped at M loci.
For ease of representation, we do not show the ploidy of the individual in the
graphical model.

where we say that β = (βk)
∞
k=1 ∼ GEM(γ) if it satisfies the following

construction:

β′k|γ ∼ Beta(1, γ) (6)

βk = β′k

k−1∏
l=1

(1− β′l) (7)

This construction ensures that
∑∞
k=1 βk = 1. The β thus represents the

fractional contributions of the potentially infinite populations to the given
set of individuals.

In the HDP representation above, φik represents the allele frequencies of
the kth population at the ith locus. πj is a vector that denotes the ancestry
proportions (contributions from all populations) for individual j, and its
components sum to 1. The indicator variable zji denotes which population
the observed allele xji at locus i originates from. We will use this notation
for representing the HDP model for our problem due to its similarity with the
Structure generative process. This representation also shows how the model
can account for diploid individuals by changing the step of sampling zji and
xji to the following:

zji,1|πj ∼ πj

zji,2|πj ∼ πj

xji,1|zji,1, (φik)∞k=1 ∼ F(φzji,1 )

xji,2|zji,2, (φik)∞k=1 ∼ F(φzji,2 )

where xji,1 and xji,2 now represent the two alleles at locus i in individual j
and zji,1 and zji,2 are their respective population indicator variables. This
allows the model to account for mixed ancestries at a single locus as well.
For ease of representation, we will drop the subscript indicating the ploidy
in the analysis.

Figure 1 shows the graphical model representation of the StructHDP
generative process. In this graphical model representation, the nodes
represent random variables which have been described earlier. The edges
denote dependencies between the random variables due to the sampling steps
in the generative process. The shaded nodes represent the random variables
we observe, viz, the alleles observed at each locus.

To allow for more flexibility with the parameter settings, we impose priors
on α0, γ and the base distributions Hi. We assume that α0 and γ have
Gamma priors with parameters (αa, αb) and (γa, γb) respectively and that
Hi has a symmetric Dirichlet distribution with parameter λ. The graphical
model with all priors shown can be seen in Figure 11 in the Appendix.

α0 ∼ Gamma(αa, αb) (8)

γ ∼ Gamma(γa, γb) (9)

Hi ∼ Dir(λ) (10)
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4.1 Inference
For performing inference on the model, we use Gibbs sampling, a MCMC
sampling method described for the HDP by Teh et al. [20]. For inference in
the CRF representation of the HDP, we create some bookkeeping variables
m that keep count of the number of tables at the restaurant and franchise
levels. More details about the distributions used for sampling the variables
are presented in the Appendix.

4.2 Inference steps
Using all the variable updates, the inference process can be described as:

1. Set the values for the prior parameters αa, αb, γa, γb, λ.

2. Start with random values for all other variables.

3. Sample z variables given all other variables.

4. Sample m variables given all other variables, using updated value of z.

5. Sample β given all other variables, using updated values of z and m.

6. Sample α0 using updated values of z, m and β.

7. Sample γ using updated values of all other variables.

8. Repeat 3-7 until convergence.

The Gibbs sampling update distributions can be derived following the
methodology in Teh et al. [20]. Due to space limitations, the details of the
Gibbs sampling update distributions and their derivations are deferred to the
Appendix.

4.3 Other inference details
Like all MCMC methods, the sampler is run for a large number of iterations,
with some initial iterations discarded as burn-in. Samples from the posterior
can then be used to estimate the ancestry proportions πj for each individual.
The posterior distribution for the individual ancestry proportions πj can be
shown to be a Dirichlet distribution.

πj ∼ Dir

(
· · · , α0βk +

M∑
i=1

I[zji = k], · · ·

)
(11)

where I[.] denotes an indicator function. If the number of populations
remains constant across iterations in the sampling (as is often seen to happen
in our experiments after a large number of iterations), this estimate can
be averaged over multiple samples to get a more accurate estimate of the
individual ancestry proportions.

As with the Gibbs sampler used in Structure, our method could have
problems with the identifiability of clusters, if label switching for the clusters
were a frequent occurrence. In practice, we find that label switching is
infrequent, and is avoided by the use of the restricted growth function (RGF)
notation of Stanton et al. [18] in summarizing MCMC results.

