
Network Analysis of Breast Cancer Progression and
Reversal Using a Tree-Evolving Network Algorithm
Ankur P. Parikh1, Ross E. Curtis2, Irene Kuhn3, Sabine Becker-Weimann3, Mina Bissell3, Eric P. Xing1,2,4*,

Wei Wu2*

1 Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America, 2 Lane Center for

Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America, 3 Life Sciences Division, Lawrence

Berkeley National Laboratory, Berkeley, California, United States of America, 4 Joint Carnegie Mellon University-University of Pittsburgh PhD Program in Computational

Biology, Pittsburgh, Pennsylvania, United States of America

Abstract

The HMT3522 progression series of human breast cells have been used to discover how tissue architecture,
microenvironment and signaling molecules affect breast cell growth and behaviors. However, much remains to be
elucidated about malignant and phenotypic reversion behaviors of the HMT3522-T4-2 cells of this series. We employed a
‘‘pan-cell-state’’ strategy, and analyzed jointly microarray profiles obtained from different state-specific cell populations from
this progression and reversion model of the breast cells using a tree-lineage multi-network inference algorithm, Treegl. We
found that different breast cell states contain distinct gene networks. The network specific to non-malignant HMT3522-S1
cells is dominated by genes involved in normal processes, whereas the T4-2-specific network is enriched with cancer-related
genes. The networks specific to various conditions of the reverted T4-2 cells are enriched with pathways suggestive of
compensatory effects, consistent with clinical data showing patient resistance to anticancer drugs. We validated the
findings using an external dataset, and showed that aberrant expression values of certain hubs in the identified networks
are associated with poor clinical outcomes. Thus, analysis of various reversion conditions (including non-reverted) of
HMT3522 cells using Treegl can be a good model system to study drug effects on breast cancer.
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Introduction

A major challenge in systems biology is to uncover dynamic

changes in cellular pathways that either respond to the changing

microenvironment of cells, or drive cellular transformation during

various biological processes such as cell cycle, differentiation, and

development. These changes may involve rewiring of transcrip-

tional regulatory circuitry or signal transduction pathways that

control cellular behaviors. Such information is of particular

importance for seeking a deep mechanistic understanding of

cellular responses to drug treatments in various diseases, offering a

more holistic view of both microscopic and macroscopic changes

in the cellular functional machinery than has been available from

traditional analyses which usually focus only on finding differential

markers or close-up analysis of changes in a handful of molecules

constituting parts of some selected pathways of interest.

Network-based differential analysis naturally requires the

availability of multiple networks each in principle corresponding

to a specific biological condition in question, that are then

topologically rewired across conditions [1]. However, most

existing computational techniques for reconstructing molecular

networks based on high-throughput data cannot capture such

dynamic aspects of the network topology; instead, they represent

the networks as an invariant graph. For example, it is common to

infer a single invariant gene network using microarray data

obtained from samples collected over time or multiple conditions.

More sophisticated methods such as a trace-back algorithm [1]

and DREM [2,3] do emphasize uncovering the dynamic changes

of a network over time using time series data, but limitations in

these algorithms allow only certain kinds of dynamic behaviors,

such as ‘‘active path’’ [1] or bifurcating sequence of transcriptional

activations [2]. Moreover, such methods are heuristic in nature

and do not offer statistical guarantees on the asymptotic

correctness of the inferred ‘‘transient’’ components in the network,

making the results difficult to withstand the harsh standard on

stability and robustness when sample quality and size become less

ideal, as we face in the analysis to be conducted in this paper.

Indeed, a number of in-depth investigations of disease models

have suggested that over the course of cellular transformation in

response to microenvironmental changes due to disease progres-

sion or drug-induced reversion, there may exist multiple under-

lying ‘‘themes’’ that determine each molecule’s function and

relationship with other molecules [4,5]. As a result, molecular

networks at each cellular stage are context-dependent and can

undergo systematic rewiring (Figure 1). For example, strong

evidence of alterations of various pathways have been reported in
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the HMT3522 progression series of breast cells when malignant

T4-2 cells were phenotypically reverted by various drugs, albeit

only manifested by a small number of well-known signaling

molecules as discussed below [6–8].

In this paper, we conduct an in-depth study of the structural

changes in the gene regulatory networks underlying each cell state

in both the non-reverted and the reverted HMT3522 progression

series of breast cells. The HMT3522 cells have been shown to be

an excellent model system for studying the roles of tissue

architecture, microenvironment and signaling molecules involved

in the nonmalignant and malignant growth and behaviors of

breast cells, including the potential of various factors to cause

phenotypic reversion of malignant cells to nonmalignant states.

These cells originated from a nonmalignant human breast

epithelial sample, HMT3522 [9,10]. HMT3522-S1_LBNL (S1)

cells are from early passages which are nonmalignant and

dependent on exogenous epidermal growth factor (EGF) to grow.

HMT3522-T4-2_LBNL (T4-2) cells were generated from S1 cells

by a multi-step process: 238 passages in medium without EGF

followed by transplantation into a mouse which generated a

tumor, and T4-2 cells were isolated from the serial passage of this

tumor; thus T4-2 cells are malignant and tumorigenic [10].

Interestingly, when cultured in three-dimensional (3D) laminin-

rich extracellular matrices (lrECM), S1 cells form polarized acinus

structures with a central lumen which resemble the terminal milk-

secreting alveolar units in normal breasts [6,11], whereas T4-2

cells form disorganized structures under the same conditions.

Signaling molecules such as EGFR, b1-integrin, PI3K, and

MAPK are overexpressed in T4-2 cells relative to their levels in

S1. Crosstalk between these molecules plays pivotal roles in

defining malignant behaviors of T4-2 cells, and downmodulation

of them causes phenotypic reversion of T4-2 cells into growth-

arrested, normal-looking cells (also called T4R cells later) which

form structures resembling S1 acini but often without the lumen

[8]. Other molecules, such as TACE or Rap1, have also been

shown to be important for reversion of T4-2 cells [12,13].

NFkappaB was identified as one of the transcriptional regulators

involved in disorganization of T4-2 cells [14]. Despite significant

efforts to delineate key signaling events responsible for phenotypic

reversion of these malignant breast cells, many questions remain.

For example, are T4-2 cells reverted by inhibitors of different

molecules intrinsically the same? What is involved in the

phenotypic reversion of T4-2 cells at the systems level other than

a few genes directly related to the signaling molecules mentioned

above?

One classical approach to address these questions is to identify

genes differentially expressed between different cell states. While

this can lead to some information about marginal effects of the

genes in a particular stage of cancer progression or reversion, it

cannot yield insight into the underlying regulatory mechanisms

that govern interaction of genes with one another to carry out

complex cellular processes. Instead, we propose a network-based

differential analysis, by reverse engineering gene regulatory

networks of various conditions of the breast cells to depict a fuller

picture of regulatory mechanisms of the cells.

Many methods, as reviewed in [15,16], have been proposed for

reconstructing gene networks using gene expression microarray

data. Most of them [17–19], however, rely on the statistical

assumption that the samples in question were independent and

identically distributed (i.i.d), and thus they either lead to

estimation of a single network by pooling data from all the

samples together, or lead to estimation of a network for each cell

state independently. Since the breast cells in this study came from

non-reverted HMT3522 cells as well as various conditions of the

reverted cells, the regulatory mechanisms in different cell states

can be significantly different; therefore, pooling data from different

cell states together to estimate one single network does not reveal

networks in their full depth. On the other hand, reconstructing a

network specific to each cell state independently of the other ones

can be statistically inaccurate due to a small sample size for each

cell state. Recently, time-varying network detection methods have

been proposed that allow information sharing across time and can

thus recover a sequence of networks even with small sample sizes

[20–23]. For example, Song et al. proposed a time-varying

dynamic Bayesian network method to estimate a chain of evolving

networks over time [22]. However, these methods estimate

networks that evolve as a chain of networks over time, not as a

series of networks shared by the tree-shaped phenotypic relation-

ships as shown in Figure 1.

Due to the unique challenges we encountered to reconstruct

networks that rewire over the tree-shaped phenotypic relation-

ships, we recently proposed Treegl [24], a network reconstruction

algorithm that can effectively and jointly recover rewiring

regulatory networks present in multiple related cell states. Our

approach can not only recover a distinct network for each cell state

and reveal sharp differences among networks for different cell

states, but also capture and leverage similarities of the networks in

the cell states nearby in the phenotypic tree, thereby leading to

more accurate estimation of gene interactions in small sample size

scenarios. This new angle of estimating networks can reveal

information that has not been mined in traditional analysis.

In this paper, we conduct an extensive network analysis of non-

reverted HMT3522 cells (normal S1 and malignant T4-2 cells) as

well as three different conditions of reverted T4-2 cells using gene

expression microarray data obtained from these cells. It is notable

that the same set of the gene expression data was first described

and used in our previous work published in [24], however, our

focus then was to report the novel methodology behind the Treegl
algorithm, but not a thorough biological analysis of the HMT3522

series of cells from which the gene expression data was generated.

In this current work, we focus more on the biological findings

Author Summary

The HMT3522 isogenic human breast cancer progression
series has been used to study the effect of various drugs
on the reversion of the breast cancer cells. Despite
significant efforts to delineate key signaling events
responsible for phenotypic reversion of the malignant
HMT3522-T4-2 (T4-2) breast cells in this series, many
questions remain. For example, what is involved in the
phenotypic reversion of T4-2 cells at the systems level? In
order to answer this question, we analyzed gene expres-
sion microarray data obtained from these cells using our
recently developed tree-evolving network inference algo-
rithm Treegl. We reconstructed cell-state-specific gene
networks using Treegl. Our functional analysis results show
that we can not only unravel cell-state specific information
characteristic of non-malignant HMT3522-S1 (S1) and
malignant T4-2 cells in the series, but can also provide
insight into the T4-2 cells reverted by various agents. We
found that the networks specific to various conditions of
the T4-2 reverted cells are all suggestive of compensatory
signaling effects, which, however, are mediated by
different signaling pathways to antagonize different drug
effects in the reverted cells. Our results demonstrate that
the HMT3522 system when analyzed with Treegl may
potentially become an effective tool for novel drug-target
discovery and identification.

Network Analysis of Breast Cancer Cells
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discovered by a more comprehensive network analysis of the data

using Treegl and other bioinformatics tools, and aim to provide

better biological insights and understandings of the various breast

cell states in the HMT3522 series.

In particular, we estimated the network specific to each cell state

using Treegl. Our results showed that while the S1-specific

network contains predominantly nonmalignant pathways, the T4-

specific network contains various cancer-related pathways, both

findings consistent with biological evidence [4]. Furthermore, we

found that the networks specific to various conditions of the T4-2

reverted cells are enriched with pathways suggestive of compen-

satory effects. In the T4-2 cells reverted by inhibition of either

EGFR or b1-integrin, signaling pathways downstream of EGFR

or b1-integrin, mainly via the PI3K-AKT-mTOR axis, are

upregulated. Similarly, in the T4-2 cells reverted by either PI3K

or MAPKK, we observed upregulation of the pathways both

upstream and downstream of PI3K. These results are supported

by clinical evidence showing patient resistance to the same anti-

breast cancer drugs as we used in the study. Moreover, the

compensatory signaling is also observed in the differential network

of the T4-2 cells reverted by MMPIs, which involves genes

participating in protein catabolic processes. Together, our findings

suggest a common resistance mechanism employed by breast

cancer cells to antagonize drug effects. Finally, in order to identify

potential novel drug targets, we also investigated hubs (i.e., genes

with high degrees, see details in Materials and Methods) in the

differential networks of the breast cells, and characterized

specifically three hubs (NEBL, HBEGF, and PAPD7) whose

aberrant expression values are linked with the worst survival

outcomes in the breast cancer patients to provide insight into their

functional significance on the growth and development of breast

cancer cells. Our data suggest that Treegl when applied to an

effective disease model system, such as the HMT3522 cells, may

potentially become an effective tool for elucidating disease

mechanism and discovering novel drug targets, and thus help

make personalized medicine possible.

Results

We model a gene network as a Markov network [25], which is a

graph G~ V, Eð Þ where V is the set of vertices (genes), and E is

the set of edges. Genes u and v do not have an edge between them

if and only if they are conditionally independent given the values

of all other genes. We contrast this with a correlation network (a

common approach for modeling gene networks), in which u and v

are connected if their marginal pairwise correlation is greater than

a certain threshold. Correlation can be effective when analyzing a

pair of genes in isolation. However, when studying the dependence

Figure 1. A schematic representation of the relationship of the non-reverted and various conditions of the reverted HMT3522
breast cells. The nonmalignant S1 cell is the root of the tree. It is also the parent of the malignant T4-2 cell since T4-2 cells were derived from S1. The
T4-2 cells can be reverted to phenotypically normal-looking structures by treatment with various agents, such as: i) either EGFR or b1-integrin
inhibitor, ii) either PI3K or MAPKK inhibitor, or iii) MMP inhibitors, they are thus represented as the parent of the various conditions of the reverted T4-
2 cells. Microarray profiles were generated from each cell state represented in the tree, and gene networks specific to each state were reverse
engineered using Treegl.
doi:10.1371/journal.pcbi.1003713.g001
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between two genes in the context of other genes, correlation can

confound direct/indirect relationships, thus producing undesirable

results (Figure 2).

Specifically, we model the gene network for each cell state n as a

Gaussian Markov network. Gaussian distributions are special in

that the inverse of the covariance matrix, called the precision

matrix V nð Þ, completely encodes the structure of the Markov

network. In particular, an edge u,vð Þ exists in the Markov network

if and only if the corresponding precision matrix element is non-

zero.

Thus, under our model, the problem of learning the structure of

a gene network reduces to estimating V nð Þ. This is straightforward

when the number of genes p is smaller than that of microarray

samples S: one can compute the sample covariance matrix and

simply get its inverse. However, in high dimensional settings, when

p&S (as is our case), the sample covariance matrix is not

invertible, and thus the problem becomes substantially more

challenging. A statistically principled solution is the graphical lasso

[26], which estimates the neighborhood of gene u by using

regularized regression. The regression coefficients can be inter-

preted as estimates of the precision matrix elements up to a

proportionality constant (see Materials and Methods for more

details). After the neighborhood of each gene is estimated

independently, the results are combined to form a network.

Tree-evolving network detection algorithm, Treegl
However, our goal is not estimate a single network, but rather a

collection of networks, one for each cell state. One simple solution

is to estimate the network for each state independently of the

others using the graphical lasso. However, this approach can result

in poor quality of the networks due to the small sample size per cell

state. To overcome this challenge, our recently proposed

algorithm, Treegl [24], utilizes the following strategy. Similar to

the graphical lasso [26,27], Treegl estimates the neighborhood of

each gene independently of those of other genes using regularized

regression. However, unlike previous methods learning only a

single network, Treegl simultaneously estimates neighborhoods of

a gene in multiple networks each corresponding to a unique state

in the phenotypic tree of the breast cells. It is unique in that Treegl
makes use of a total variation regularizer based on the progression

and reversal relationships between pairs of cell states in question to

bias the amount of topological differences between networks

underlying the related states, and to allow information regarding

probabilistic independencies between genes to propagate across all

states either directly or indirectly related by phenotypes. Such a

strategy can lead to highly statistically confident estimation of a

gene Markov network [28], even under small sample size

scenarios. In the Materials and Methods section, we will offer

details of a novel statistical regularization technique that makes

this possible.

From the theoretical standpoint, Treegl is an instance of the

general varying coefficient varying structure (VCVS) formalism

analyzed in [29]. The VCVS model encodes changing structures

of gene networks in different cell states as a function of regression

coefficients in regularized regression problems. Estimating these

regression coefficients, and thus the associated network structures

then reduces to solving a convex optimization problem jointly over

Figure 2. An example demonstrating the difference between a Markov network and a correlation network. (A) A true network, in which
R is the regulator of A, B, and C. (B) A clique graph produced by a correlation network. Since all the genes in (A) are correlated with one another, the
correlation network cannot distinguish between indirect and direct relationships and thus connects all the nodes. (C) A correct graph recovered by a
Markov network. The Markov network recovers true relationship of the nodes because it uses conditional independence to determine the presence of
an edge.
doi:10.1371/journal.pcbi.1003713.g002
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all cell states. The global optimal solution for such a problem can

be found using standard convex solvers.

Moreover, the VCVS formalism allows one to theoretically

examine and prove the statistical conditions under which changes

in structures can be correctly estimated even in the high

dimensional setting when p&S. This distinguishes our approach

from other methods [17,30] that are highly non-convex and

therefore rely on local search heuristics that only find local optima.

These existing methods also do not offer sound statistical

machinery for addressing difficult conditions such as nonstatio-

narity (e.g., time-evolving) and high-dimensionality under small

sample size as we encountered in our study.

Having a theoretical framework allows us to trade-off model

expressivity and learning complexity in a principled manner. For

example, if we allow a complex and arbitrary network model (i.e.,

a dense network), then there would be no guarantees on the

quality of the recovered network structure in small-sample size

scenarios. Instead, by enforcing a restricted model (i.e., a sparse

network), its likelihood function is by definition convex and an

optimal solution may be found. Thus, the quality of the resulting

solution can be theoretically characterized, and it can be

determined under which conditions the correct underlying

parameters (network structure in this case) are discovered.

Fortunately, sparsity is also biologically justifiable. For example,

it is common to find a transcription factor regulating a limited

number of genes under specific conditions [31].

Simulation results
We first evaluate Treegl’s performance on simulated microarray

data. In order to find out how effectively Treegl can detect change

points of multiple networks while sharing information among

related cell states at the same time, we design the simulated

networks as illustrated in Figure S1. In particular, for each

experiment, an artificial collection of 70 networks related by a

tree-shaped lineage are generated, in which a sequence of 10

identical networks is connected to a network of different topology

via a change/branching point (see details in Materials and

Methods). Then, a small number of samples are generated from

each of the networks. It is important to note that Treegl does not

know a priori which of the networks are identical and which are

different and thus has to discover this based on the samples.