5 RESULTS
5.1 Coalescent simulation data
We performed coalescent simulations based on an island model
similar to Huelsenbeck et al. [9]. We used the program ms [8] to
simulate samples under a neutral coalescent model. As an initial
evaluation of the performance of StructHDP in recovering the
correct number of population clusters, we simulated data from a
symmetric equilibrium island model with 4 demes of equal size,
with the mutation rate θ = 4Neµ = 0.5 and migration rate
M = 4Nem = {1, 2, 4}. In each case, 100 diploid individuals
were sampled with an equal number being sampled from each deme.
50 replicates were created for each parameter setting.

We analyzed the data using StructHDP, Structurama and
Admixture. For StructHDP, the priors for both concentration

Method ↓ / Migration rate→ M=1 M = 2 M =4
StructHDP 0.10 0.01 0.15

Structurama 0.0 -0.21 -1.31
Admixture+AIC -1.8 -1.73 -1.65
Admixture+BIC -2.6 -2.78 -2.62
Admixture+CV 2.5 2.63 2.71

Table 1. Comparison of simulation results for StructHDP, Structurama
and Admixture. 50 replicates, consisting of 100 diploid individuals each,
were sampled from a 4-deme symmetric island model, with θ = 0.5 and
M = {1, 2, 4}. The error in recovering the number of demes is shown, as
computed by the error measure E(E(K|X)−KT ).

parameters were set to (0.5,0.5) and the parameter for the Dirichlet
distribution of H was set to 0.5. The StructHDP Gibbs sampler
was run for 25,000 iterations, with the first 12,500 iterations
discarded as burn-in. To thin the Markov chain, samples were
taken every 25 iterations. We computed the expected value of the
number of populations, K, using the sampled values of K from
the Gibbs sampler. The expected value of K, E(K|X) can then be
compared against the true value of the number of demes, KT = 4,
across multiple replicates, to get an error measure that is given by
E(E(K|X)−KT ) [9].

For Structurama, the experiments for each parameter setting
were performed with different priors on the expected number of
populations in [9]. For comparison purposes, we chose the best
result, i.e, the prior setting that gave the least error. Model selection
with Admixture can be done in three different ways by choosing
either the AIC, BIC or the cross-validation error as the measure of
model fit. We present results for all three measures.

Table 1 shows the results of the simulation. We can see that
the error in recovering K is much smaller for StructHDP than
for Structurama and for Admixture, except when the migration
rate is small. The underlying assumption of the Dirichlet process
model of Structurama is that there is no admixture and individuals
only belong to a single ancestral population. As a result, in a
simulation setting with less admixture due to migration, the number
of recovered populations for Structurama is almost perfect. As the
amount of admixture increases, the error in the number of recovered
populations increases. On the other hand, StructHDP explicitly
accounts for admixture in the model. Therefore it recovers the
true number of demes in the island model with low error for all
parameter values. In terms of Fst, we can say that as the Fst
between the demes decreases (as migration increases), the accuracy
of Structurama drops while that of StructHDP is nearly unaffected.

Admixture performs worse than both StructHDP and Structurama
in recovering the true number of populations. This may be due to
the small number of markers that are used in the simulation study.

5.2 Real data analysis
5.2.1 Taita thrush data: We used our method to analyze a data
set of N = 155 Taita thrush, Turdus helleri [7]. Each individual was
genotyped at M = 7 microsatellite loci. Individuals were sampled
at four locations in southeast Kenya [Chawia (17 individuals),
Ngangao (54), Mbololo (80), and Yale (4)]. The thrush data were
previously analyzed in [13, 9] so we use it to verify the correctness
of StructHDP.
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Fig. 2. Posterior distribution for number of populations, Pr(K|X) for the
thrush data.

Fig. 3. A single sample of the ancestry proportions for the thrush data. The
black lines separate the individuals according to their geographic labels. The
analysis did not use any geographical information.

Chawia Mbololo Ngangao Yale

Fig. 4. The ancestry proportions for the thrush data from a single Structure
run for K=3.

We ran StructHDP for 25,000 iterations, with the first 12,500
iterations as burn-in. Samples were taken every 25 iterations to
thin the Markov chain. The priors for both concentration parameters
were set to (0.5,0.5) and the parameter for the Dirichlet distribution
of H was set to 0.5.