In order to evaluate how well Treegl can recover the underlying

network structures for the samples in the simulation data, we

compare Treegl with the static method estimating a single network

and the method estimating each network independently by

plotting the precision-recall curves which show the recall for

different values of precision based on the network estimated by the

three methods. As illustrated in Figures 3 & S2, Treegl performs

favorably to the other two methods. It should also be noted that

compared to the static method which produces only one network,

Treegl can produce different networks related by the tree lineage.

The independent method also produces different networks but it

performs poorly compared to Treegl.

A phenotypic tree representation of the HMT3522 series
of the breast cells

In order to reverse engineer gene networks of the breast cells,

we first used a phenotypic tree to represent the relationships of the

cells (Figure 1). Due to the small sample size of the microarray data

and imbalance of the sample abundance for different cell states

(see Materials and Methods for details) — both of the problems

pose significant challenges to network reconstruction — we used

what is known of the interrelatedness of signaling pathways

affecting phenotypic reversion to pool data derived from various

samples in order to increase the power of the network inference. In

particular, since EGFR and b1-integrin are cross-modulated in the

HMT3522 cells [8], we assumed that the gene networks in the T4-

2 cells reverted by inhibiting either of the molecules share

reasonable similarity, and hence we grouped data from these

reverted cells together to form the EGFR/ITGB1-T4R group.

Likewise, we grouped together data from T4-2 cells reverted by

either a PI3K inhibitor, a MAPK inhibitor, or a dominant-

negative Rap1 to form the PI3K/MAPKK-T4R group, because

PI3K and MAPK are also cross-modulated in the breast cells and

Rap1 signals through PI3K. A tree diagram illustrating the

relationships of the cells are shown in Figure 1. Based on these

relationships, we reverse engineered gene networks for the

HMT3522 cells using Treegl.
It is important to point out that it would be nearly statistically

impossible to reconstruct a cell-state-specific gene network using

existing methodology based on three microarray samples per

group as in the dataset we used here. Note that we will also refer to

different groups of the cells in the phenotypic tree in Figure 1 as

different cell conditions or states.

The reconstructed gene networks for the HMT3522 cells
The reconstructed networks for non-reverted and various

conditions of the reverted HMT3522 cells are illustrated in Figure

S3. They share many topological similarities as well as differences.

About 60% of the network edges are common to all cell conditions

represented in the phenotypic tree diagram, consistent with

underlying biological similarities shared between them. In the

following, we concentrate on only the edges specific to each cell

state, which we call the differential network for each cell state.

S1 differential network. Our pathway and GO analysis

showed that genes in the S1 differential network are significantly

enriched with those involved in normal cellular processes, such as

cell cycle, TCA cycle, and cellular respiration (Figure 4A, Tables

S1A & S2A). Notably, genes involved in tube lumen formation are

enriched only in S1 cells (Table S2A) while absent in the other cell

states, consistent with the observation that a central lumen is

always present in the acinus structure formed by S1 cells but often

absent from spheres formed by reverted T4-2 cells. Furthermore,

our disease relevance analysis did not find association of the genes

in the S1 differential network with any disease (Table S3A).

Together, these results agree with the biological fact that S1 cells

are nonmalignant.

T4-2 differential network. The T4-2 differential network,

on the other hand, is significantly enriched with genes involved in

a number of pathways important for tumor growth and

progression, such as ErbB and MAPK signaling pathways,

ECM-receptor interaction, and regulation of actin cytoskeleton

pathways (Figure 4B, Table S1B). Moreover, disease relevance

analysis showed that genes in the T4-2 differential network are

associated with various cancers, such as small cell lung cancer,

renal cell carcinoma, colorectal cancer, among others (Figure 5B,

Table S3B), and that genes involved in the pathways such as ErbB

and MAPK signaling pathways, focal adhesion, and ECM-

receptor interaction (Table S1B) have significant association with

pathways in cancer (FDR adjusted p-values,0.1). These data are

supported by biological evidence showing that ErbB and MAPK

signaling pathways, microenvironment, and integrity of tissue

architecture play significant roles in the malignant T4-2 cells [4,6–

8]. Together, these functional results suggest that Treegl can

indeed reveal biological characteristic that is specific to the states

in the HMT3522 cells.

Differential networks of the three conditions of the

reverted T4-2 cells. In order to find out whether T4-2 cells

Network Analysis of Breast Cancer Cells
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reverted by various agents are merely phenotypically or intrinsi-

cally normal, and also whether these different conditions of the

reverted cells are identical to one another at the systems level, we

examined the differential networks specific to each condition of the

reverted T4-2 cells.

EGFR/ITGB1-T4R differential network. Our pathway

analysis suggests that there are no pathways significantly enriched

in the differential network for this group of the cells (Table S1C).

However, a close examination of the enriched pathways (unad-

justed p values,0.05) revealed that genes involved in the pathways

downstream of EGFR, such as phosphatidylinositol and mTOR

pathways are enriched (Figure 4C, Tables S1C & S2C). Since

PI3K is a component of the phosphatidylinositol pathway, the

enrichment of the pathway suggests upmodulation of PI3K in

these cells (Figure S4). This is confirmed by the results showing

PIK3R2 (encoding a regulatory subunit of PI3K) and AKT1, but

not mTOR itself, are among the genes upmodulated in the

enriched mTOR pathway (Figure S5). Together, these results

suggest PI3K-AKT-mTOR signaling is activated in the EGFR/

ITGB1-T4R cells. Further, genes in the EGFR/ITGB1-T4R

differential network are connected with various cancers, including

prostate, and small cell lung cancer (Figure 5C, Table S3C),

Figure 3. Simulation results comparing the performance of Treegl to a method estimating a single static network and a method
estimating each network independently. In all cases, 70 networks were generated that are related by a tree lineage (See Materials and Methods
for details). (A) Each network has 30 nodes and 5 samples. (B) Each network has 30 nodes and 10 samples. (C) Each network has 50 nodes and 5
samples. (D) Each network has 50 nodes and 10 samples. In all cases, Treegl (shown in blue) performs favorably to the method estimating a single
static network (red) or the method estimating each network independently (green).
doi:10.1371/journal.pcbi.1003713.g003

Network Analysis of Breast Cancer Cells
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suggesting that despite phenotypic reversion to normal, some

malignant genes remain active in the EGFR/ITGB1-T4R cells.

Interestingly, activation of PI3K-AKT-mTOR signaling in our

data agrees well with clinical evidence showing that some breast

cancer patients develop drug resistance after being treated

with EGFR inhibitors, and that compensatory signaling via the

PI3K-AKT-mTOR pathway has been implicated in such resis-

tance [32–34]. Furthermore, our data suggest that mTOR

signaling is not mediated directly by mTOR, but rather by other

genes in the mTOR pathway, because mTOR per se is not

involved in the differential network of this condition of the

reverted cells; multiple other genes in the pathway, however, are

Figure 4. Illustration of selected enriched pathways in the differential network of each breast cell state. (A) S1; (B) T4; (C) the EGFR/
ITGB1-T4R group; (D) the PI3K/MAPKK-T4R group; and (E) the MMP-T4R group. In each plot, the differential network for the corresponding cell state is
shown. Nodes represent genes; edges represent interaction of the genes. Selected pathways enriched in the network (unadjusted p-values,0.05) are
color-coded and shown on the right; genes participating in the selected pathways are also colored based on the color code for the corresponding
pathway. An asterisk indicates a pathway that is significantly enriched in the corresponding differential network. The pathway names are shortened
to save space. See Table S1 for detailed information about the enriched pathways in each cell state.
doi:10.1371/journal.pcbi.1003713.g004
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upregulated. These results also agree with previous evidence in the

literature; despite a close link between mTOR signaling and

cancer, overexpression of mTOR has not been reported in human

tumors; instead, signaling events related to mTOR occur

frequently [35]. Our results may thus identify genes directly

involved in such drug resistance.

PI3K/MAPKK-T4R differential network. As expected, the

enrichment of the PI3K-related pathways is absent in the

differential network of the PI3K/MAPKK-T4R group of the

reverted cells due to the blockage of intracellular signaling

(Figure 4D). Our data, however, show that pathways both

upstream (insulin pathway) and downstream (mTOR pathway)

Figure 5. Diseases associated with the genes in the differential network of each breast cell state. (A) S1; (B) T4; (C) the EGFR/ITGB1-T4R
group; (D) the PI3K/MAPKK-T4R group; and (E) the MMP-T4R group. In each plot, the differential network for the corresponding cell state is shown.
Nodes represent genes; edges represent interaction of the genes. Diseases associated with the genes in the network (unadjusted p-values,0.05) are
color-coded and shown on the right; genes associated with a certain disease are also colored based on the color code for the corresponding disease.
An asterisk indicates a disease that is significantly enriched in the corresponding differential network.
doi:10.1371/journal.pcbi.1003713.g005
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of PI3K are enriched (unadjusted p-values,0.05, Table S1D,

Figures S6 & S5), suggesting activation of compensatory signaling

due to the loss of PI3K signaling in the cells. Moreover, genes in

the differential network, particularly those involved in the

pathways such as mTOR, insulin, and apoptotic signaling, showed

association with cancer (Figure 5D, Table S3D). Even though the

p-values of the pathways are not significant after the FDR

adjustment, these results agree with recent clinical findings that

some breast cancer patients exhibit resistance to treatment by

PI3K inhibitors, and that mTOR and insulin growth factor (IGF)

signaling pathways have been implicated for such resistance [34].

However, no genes in these pathways have been identified for this

resistance yet. A close connection between insulin and IGF

pathways can be seen in Figure S5.

MMP-T4R differential network. Unlike the differential

networks in the other phenotypic reversion conditions mentioned

above, the MMP-T4R differential network has far fewer edges,

suggesting that fewer biological processes take place in the MMP-

T4R group of the reverted cells. Functional pathway and GO

analysis revealed that genes involved in protein catabolic processes

and transfer, such as ubiquitin-dependent and proteasomal protein

catabolic processes and receptor-mediated endocytosis, are signif-

icantly enriched (FDR p-values,0.05, Figure 4E, Tables S1E &

S2E). Interestingly, MMPs are known to play key roles in protein

catabolic processes, these results, therefore, suggest that when

MMPs are inhibited in T4-2 cells, genes participating in protein

catabolic processes and transfer are upregulated as compensatory

pathways to make up for the loss of the MMP function. Since

protein catabolic processes have been implicated in tumor

development [36], our data suggest the MMP-T4R cells still

possess tumor-developing potentials, consistent with clinical data

showing MMP inhibitors (MMPIs) delivered disappointing results

as anticancer treatments in clinical trials [37,38]. Furthermore,

disease relevance analysis showed that some pathways, such as

oxidative phosphorylation and metabolic pathways, in the MMP-

T4R differential network are significantly associated with diseases,

such as Alzheimer’s and Parkinson’s diseases (Figure 5E, Table

S3E). This suggests that despite being not as malignant as T4-2

cells, the MMP-T4R group of the reverted cells are not

intrinsically normal.

Survival analysis of hubs
In order to validate our network reconstruction results, we used

an external microarray dataset. Since previous evidence suggests

that there is a high correlation between the degrees and essentiality

of genes in yeast networks, we hypothesize that i) if a gene is

indeed involved in the networks of the breast cells, its abnormal

expression would have higher impact on the survival of breast

cancer patients than those genes which are not in the networks;

and ii) if a gene is a hub (with a high degree) in the differential

networks of breast cells, its abnormal expression would have

higher impact on the survival of breast cancer patients than those

with low degrees. We therefore investigated the effect of the

aberrant expression values of the hubs in the differential networks

of the HMT3522 cells on the survival of human breast cancer

patients. The external dataset we used is a gene expression

microarray dataset obtained from 295 primary human breast

tumors [39], employed previously to identify gene expression

signatures which may be predictive of patient clinical outcomes.

The same dataset was also used previously [12] to demonstrate the

impact of abnormal expression of TACE, TGFA, and AREG,

which were shown to play important roles in the HMT3522 series

of the breast cancer cells grown in the 3D culture, on the survival

of the same cohort of the breast cancer patients.

In order to define hubs, we examined the distribution of genes

with varying degrees in the differential networks. Figure S7 shows

that while a majority of the genes have degrees of 1–3, much fewer

genes have a degree greater than 5, and therefore, we designated

hubs to be genes with degree greater than 5 in the differential

networks. Note that the same criterion was also used to define hubs

in [40].

Indeed, we found that 18% of the genes in the networks of the

five breast cell states affect patient survival significantly, whereas

that only 6% of the genes which are not in the breast cell networks

but are present in the external dataset affect patient survival

significantly. Our results also showed that 22% of the hubs in the

differential networks of the breast cells affect patient survival

significantly. GO analysis revealed that these significant hubs are

enriched with genes involved in regulation of cell migration,

mobility, growth, and proliferation (see Table S4 for a list of the

hubs), and all of these biological activities are known to be essential

for cancer cell development and progression. Similarly, 23% of the

genes with degree .10 and also with degree .20 affect patient

survival significantly. However, for genes with degrees equal to

one to five in the differential networks, the percentage of them

affecting patient survival drops to 17%. Together, these results

indicate that i) genes in the breast cell networks indeed have higher

tendency of influencing patient survival significantly than those not

in the networks, and also that ii) hubs in the differential networks

are more likely to affect patient survival significantly than those

with low degrees, suggesting the structures of the reconstructed

networks are valid.

Neighborhood analysis of the hubs significantly affecting
patient survival

In order to identify potential novel drug targets, we examined

three hubs, NEBL, HBEGF, and PAPD7, whose extreme (i.e.,

either lower or higher) expression values are correlated with the

lowest 15-year patient survival rates (35%, 30% and 34%,

respectively) and also with low 10-year survival rates (60%, 42%

and 56%, respectively) in the examined dataset (Figure 6).

Previous evidence has shown that abnormal expression of TACE,

TGFA, and AREG are associated with 62%, 61% and 54% of the

10-year survival rates respectively, and associated with 57%, 50%

and 54% of the 15-year survival rates respectively, in the same

cohort of the patients [12]. Our results, therefore, suggest that

NEBL, HBEGF, and PAPD7, similar to TACE, TGFA, and

AREG, also play important roles in breast cells.

Since little is known about NEBL, HBEGF, and PAPD7, we

examined their neighbors in the corresponding differential

networks (which we call neighborhood analysis) to shed light on

their functions in breast cancer.

Figure 7A shows the NEBL subnetwork in the S1 differential

network. NEBL encodes a member of the nebulin family of

proteins, which bind actin and are components of focal adhesion

complex. Our data showed that decreased expression of NEBL is

associated with 36% of 15-year survival rate for breast cancer,

suggesting a protective role of this protein when overexpressed.

Genes interacting with NEBL in the NEBL subnetwork are mainly

involved in energy production by oxidation of organic compounds,

actin and cytoskeletal protein binding, regulation of growth, and

anatomical structure morphogenesis, all of which are consistent

with the biological evidence suggesting involvement of nebulin in

migratory cells [41].

Figure 7B shows the HBEGF subnetwork in the T4-2

differential network. HBEGF encodes a heparin-binding EGF-

like growth factor, which is an EGFR ligand [42]. We found that

higher expression of HBEGF is correlated with 34% of 15-year
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survival rate (Figure 6B), and that the neighbors of HBEGF in the

HBEGF subnetwork are involved in diverse biological processes

and functions, such as glycolysis, apoptosis, participating in

laminin-5 complex, notch signaling pathway, and angiogenesis,

all of which are in line with previous findings showing the high

expression level of HBEGF is positively related to the aggressive-

ness of the breast tumors [43] and that HBEGF plays key roles in

tumorigenicity and invasiveness of ovarian cancer [44].

Finally, we examined the PAPD7 subnetwork in the MMP-T4R

differential network (Figure 7C). PAPD7 encodes DNA polymer-

ase sigma. Our data indicated that overexpression of PAPD7 is

associated with 30% of 15-year survival rate and 8.5 years of

median survival time (Figure 6C), both of which are the worst

patient outcomes correlated with all the hubs in the differential

networks, suggesting that PAPD7 plays significant roles in breast

cancer cells. Previous evidence showed that a homolog of PAPD7

in Saccharomyces cerevisiae Trf4 plays a key role in RNA quality

control by degrading aberrant or unwanted RNAs in the nucleus

[45]. Interestingly, our functional analysis revealed that genes

interacting with PAPD7 in the MMP-T4R differential network are

significantly enriched with those involved in RNA degradation and

metabolic process, as well as regulation of Ras and small GTPase

mediated signal transduction, and phosphatidylinositol signaling

system (Figure 7C), which implicates that similar to Trf4, PAPD7

also participates in crucial functions such as RNA quality control

in human cells.

Taken together, these findings suggest that the three hubs,

NEBL, HBEGF, and PAPD7, in the differential networks play

important roles in growth and development of breast cancer cells,

and may thus become potential novel therapeutic targets. More

important, these results also suggest that our reconstructed

networks can not only reveal genes which have high impact on

patient survival in specific cell conditions, but also can provide

insight into their functions by neighborhood analysis, and thus

facilitate personalized drug target discovery and identification, and

help make personalized breast cancer therapy possible.

Figure 6. Kaplan–Meier curves estimating the association of different expression values of three hubs in the differential networks
of the breast cell states with survival of breast cancer patients. (A) NEBL in the S1 differential network; (B) HBEGF in the T4-2 differential
network; (C) PAPD7 in the MMP-T4R differential network.
doi:10.1371/journal.pcbi.1003713.g006
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Discussion

The problem of estimating rewiring networks simultaneously

from multiple cell states in the phenotypic tree, as solved by

Treegl, is fundamentally different from either estimating a single

‘‘average’’ network from the samples pooled from all states and

subsequently ‘‘trace-out’’ active subnetworks corresponding to

each state [1], or estimating multiple networks independently. The

latter strategies are common practices in the system biology

community, which either directly or indirectly assume the network

in question is static, and samples of the nodal states in the

phenotypic tree are i.i.d. across (when pooled) or within cell states.