We find that our method converges to K=3 populations in a few
thousand iterations. The posterior distribution for K is shown in
Figure 2. From the posterior, we can see that K = 3 is the most
likely value for K. Figure 3 shows a single sample for the ancestry
proportions of the thrush data. The clusters agree with geographical
labels well except for a few individuals. We also see that the 4 Yale
individuals fall into the same cluster as the Ngangao individuals.
All of these findings agree with those of Pritchard et al. [13] when
Structure is initialized with K = 3 clusters. Figure 4 shows the
results of Structure analysis of the thrush data with K = 3. In
their analysis, Pritchard et al. also found that K = 3 explains the
data best. Their conclusion was based on an ad hoc approximation
to Pr(K|X), the posterior likelihood of K given the data X while
StructHDP automatically infers this from the data.

5.2.2 Human Genome Diversity Project: The Human Genome
Diversity Project dataset we analyze consists of 1048 individuals
from 53 world populations genotyped at 783 microsatellite loci.

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

Number of populations

P
os

te
rio

r 
pr

ob
ab

ili
ty

 o
f K

, P
r(

K
|X

)

Fig. 5. Posterior distribution for number of populations, Pr(K|X) for the
HGDP data.

Along with genotype information, the individuals are also labeled
with the geographical divisions to which they belong. Using
Structure, Rosenberg et al. [15] have previously analyzed the
genotype data and found that the population clusters correspond
to major geographical divisions of the world. We used StructHDP
to reanalyze this data (without making use of the geographical
information). The sampler was run for 20,000 iterations with the
first 10,000 iterations discarded as burn-in. Samples were taken
every 25 iterations to thin the Markov chain.

To determine the optimal number of ancestral populations, we
examined the posterior distribution of the number of populations
(K). Figure 5 shows the posterior distribution. We find the posterior
distribution has a single mode at K = 4 and non-zero probability
mass for values of K up to 8. For further analyses, we use the
maximum-likelihood sample from the MCMC sampling, which has
4 ancestral population components.

Fig. 6. The ancestry proportions for the 1048 individuals from the Human
Genome Diversity Project plotted in 3-dimensional space. Each individual
is represented by a small sphere and the color of the sphere depends on the
continental division the individual belongs to. Different colors correspond to
different continental divisions. The geographical divisions are indicated by
the labels on top of the graph.
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Fig. 7. The ancestry proportions for the 1048 individuals from the Human Genome Diversity Project inferred by StructHDP. Each thin line denotes the
ancestry proportions for a single individual. Different colors correspond to different ancestral populations. Dark black lines separate individuals from different
major geographical divisions. The geographical divisions are indicated the labels on top of the graph.

The contributions of the four ancestral populations to an
individual’s genome can be represented using a 4-dimensional
vector whose components sum to 1. All these vectors (referred to
as ancestry proportions) lie within a tetrahedron in 3-dimensional
space. Each of the four vertices of the tetrahedron represents an
ancestral population. To visualize the clustering, we plotted the
ancestry proportions for the 1048 individuals in 3 dimensions along
with the tetrahedron in which the vectors lie. In this representation,
the distance of a vector from the vertices of the tetrahedron indicates
the amount of admixture present in an individual’s genome. The
further away from a vertex the vector is (and the closer it is to the
center of the tetrahedron), the more the admixture present in the
individual’s genome.

Figure 6 shows the resulting plot for the 1048 individuals in the
HGDP dataset. In the plot, each individual is represented by a small
sphere. For ease of interpretation, the individual spheres are colored
based on the geographical division they belong to. In the populations
we examine, the divisions are Africa, Americas, Central and South
Asia, East Asia, Europe, Middle East and Oceania. These are
represented by seven different colors. From the figure, we can see
that individuals from a single continent cluster together in the same
region of the tetrahedron. Some individual genomes are derived
from a single ancestral population and lie at the vertices of the
tetrahedron. Some other individuals, particularly those belonging
to the Middle Eastern, Central Asian and South Asian populations,
show a lot of admixture.