Figure 7. Selected pathways or GO groups in the neighborhood of the three hubs in the differential networks of the breast cell
states. (A) NEBL in the S1 differential network; (B) HBEGF in the T4-2 differential network; and (C) PAPD7 in the MMP-T4R differential network. An
asterisk indicates a pathway or a GO group that is significantly enriched in the corresponding differential network.
doi:10.1371/journal.pcbi.1003713.g007
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In reality, such an assumption is biologically invalid as well as

statistically unsubstantiated. The Treegl algorithm elegantly

couples all the inference problems pertained to each network in

the tree of multiple conditions, and achieves a globally optimal and

statistically well behaving solution based on a principled VCVS

model and a convex optimization formulation.

In our analysis of the HMT3522 breast cancer cell lines, we

reverse engineered 5 different gene networks specific to each cell

state represented in the phenotypic tree. The S1 differential

network contains genes predominantly involved in normal cellular

activities, while the T4-2 differential network is enriched with

pathways playing active roles in cancers. Interestingly, compen-

satory signaling appears to be a recurring theme of the T4-2 cells

phenotypically reverted by different agents. In the T4-2 cells

reverted by inhibition of either EGFR or b1-integrin (i.e., the

EGFR/ITGB1-T4R group), despite the absence of the ErbB

pathway, signaling events downstream of EGFR or b1-integrin,

mainly via the PI3K-AKT-mTOR axis, seem to be upregulated.

These results are supported by clinical evidence showing that some

breast cancer patients exhibit drug resistance after being treated

with EGFR inhibitors. Similarly, in the PI3K/MAPKK-T4R cells,

their differential network is enriched with genes closely connected

to PI3K, suggesting they are upmodulated to make up for the loss

of PI3K signaling, also agreeing with clinical findings showing

patient resistance to PI3K inhibitors. Likewise, the compensatory

effect is observed in the differential network of the T4-2 cells

reverted by MMPIs, which involves genes participating in protein

catabolic processes presumably to make up for the loss of the

MMP function. The effect of MMPIs for treating breast cancer

patients was disappointing in clinical trials, but no conclusive

evidence for ineffectiveness has been put forward [38]. Our results

suggest that the failure of treating breast cancer patients by

MMPIs involves upmodulation of the catabolic processes in the

treated patients due to compensatory effect. Together, these results

suggest despite phenotypic similarities, T4-2 cells reverted by

various drugs are intrinsically different from one another; similar

compensatory mechanisms, however, appear to be utilized by the

T4-2 cells to antagonize effects of the different drugs.

In order to compare our network-based approach with

traditional statistical test-based approach, we also analyzed the

gene expression data using ANOVA, and identified 1432 genes

significantly differentially expressed (FDR p-value,0.05) across

different cell states; then we used pairwise t-tests to further identify

significant differences between cell states. We found that due to

small sample size problems, these traditional approaches are too

stringent to reveal interesting signals. For example, we examined

the genes differentially expressed between the T4-2 cells reverted

by MMP inhibitors (MMP-T4R) and other cell states, in

particularly between MMP-T4R and S1, as well as between

MMP-T4R and T4. Our results show that there are 473 genes

significantly differentially expressed in MMP-T4R, comparing to

S1, and the only two GO functional groups significantly enriched

(FDR p-value,0.05) among these genes are ‘‘mitotic cell cycle’’

and ‘‘sterol biosynthesis process.’’ Comparing to T4, there are 375

genes differentially expressed in MMP-T4R, and there are no GO

groups significantly enriched among these genes.

Moreover, we examined genes in the differential network of

MMP-T4R which are involved in some of the significantly

enriched GO groups, e.g., ‘‘proteasome complex’’ and ‘‘cellular

catabolic process’’, both of which suggest compensatory signaling

in the MMP-T4R cells. We found that among 12 genes in the

differential network of MMP-T4R (‘‘PSME3, PSMA4, PSMB8,

PSMD10, PSMA3, PSMB9, PSME2, PSMD7, PSMA6, PSMC2,

PSMA2, PSMD6’’) which are involved in ‘‘proteasome complex’’,

only two of them (PSMA3, PSMB9) significantly differ between

MMP-T4R and S1 as identified by ANOVA, and two (PSMC2,

PSMB9) significantly differ between MMP-T4R and T4. Likewise,

among 33 genes in the differential network of MMP-T4R which

are involved in ‘‘cellular catabolic process’’, only 5 genes

(‘‘PSMB9, ANAPC5, USP18, IDH1, PSMA3’’) significantly differ

between MMP-T4R and S1 as identified by ANOVA, and 3 genes

(‘‘PSMB9, USP18, IDH1’’) differ between MMP-T4R and T4.

Furthermore, we looked into the 22 hubs in the differential

networks which significantly affect patient survival, and found that

only 8 (36%) of them are differentially expressed across 5 cell states

as identified by ANOVA and a majority (64%) of them are not

differentially expressed. Similarly, among 99 hubs in the differen-

tial networks, 43% are differentially expressed, while 57% are not.

These results suggest that under small-sample-size scenarios,

traditional statistical tests are too stringent to capture interesting

signals, while our network-based differential analysis can leverage

on similarities among different samples while revealing key

differences which set them apart.

In order to identify potential novel drug targets, we also

investigated hubs in the breast cells whose aberrant expression

values are significantly associated with survival outcomes of breast

cancer patients. We found that genes in the networks of the breast

cells have 2 times higher tendency than those not in the networks

to affect patient survival in the cohort we studied. Also, hubs in the

breast networks appear more likely to influence patient survival

than genes with low degrees. Indeed, the proportion of the hubs

with high degrees which are significant survival genes (22% for

hubs with degree .5, and 23% for hubs with degree .10 and also

for those with degree .20) is not much higher than that (17%) of

the genes with low degrees. The reasons for this can be explained

as follows.

When previous evidence suggests that in yeast networks, a gene

with a higher degree is more likely to be an essential gene [46,47],

an essential gene is defined as ‘‘the cell is unviable when the gene is

knocked off’’ [47]. However, it is difficult to know/determine

which genes are essential in humans. Nevertheless, in light of the

definition of ‘essentiality’ in yeast, we think it is plausible to believe

that the actual percentage of the hubs (with degree .5) in the

differential networks of the breast cells, which can affect patients

significantly, is 22%+x%, rather than 22%, and the reasons why

we cannot see the phenotypic effect of the x% of the hubs on

patient survival may include: i) these hubs are so essential to

humans that any abnormality would lead to death, even before

breast tumors were formed or diagnosed; and/or ii) there are some

redundant genes which can make up for the loss/gain of functions

of these essential hubs.

Despite the fact that our results suggest that the genes in the

breast cell networks are more likely to affect patient survival than

those which are not, and also that hubs in the differential networks

tend to affect patient survival more than genes with low degrees,

our data show that the distributions of the patient survival rates (5-

year, 10-year or 15-years) associated with these different groups of

genes are not significantly different, suggesting that the patient

survival rates are not only affected by degrees of genes in the breast

cell networks, but also affected by the functionalities of the genes.

We have also characterized the three hubs in the cell-state-

specific differential networks whose aberrant expression values are

linked with the worst survival outcomes in the breast cancer

patients: NEBL in S1 cells, HBEGF in T4-2 cells, and PAPD7 in

the MMP-T4R group of the reverted cells. Our results are not

only in line with existing information known about these genes,

but also provide insight into their functional significance on the

growth and development of breast cancer cells. These hubs are
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promising to serve as potential drug targets for personalized breast

cancer therapy.

The major challenge of this work is the small sample size of the

microarray data we have used for the network inference. The data

was from 15 microarrays in total, and the T4-2 cells reverted by

different agents had to be pooled together in order to increase the

power of the network inference. Even though the sample grouping

strategy is biologically justifiable (see details in the Results section),

our abilities to find differences between T4-2 cells reverted by

different agents are limited due to mixed samples in the EGFR/

ITGB1-T4R and PI3K/MAPKK-T4R groups of the reversion

cells. For example, it is difficult to dissect which specific pathways

are abnormally regulated (compared to S1 cells) in which reversion

cell state: T4-2 reverted by EGFR inhibitors or by ITGB1

inhibitors. Likewise, it is also difficult to reveal differences in the

T4-2 cells reverted by different agents in the PI3K/MAPKK-T4R

group. Moreover, mixed samples can reduce power to detect

interesting signals in the data. Despite suggesting compensatory

events in the reversion cells, the enriched pathways in the EGFR/

ITGB1-T4R and the PI3K/MAPKK-T4R cells are not significant

(unadjusted p-values,0.05, but FDR p-values.0.1). However,

since our data agree well with clinical evidence, they may facilitate

clinicians to identify specific molecules which lead to resistance in

the drug-treated breast cancer patients. In order to overcome the

limitations of the mixed samples, we also focus on finding

similarities of the different T4-2 reversion cells. Our results show

that we were able to discover a significant amount of information

that agrees with the facts and evidence previously known in the

literature. Moreover, we were also able to delineate a mechanistic

framework at the systems level that can facilitate further

elucidation of the mechanisms underlying different states of the

breast cells in the progression and reversion model. Experimental

validations are nevertheless needed to further verify our findings.

In summary, this work demonstrates our recently developed

Treegl algorithm can not only provide a holistic view (i.e., the so-

called ‘‘pan-cell-state’’ view that echoes the emerging ‘‘pan-

cancer’’ or ‘‘pan-disease’’ approach nowadays to biomedical

analysis) of the progression and reversion model of the breast

cells worthy of further exploration, but also allows us to gain a

deeper and systems-level understanding about the behaviors of

nonmalignant and malignant breast cells, which may help novel

drug target discovery and make personalized breast cancer

therapy possible.

Materials and Methods

Cell culture and microarray hybridization
HMT3522 S1 and T4-2 cells were grown in 3D lrECM as

previously described [6,48]. The T4-2 cells were reverted using

each of the following reverting agents as described previously: an

EGFR inhibitor Tyrphostin AG 1478 and a human EGFR-

blocking monoclonal antibody mAb225 [7], a b1-integrin

inhibitor AIIB2 [6], a MAPK inhibitor PD98059 [7], a PI3K

inhibitor LY294002 [8], dominant-negative Rap1 [13]; an MMP

inhibitor GM6001 [49], and a broad-range inhibitor of MMPs

and ADAMs, TNF protease inhibitor–2 (TAPI-2) [12].

S1, T4-2 and reverted T4-2 cells were isolated from 3D cultures

with PBS/EDTA as previously described [50]. Total cellular RNA

was extracted using RNeasy Mini Kit with on column DNase

digestion (Qiagen). RNA was quantified by measuring optical

density at A260 and quality was verified by agarose gel

electrophoresis. Purified total cellular RNA was biotin labeled

and hybridized to the Affymetrix GeneChip human genome HG-

U133A arrays as previously described [51].

Gene expression microarray data and the sample
grouping strategy

Gene expression microarray data was obtained from 15 total

RNA samples prepared from the HMT3522 breast cells grown in

3D lrECM and treated with various reverting agents or vehicle

controls as mentioned above. Unfortunately, T4-2 cells reverted

by some agents have only one sample per each reversion cell state.

Even though our method, Treegl, is designed for small sample size

scenarios, having only one sample per state is not enough for

network inference — as it is known that it takes at least two

samples to measure even a simple quantity like correlation. Thus,

in order to increase the power of the network inference, we

grouped the arrays into the following five categories with each

having 3 samples: (i) S1 cells (3 arrays); (ii) T4-2 cells (3 arrays); (iii)

the EGFR/ITGB1-T4R group, which contains two arrays of the

T4-2 cells reverted by the EGFR inhibitor Tyrphostin AG 1478

and the human EGFR-blocking monoclonal antibody mAb225,

respectively, and one array of the T4-2 cells reverted by a b1-

integrin inhibitor AIIB2; vi) the PI3K/MAPKK-T4R group,

which contains one array of the T4-2 cells reverted by a MAPK

inhibitor PD98059, one array of the T4-2 cells reverted by a PI3K

inhibitor LY294002, and one array of the T4-2 cells reverted by

dominant-negative Rap1; and (v) the MMP-T4R group, which

contains two arrays of the T4-2 cells reverted by an MMP

inhibitor GM6001, and one array of the T4-2 cells reverted by a

broad-range inhibitor of MMPs and ADAMs, TAPI-2. The

biological justification on this grouping strategy is provided in the

Results section.

In order to identify networks specific to each state of the breast

cells, we utilized a phenotypic tree model to represent the

relationships of different states of the breast cells (Figure 1). In

particular, since the HMT3522 series were originated from S1

cells, we positioned S1 cells as the root of the phenotypic tree.

Then we made S1 cells the parent of T4-2 cells, since T4-2 cells

were derived from S1 cells. Finally, we made T4-2 cells the parent

of the three conditions of the T4-2 cells reverted by various agents

(the EGFR/ITGB1-T4R group, the PI3K/MAPKK-T4R group,

and the MMP-T4R group).

Microarray data preprocessing
Raw gene expression data was preprocessed using the following

procedure. The data from the perfect match (PM) probes on the

Affymetrix arrays was first log2-transformed, and normalized

using the CyclicLoess normalization method to minimize unwant-

ed noise in the data [52]. We did not use the difference between

the values from the PM probes and those from the mismatch

(MM) probes (i.e., PM – MM) to represent values of the probes for

each gene, because it has been shown that the MM values can pick

up both non-specific and specific signal of the probes, and thus

PM-MM values may attenuate real signal values from the PM

probes [53]. The normalized PM values were then summarized

into gene expression values using the median polish technique

[54]. For some transcripts, multiple probes on an array target the

same transcript; the values of the probes were combined by taking

the median of the values to represent the expression level of the

corresponding transcript. There are 12,977 unique genes on the

arrays. The complete microarray dataset is available at the Gene

Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.

gov/geo - GSE42125).

To reduce biological noise in the data, we removed genes whose

expression values showed low variability across different groups of

the breast cells. In particular, for each gene, we calculated its

median expression values in five different groups of the breast cell

states. If the fold change value of a gene between any of the two
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groups was larger than 1.3, we included the gene for the

downstream analysis. The reasons why we used the fold change

of 1.3 as the threshold value to filter genes are as follows: i) based

on our previous experience with human lung disease studies [55],

we found that a fold change of 1.2–1.3 is enough to elicit

significant biological changes in humans; and ii) When using the

threshold value of 1.3, 5,440 genes passed the filter, which we

consider is a reasonable number for the downstream network

analysis by Treegl. Then we applied Treegl to reconstruct gene

networks in the five breast cell states using expression values of the

qualified genes.

A mathematical representation of the gene networks for
the cell states in the phenotypic tree

We now give a mathematical formulation of representing the

gene networks in order to introduce our algorithm. Consider the

problem of modeling N different gene networks, each correspond-

ing to a unique cell state n. Each cell state n has Sn i.i.d.
microarray replicates. All the arrays in the dataset have the same

set of p genes. In our case, we have 5 different conditions of the

breast cells in the phenotypic tree: S1, T4, EGFR/ITGB1-T4R,

PI3K/MAPKK-T4R, and MMP-T4R.

As commonly done, we model each gene network as a weighted

undirected graph, where the vertices represent genes and the edges

represent interactions in the network. Let G nð Þ~ V , E nð Þ
� �

represent a network in cell state n, where V denotes the set of

genes that is fixed for all cell states and E nð Þ denotes the set of

edges specific to the network for cell state n. Let

x n,sð Þ~ x
n,sð Þ

1 , . . . ,x
n,sð Þ

p

� �
where s[ 1, . . . ,Snf g be the vector of

expression values of genes on array s in cell state n. We assume

x n,sð Þ*N 0,S nð Þ
� �

, i.e. that the vector of expression values follows

a multivariate Gaussian distribution.

We are interested in reconstructing a set of networks

G 1ð Þ, . . . ,G Nð Þ that are related by the phenotypic tree as shown

in Figure 1. For each cell state n, let p nð Þ be the parent of the cell

state in the tree; alternatively, we can also view G nð Þ as a

descendant of Gp nð Þ. In our case, p S1ð Þ~NULL, p T4ð Þ~
S1, p EGFR=ITGB1{T4Rð Þ~p PI3K=MAPKK{T4Rð Þ~
p MMP{T4Rð Þ~T4. We generally let n~1 correspond to S1,

n~2 correspond to T4, and n~3{5 correspond to the EGFR/

ITGB1-T4R group, the PI3K/MAPKK-T4R group, and the

MMP-T4R group, respectively. Thus, in our formulation,

recovering the structures of the gene regulatory networks in

different breast cell states corresponds to estimating the network

structure for each cell state.

Estimating a gene network in a cell state

Consider first estimating the edge set of a single network G nð Þ

from the data. As described in the Results section, we model the

gene network for each cell state n as a Gaussian Markov network.

Therefore the inverse of the covariance matrix, called the

precision matrix, V nð Þ, completely encodes the structure of the

Markov network. An edge u,nð Þ exists in the Markov network if

and only if the corresponding precision matrix element is non-

zero.

A Gaussian Markov network, encoded via the precision matrix,

allows us to model more sophisticated dependencies than a

correlation network, which is encoded by the covariance matrix.

In particular, the precision matrix elements v
nð Þ

uv are related to the

partial correlation between u and v (denoted as r
nð Þ

uv , see below for

details). Formally, partial correlation between a pair of random

variables u,vð Þ given a set Z of controlling variables is defined as

follows. Let Ru and Rv denote the residuals from performing linear

regression of u with Z and v with Z, respectively. The partial

correlation is then defined as the correlation between Ru and Rv.

Unlike correlation, which simply measures the association between

a pair of random variables, partial correlation intuitively measures

the association between a pair of variables with a set Z of

controlling variables removed (where here Z is all the other genes).

The partial correlation, due to its close relationship with the

elements of the precision matrix, makes the latter much more

suitable than the covariance matrix for distinguishing between

indirect and direct relationships as shown in Figure 2.

Since our goal is to learn the structure of the Markov network,

we are only concerned with estimating which precision matrix

elements are zero and which are not (rather than the exact

precision matrix values). Therefore it suffices to estimate the

partial correlation coefficients, which are proportional to the

precision matrix elements by the equation r
nð Þ

uv ~
{v

nð Þ
uvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v
nð Þ

uu v
nð Þ

vv

q . An

estimation algorithm can be constructed by exploiting the

relationships between the partial correlation coefficients and a

linear regression model [56]. Specifically, consider a linear

regression model where gene u is treated as the response variable

and all the other genes are covariates. The regression coefficient

h nð Þ
uv of covariate v is then proportional to the partial correlation

r
nð Þ

uv .