To analyze these results further, we plotted the ancestry
proportions of the 1048 individuals as a bar graph, where every
individual is represented by a thin bar with 4 components which
sum to 1. Figure 7 shows the resulting bar graph.We can see that the
clusters obtained correspond to the major geographical divisions of
the world and the ancestral populations can be roughly described
as ancestral African (denoted by green color), ancestral American-
East Asian (blue), ancestral European (yellow) and ancestral
Oceanian (red). From the ancestry proportions, we can see that
the modern East Asian populations and American populations are
similar, with the modern East Asian populations having a larger
contribution from the ancestral population corresponding to Europe.
Modern Asian populations also show some Oceanic ancestry (from
the ancestral population denoted by red color). Modern Central
and South Asian populations show an admixture of European and
East Asian ancestral populations. The Middle Eastern populations
show contributions from the ancestral African population and the
ancestral European population. Modern Oceanic populations are an

admixture of an ancestral Oceanic population with an ancestral East
Asian population. All of these observations are in agreement with
previous analyses of the data by Rosenberg et al. [15] and other
studies of regional populations. We should note that the clusters
inferred by StructHDP are not identical to the ones observed by
Rosenberg et al. for K = 4. Rosenberg et al. observe that East
Asia separates out into a separate cluster for K = 4 while Oceania
separates from the rest of the data only for values of K larger than
4.

To analyze the similarity and differences within and between
continental divisions, we computed the mean ancestry proportions
for the 7 continental divisions by averaging the ancestry proportions
for all individuals belonging to each continental division. We then
constructed a distance matrix by computing the euclidean distance
between the 4-dimensional vectors representing each continental
division. Figure 8 shows the resulting distance matrix. From the
figure, we can see that the distance matrix has a block structure.
Modern American and East Asian populations are similar to each
other and show little separation. We also see that modern European,
Central-South Asian and Middle Eastern populations are close to
each other. Within these 3 divisions, we see that Europeans and
Middle Eastern populations group together while the Central-South
Asians are further apart.
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Fig. 8. A matrix representing the distances between the mean ancestry
proportions of the 7 major continental divisions of the HGDP. Red color
indicates less distance while blue color indicates more distance.
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We hypothesized that if the inferred ancestry proportions capture
the genetic variation between and across populations, then the
pairwise Euclidean distance computed earlier should be correlated
with genetic distance. To test this hypothesis, we computed the
pairwise Fst distance between the 7 continental divisions of the
data. To test for correlation between the pairwise Euclidean distance
matrix and the pairwise Fst distance matrix, we used a Mantel
test. A Mantel test tests the alternate hypothesis of correlation
between two matrices against the null hypothesis of no correlation
by permuting the rows and columns of one of the matrices and
observing the distribution of the correlation statistic. The Mantel
test on the Euclidean and Fst distance matrices shows that the
correlation between the two distance matrices is 0.57 (P-value =
0.0025 with 10,000 replicates). The distribution of the observed
and simulated Mantel correlation statistic is shown in Figure 9.
Thus, we can see that the Euclidean distance and Fst distance
are strongly positively correlated, which supports the inferred
population structure.

Correlation statistic
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Fig. 9. The distribution of the Mantel correlation statistic for the pairwise
Euclidean distance matrix and the pairwise Fst distance matrix. The stem
indicates the observed value of the statistic. The result is significant, with
the associated P-value=0.0025

To compare our results on the HGDP data with other methods,
we analyzed the data using Structurama. However, due to
computational reasons, we were unable to run Structurama on
the full data at optimal settings. Therefore we analyzed a subset
of the data that included only 100 loci per individual. We found
that the posterior distribution of K inferred by Structurama has
non-zero mass only at K = 5. Figure 10 shows the inferred
ancestry proportions based on the mean partition from Structurama.
We can see that Structurama also clusters the European, Middle
Eastern and Central South Asian populations into a single cluster.
However, since it does not allow partial membership, the individuals
in different clusters have zero similarity. It is therefore unable
to model the partial similarity between populations from different
geographical divisions, e.g., the Central Asian populations and
European populations.