The above facts enable us to use regression-based methods to

estimate the elements of the precision matrix (up to a proportion-

ality constant), and thus the underlying network structure. In

particular, our method is based on an efficient neighborhood

selection algorithm [26] based on ‘1-norm regularized regression

that works well in practice and has strong theoretical guarantees.

In this approach, the neighborhood of each gene u (the set of edges

incident to u) is estimated independently of the neighborhoods of

other genes. After estimating each neighborhood, the results are

then combined to produce the estimated network. In every

neighborhood estimation step, gene u is treated as a response

variable, and all the other genes are the covariates. An ‘1

penalized linear regression (also known as the lasso [57]) is

performed to give an estimate of the regression coefficients

h nð Þ
uv Vv[V\u.

Then by leveraging the relationship between the regression

coefficients and the partial correlation, the estimated gene network

ĜG nð Þ is constructed by adding an edge u,vð Þ to ĜG nð Þ if either ĥh nð Þ
uv or

ĥh nð Þ
vu is non-zero (max-symmetrization).

Estimating a tree-shaped genealogy of gene networks in
the breast cells

Obviously, networks for each cell state can be estimated

independently by using the method described above. However,

this can lead to very poor estimates of the edge sets, because in

common laboratory settings only a few replicates of gene

expression data can be obtained. To overcome this limitation,

we estimated the networks by assuming that the networks share

similarities due to their relationships as suggested by the

phenotypic tree, but also have some sharp differences. For

example, for S1 and T4-2 cells, we assume they have considerable

differences as the former is nonmalignant while the latter is

tumorigenic; however, since T4-2 were derived from S1, we also

assume that these cells share substantial similarity. This is the
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motivation behind Treegl, the algorithm that we first presented in

[24].

Treegl is unique in that it makes use of a total variation

regularizer, which allows information to be shared across

different cell states, and thus encourages the resulting networks

to be similar while allowing differences in the networks to be

revealed. More specifically, Treegl adopts the idea of neighbor-

hood selection and additionally penalizes the differences between

the neighborhoods of adjacent states in the breast cell phenotypic

tree. This makes Treegl more effective in small-sample-size

settings than existing approaches since it can estimate a collection

of networks more robustly by leveraging the similarities among

them.

In summary, Treegl proposes the following optimization

problem for jointly recovering the neighborhoods of genes for all

the cell states in the phenotypic tree of the breast cells:

ĥh
1ð Þ
\u , . . . ,ĥh

Nð Þ
\u ~

argmin

h
1ð Þ
\u

,...,h
Nð Þ
\u

XN

n~1

XSn

s~1

(x(n,s)
u {Sh

(n)
\u ,x

(n,s)
\u T)2zl1

XN

n~1

h
(n)
\u

���
���

1
z

l2

XN

n~2

h
(n)
\u {h

(p(n))
\u

���
���

1
zl2

XN

n~3

h
(n)
\u {h

(1)
\u

���
���

1

0
BBBBB@

1
CCCCCA

In the equation above, the first term corresponds to the residual

sum of squares as in normal linear regression. x
n,sð Þ
\u indicates the

p{1 vector of the expression values of all genes except u, and

similarly, h
nð Þ
\u ~ h nð Þ

uv : v[V\u
n o

. Sh(n)
\u ,x

(n,s)
\u T is defined asX

v[V\u

h nð Þ
uv x n,sð Þ

v . The second term (corresponding to l1) is a ‘1

penalty on the edge weights (similar to [26]), where zk k1 denotes

the ‘1 norm of vector z, which is the sum of the absolute values of

the components of z. This penalty promotes sparsity in the edge

weights by enforcing most of the edge weights to be zero. The

assumption of sparsity is biologically justifiable. For example, it is

common to find a transcription factor regulating a limited number

of genes under specific conditions [31]. The details of the ‘1

regularization can be seen in [57]. The third term (also called the

total variation penalty) associated with l2 enforces sparsity of

differences between S1 and T4-2 as well as between T4-2 and

each of the T4R groups (as illustrated in the tree structure in

Figure 1), but not between T4Rs and S1. This encourages many

(but not all) of the elements of h
nð Þ
\u to be identical to those of h

p nð Þ
\u .

The fourth term (also associated with l2) additionally penalizes the

differences between each of the T4R groups and S1, while

allowing for sharp differences to be revealed between the two

groups. Note that if the fourth term was not used, the T4R

networks would be biased to be more similar to the T4-2 network

than the S1 network. This would be undesirable, since it is

unknown a priori whether each of the T4R states are more similar

to T4-2 or S1 cells.

l1 and l2 are regularization parameters that control the amount

of penalization (see below for details on how we selected these

parameters). Because the minimization problem is convex, we

solved it using the CVX solver [58], as we described in [24].

In this work, we focus on genes linked by positive edges, because

interaction of these genes is easier to interpret. For example,

suppose genes X and Y are linked by positive edges, and genes Y
and Z are also linked by positive edges. Intuitively, this suggests

that genes X and Y are regulated in the same direction, that is,

when gene X is up (or down)-regulated, gene Y is also up (or

down)-regulated. Same is true for genes Y and Z which are also

regulated in the same direction. As a result, we can also decide that

genes X and Z are regulated in the same direction.

On the other hand, interpreting interaction of genes linked by

negative edges is more complicated. For example, suppose genes A
and B are linked by a negative edge and genes B and C also linked

by a negative edge. This intuitively means that A and B are

regulated in the opposite direction, and that B and C are also

regulated in the opposite direction; it is, however, unclear what is

the relationship of A and C, which may be regulated in either the

same or the opposite direction.

Due to the reasons stated above, we chose to limit the scope of

this work by focusing only on the positive edges to simplify our

interpretation of the results.

Selecting regularization parameters
Choosing the regularization parameters l1 and l2 is a

challenging problem in high dimensional statistics. Kolar and

Xing proposed to use the Bayesian information criterion (BIC)

score to select these parameters [59]. This approach can be useful

in low dimensional settings; however, it does not perform well in

high dimensional settings [60]. In this work, since we have a good

knowledge of the biological properties of the S1 and T4-2 cells in

the HTM3522 system, we employed a knowledge-based approach

to tune l1 and l2, namely, we tuned these parameters based on

our prior knowledge about S1 and T4-2 cells, which turned out to

be highly effective in the high dimensional, small sample size

setting as we encountered in this work. Specifically, we first varied

l1 and l2 in the set {4, 4.5, 5, 5.5, 6, 6.5, 7} and the set {0.5, 1,

1.5, 2, 2.5}, respectively, and generated cell-state-specific networks

for each possible pair of l1 and l2. These sets of l1 and l2 were

chosen because the networks can be generated with reasonable

sparsity. Then we examined the biological pathways significantly

enriched in the differential network of the S1 and T4-2 cells, and

found that when l1~4 and l2~2, almost all of the enriched

pathways in the T4-2 network make the best biological sense in

that they are either well described in previous studies or are known

pathways active in cancers. Since we used S1 and T4-2 cells to

help tune the regularization parameters, we present and discuss

mainly biological findings we made from the networks of the T4-2

reversion cells to avoid circular reasoning.

Synthetic network generation and evaluation
We describe below how the networks in our simulation

experiments were generated. Consider the following artificial

collection of 70 networks, related by a tree:

1) A network A with p nodes, with an average degree 4, and

maximum degree 6 is randomly generated. For the first 10

states, n~1{10, A remains unchanged, and thus, the

networks for cell states n~1{10 are identical.

2) After n~10, the network branches into two child networks, B
and C. To generate each child network, 25% of the edges are

randomly deleted and the same number of the edges are

randomly added. This represents a sharp, sparse change in the

network. These child networks remain unchanged for another

10 states (n~11{20 for B, n~21{30 for C).

3) B and C then branch (similar to step 2) to generate networks

D and E from B, and F and G from C. These networks

remain unchanged for another 10 states n~31{40 for D,

n~41{50 for E, n~51{60 for F, and n~61{70 for G.
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Treegl does not know a priori which networks are identical and

which are not. The number (S) of samples are then generated for

each network under the Gaussian Graphical Model assumption.

We vary the values of (p,S) in the simulation experiments, and the

results presented in Figures 3 are based on the values indicated in

the figure. In each scenario, the number of edges is twice as much

as the number of nodes.

To evaluate Treegl, we conduct a total of 10 simulation

experiments, and plot the precision-recall curves showing the

recall for different values of precision based on the networks

reconstructed by Treegl. The error bars in the curves indicate the

first and third quartiles of the results. Details on how we generated

the precision-recall curves and selected the regularization param-

eters can be found in [24].