6 DISCUSSION
We have presented StructHDP, a method for automatically inferring
the number of population clusters present in a group of individuals
while accounting for admixture between populations. At the same
time, it also infers individual ancestry estimates under a Structure-
like model. We demonstrated the effectiveness of our method
on data simulated from an island model. We also analyzed the
Taita thrush dataset and demonstrated that StructHDP chooses
the number of clusters that best explain the data. Our analysis
of the HGDP dataset shows that our method is able to cluster
populations even when the individuals in the dataset are admixed.
The ancestry proportions inferred for populations can be used
to compute a distance measure between populations. We found
that the Euclidean distance between populations has a strong
positive correlation with the Fst distance between populations. The
ancestry proportions therefore provide a useful low-dimensional
representation of populations.

Our method uses a Hierarchical Dirichlet process to model
the admixture of an unknown number of ancestral populations
present in individual genomes in a given dataset. We use an
MCMC sampling algorithm, Gibbs sampling, to estimate the model
parameters. The number of ancestral populations that best explain
the data is one of the parameters of our model. The collapsed
Gibbs sampler we implemented according to [20] marginalizes the
uncertainty in the population allele frequencies, thus eliminating a
possible source of error in the inference. Our experiments suggest
that the HDP is not sensitive to the priors on the parameters α0

and γ since we sample them in the algorithm. The results are
more sensitive to the choice of λ for the base distributions. A large
value of λ tends to produce populations with uniform (high-entropy)
allele frequency distributions while a small value of λ produces
populations with allele frequency distributions highly skewed in
favor of very few alleles (low-entropy). A complete sensitivity
analysis, however, is beyond the scope of this paper. It would also be
instructive to perform simulations with more realistic and complex
demographic models to understand the limitations of StructHDP.

The model as described here can handle both SNP and
microsatellite markers. However, one of the limitations of our
method is the computational time required for the Gibbs sampling.
This means that while our method can handle datasets of a few
thousand markers and individuals, it cannot be efficiently used on
large datasets of hundreds of thousands of markers. However, as
our simulations show, even with few loci, the method performs well
at recovering the number of populations required to explain the data
best. Teh et al. [21] have described a way of implementing collapsed
variational inference for HDPs. Applying the variational inference
algorithm to StructHDP would improve its speed significantly.

In this work, we have shown how the basic admixture model
can be extended to allow automatic inference of the number of
populations. Just as extensions to the Structure model that account
for recombination [5] and mutation [17] have been developed, we
can also extend StructHDP to model other evolutionary processes.

Genetic datasets are often accompanied by geographical
information about the genotyped individuals. In some cases, there is
a single geographical label associated with each individual, while in
others, there are labels at different resolutions (for example, region,
nation, continent). It has been shown that geographical distance
correlates well with genetic distance between populations [3, 10,
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Fig. 10. The ancestry proportions for the 1048 individuals from the Human Genome Diversity Project inferred by Structurama. Each thin line denotes the
ancestry proportions for a single individual. Different colors correspond to different ancestral populations. Dark black lines separate individuals from different
major geographical divisions. The geographical divisions are indicated the labels on top of the graph.

14]. Therefore the amount of sharing of ancestral population
components between modern population groups is likely to depend
on their geographical distance.

In its current form, StructHDP does not make use of geographical
information in the inference process. Teh et al. [20] describe how
a HDP can be extended to include multiple levels of hierarchy
and be generalized to a tree-like hierarchy. Use of the hierarchical
geographical labels could allow us to impose a tree structure on the
dataset that respects the geographical labels and enforces a level of
population sharing among individuals that is consistent with their
geographical labels and distances.
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Fig. 11. Graphical model representation of StructHDP with all priors
represented. The shaded circle indicates the observed alleles. The dataset has
N individuals, each genotyped at M loci. For ease of representation, we do
not show the ploidy of the individual in the graphical model. The diamonds
indicate parameters that are supplied by the user.

APPENDIX - INFERENCE AND ESTIMATION
The population allele frequencies at locus i are assumed to be
{φi1, · · · , φiK} where K can be infinity and only a finite number
of the populations are used in the dataset. The prior over the allele
frequencies φik is Hi. In the restaurant analogy, we use tji to
denote the table for customer xji, njtk to denote the number of
customers in restaurant j at table t eating dish k, whilemjk denotes
the number of tables in restaurant j serving dish k. Marginal counts
are represented with dots. So njt. denotes the number of customers
in restaurant j at table t, and m.. represents the total number of
tables in the franchise.

Let x = (xji : all j, i),xjt = (xji : all i with tji = t), t =
(tji : all j, i), z = (zji : all j, i),m = (mjk : all j, k) . When
a superscript is used with a set of variables, e.g., x−ji or n−jijt. ,
this means that the variable corresponding to the index is removed
from the set. In the example, x−ji = x/xji and n−jijt. is the
number of observations in group j associated with table t leaving
out observation xji.

An important quantity we will use often in sampling is the
conditional density of xji under mixture component k given all data
except xji. This can be computed as

f
−xji

k (xji) =

∫
f(xji|φik)

∏
j′i′ 6=ji,zj′i′=k

f(xj′i′|φik
)h(φik)dφik∫ ∏

j′i′ 6=ji,zj′i′=k
f(xj′i′|φik

)h(φik)dφik

(12)
Here, we are marginalizing out the effects of the uncertainty in

the allele frequencies φik. For our purposes, f(.|θ) is a multinomial
distribution and hi(.) is a symmetric Dirichlet distribution with
parameters λ, on the simplex of dimension P if we observe
P different alleles at locus i. Therefore the numerator and
denominator are the normalization constants of the posterior
Dirichlet distributions.

At locus i, we can represent the observed alleles as
{a1, · · · , aP }. Then we have that

f(xji|φik) =
∏
p

φ
I[xji=ap]
ik,p (13)

Using this in Equation 12 gives us,

f
−xji

k (xji) =
B(h1 +

∑
j′i′,zj′i′=k

I[xj′i′ = a1], · · · )

B(h1 +
∑
j′i′ 6=ji,zj′i′=k

I[xj′i′ = a1], · · · )
(14)

whereB(.) is the multinomial beta function, which can be written
in terms of the Gamma function:

B(α1, · · · , αP ) =

∏P
p=1 Γ(αp)

Γ(
∑P
p=1 αp)

Sampling for the population indicator variables z is given by

p(zji = k|z−ji,m, β) = (njij.k + α0βk)f
−xji

k (xji)

, if k is previously used

= α0βuf
−xji

knew (xji), if k is new

To sample m, we use a result derived in [20],

p(mjk = m|z,m−jk, β) =
Γ(α0βk)

Γ(α0βk + nj.k)
s(nj.k,m)(α0βk)m

where s(n,m) are unsigned Sterling numbers of the first kind.
Sampling for β is given by

(β1, · · · , βk, βu)|m,k ∼ Dir(m.1, · · · ,m.K , γ)

Concentration parameter updates
For updating the concentration parameter α0, we use the method
described by [20], using a sampling scheme of auxiliary variables.
For N individuals, define auxiliary variables, w = (wj)

N
j=1 and

s = (sj)
N
j=1, where each wj ∈ [0, 1] and each sj is a binary

variable in {0, 1}. Then we have the following sampling scheme

q(α0|w, s) ∼ Gamma

a+m.. + 1−
∑
j

sj , b+ 1−
∑
j

log (wj)


q(wj |α0) ∼ Beta (α0 + 1, nj..)

q(sj |α0) ∼ Binomial(1, nj../α0/(1 + nj../α0))

To update α0, we iterate these three steps until the value of α0

converges. Convergence is usually quick and takes about 20-30
iterations.

For updating γ we use the method described in [4], using an
auxiliary variable η. Assume γ has a gamma prior Gamma(a, b).

We have

q(γ|η,K) ∼ πηGamma(a+ k, 1/(b− log (η)))

+(1− πη)Gamma(a+K − 1, 1/(b− log (η)))

where the mixture weights are given by

πη
1− πη

=
a+ k − 1

m..(b− log (η))

Secondly, we have

q(η|γ,K) ∼ Beta(γ + 1,m..)

Alternating these updates until the value of γ converges provides
a method for updating γ.

9


	Introduction
	Related work
	Approach
	Methods
	Inference
	Inference steps
	Other inference details

	Results
	Coalescent simulation data
	Real data analysis
	Taita thrush data:
	Human Genome Diversity Project:


	Discussion