Pathway analysis
To identify pathways significantly enriched in the gene networks

of the 5 breast cell states estimated by Treegl, we performed

pathway analysis on the list of the genes involved in each network

using the Category Bioconductor package with minor modification

(http://www.bioconductor.org). The Category package uses hy-

pergeometric tests to assess overrepresentation of the KEGG

pathways among genes of interest. A list of 12,977 unique genes on

the Affymetrix GeneChip Human Genome U133A was used as

the reference gene list for the pathway analysis. A pathway is

considered to be significant if p,0.1 with the FDR controlling

procedure of Benjamini & Hochberg [61].

Disease relevance analysis
To find out genes significantly associated with certain diseases

in the differential networks of the breast cell states, we performed

pathway analysis as described above. For each differential

network, pathways related to diseases and significantly enriched

in the network were singled out; genes in the network that are

involved in the enriched disease-related pathways were reported

as the genes significantly associated with the diseases in the

network.

GO analysis
To identify functional groups of genes significantly enriched in

the gene networks of the breast cells estimated by Treegl, we

performed GO analysis on the list of the genes involved in each

network using the GOstat program [62]. The GOstat program

finds the enriched functional groups using Fisher’s exact tests.

The GOstat program was also used to identify functional groups

of genes enriched among the neighborhoods (or the subnetworks)

of the hubs significantly affecting patient survival. A functional

group is considered to be significant if p,0.05 with the FDR

controlling procedure of Benjamini & Hochberg. A list of 12,977

unique genes on the Affymetrix GeneChip Human Genome

U133A was used as the reference gene list for the GOstat
program.

Survival analysis of hubs
We define hubs as genes with positive degree greater than 5

in the differential networks of the breast cell states. Survival

analysis was performed using microarray expression values of

the hubs extracted from a gene expression microarray data set

obtained from 295 primary human breast tumors [39]. For

each hub, its expression values across all patients were divided

into three groups: lower quartile, interquartile, and upper

quartile groups. Kaplan–Meier curves were used to estimate

the association of expression values of the hubs in the three

groups with patient survival. The log-rank test was used to

calculate p-values of the survival curves. A hub was considered

as significant if the p value of its associated survival curve ,

0.05 after controlling for multiple testing using the Bonferroni

procedure.

Supporting Information

Figure S1 Diagram depicting relationship of the networks in the

simulation experiment. Networks with the same color have an

identical network structure, i.e., networks 1–10 are identical,

networks 11–20 are identical, etc. The black solid lines represent

change-points where the network structure changes.

(EPS)

Figure S2 Precision-recall plots for each of the 70 individual

networks in the simulation experiment for 50 nodes, 10 samples

per network as shown in Figure 3D. Row 1 represents networks 1–

10, Row 2 represents networks 11–20, Row 3 represents networks

21–30, …, and Row 7 represents networks 61–70. Treegl is shown

in blue. The static approach of pooling all the samples to estimate

only one network is shown in red, while the results for estimating

each network independently without any information sharing is

shown in green. The scales of the x-axis and y-axis are identical to

those in Figure 3.

(EPS)

Figure S3 (Figure from [24]). An overview of the identified

cell-state-specific networks: (A) S1, (B) T4, (C) EGFR/ITGB1-

T4R, (D) PI3K/MAPKK-T4R, and (E) MMP-T4R. Only

edges of absolute weight .0.1 are shown. Hubs (i.e., nodes

with .5 edges) are in orange and enlarged proportional to

their degrees.

(EPS)

Figure S4 A KEGG diagram of the phosphatidylinositol

signaling pathway enriched in the differential network of the

EGFR/ITGB1-T4R cells. PI3K is identified by red arrows. Only

a section of the pathway is shown.

(EPS)

Figure S5 A KEGG diagram of the mTOR signaling pathway.

This pathway is enriched in the differential networks of both the

EGFR/ITGB1-T4R cells and the PI3K/MAPKK-T4R cells.

PI3K and mTOR are identified by red and blue arrows,

respectively. Insulin signaling pathway and INS/IGF are identified

by purple and pink arrows, respectively. Notice that IGF is

intimately connected with both insulin and mTOR pathways.

(EPS)

Figure S6 A KEGG diagram of the Insulin signaling pathway

enriched in the differential network of the PI3K/MAPKK-T4R

cells. PI3K, mTOR, and INS/IGF are identified by red, blue, and

pink arrows, respectively.

(EPS)

Figure S7 A plot showing the number of genes that have degree

d for various values of d. The plot in the inset displays the same

data, except that the y-axis is shown in log scale. The red arrow

points to the number of the genes with degree = 6. Since

comparing to genes with degree = 5, there is a noticeable

decreased number of genes with degree = 6, thus we designate

all the genes with degree .5 to be hubs.

(EPS)

Table S1 Significantly enriched pathways in the differential

networks of the breast cell states in the progression and reversion

model of the HMT3522 cells. (A) S1 differential network; (B) T4-2
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differential network; (C) EGFR/ITGB1-T4R differential network;

(D) PI3K/MAPKK-T4R differential network; (E) MMP-T4R

differential network.

(DOCX)

Table S2 Significantly enriched GO groups in the differential

networks of the breast cell states in the progression and reversion

model of the HMT3522 cells. (A) S1 differential network; (B) T4-2

differential network; (C) EGFR/ITGB1-T4R differential network;

(D) PI3K/MAPKK-T4R differential network; (E) MMP-T4R

differential network.

(DOCX)

Table S3 Diseases significantly associated with the genes in

the differential networks of the breast cell states in the

progression and reversion model of the HMT3522 cells. (A)

S1 differential network; (B) T4-2 differential network;

(C) EGFR/ITGB1-T4R differential network; (D) PI3K/

MAPKK-T4R differential network; (E) MMP-T4R differential

network.

(DOCX)

Table S4 Hubs in the differential networks of the breast cell

states significantly affecting survival of breast cancer patients.

(DOCX)

Acknowledgments

We thank Dr. Ren Xu for providing us information about the gene

expression microarray dataset used in this work.

Author Contributions

Conceived and designed the experiments: APP EPX WW. Performed the

experiments: APP WW. Analyzed the data: APP WW. Contributed

reagents/materials/analysis tools: REC IK SBW MB EPX. Wrote the

paper: APP EPX WW. Edited the manuscript: IK SBW MB.

References

1. Luscombe NM, Babu MM, Yu H, Snyder M, Teichmann SA, et al. (2004)

Genomic analysis of regulatory network dynamics reveals large topological

changes. Nature 431: 308–312.

2. Ernst J, Vainas O, Harbison CT, Simon I, Bar-Joseph Z (2007) Reconstructing

dynamic regulatory maps. Mol Syst Biol 3: 74.

3. Schulz MH, Devanny WE, Gitter A, Zhong S, Ernst J, et al. (2012) DREM 2.0:

Improved reconstruction of dynamic regulatory networks from time-series

expression data. BMC Syst Biol 6: 104.

4. Bissell MJ, Weaver VM, Lelievre SA, Wang F, Petersen OW, et al. (1999) Tissue

structure, nuclear organization, and gene expression in normal and malignant

breast. Cancer Res 59: 1757–1763s; discussion 1763s–1764s.

5. Bissell MJ, Radisky D (2001) Putting tumours in context. Nat Rev Cancer 1: 46–

54.

6. Weaver VM, Petersen OW, Wang F, Larabell CA, Briand P, et al. (1997)

Reversion of the malignant phenotype of human breast cells in three-

dimensional culture and in vivo by integrin blocking antibodies. J Cell Biol

137: 231–245.

7. Wang F, Weaver VM, Petersen OW, Larabell CA, Dedhar S, et al. (1998)

Reciprocal interactions between beta1-integrin and epidermal growth factor

receptor in three-dimensional basement membrane breast cultures: a different

perspective in epithelial biology. Proc Natl Acad Sci U S A 95: 14821–14826.

8. Liu H, Radisky DC, Wang F, Bissell MJ (2004) Polarity and proliferation are

controlled by distinct signaling pathways downstream of PI3-kinase in breast

epithelial tumor cells. J Cell Biol 164: 603–612.

9. Briand P, Petersen OW, Van Deurs B (1987) A new diploid nontumorigenic

human breast epithelial cell line isolated and propagated in chemically defined

medium. In Vitro Cell Dev Biol 23: 181–188.

10. Briand P, Nielsen KV, Madsen MW, Petersen OW (1996) Trisomy 7p and

malignant transformation of human breast epithelial cells following epidermal

growth factor withdrawal. Cancer Res 56: 2039–2044.

11. Inman JL, Bissell MJ (2010) Apical polarity in three-dimensional culture systems:

where to now? J Biol 9: 2.

12. Kenny PA, Bissell MJ (2007) Targeting TACE-dependent EGFR ligand

shedding in breast cancer. J Clin Invest 117: 337–345.

13. Itoh M, Nelson CM, Myers CA, Bissell MJ (2007) Rap1 integrates tissue

polarity, lumen formation, and tumorigenic potential in human breast epithelial

cells. Cancer Res 67: 4759–4766.

14. Becker-Weimann S, Xiong G, Furuta S, Han J, Kuhn I, et al. (2013) NFkB

disrupts tissue polarity in 3D by preventing integration of microenvironmental

signals. Oncotarget 4: 2010–2020.

15. Marbach D, Costello JC, Kuffner R, Vega NM, Prill RJ, et al. (2012) Wisdom of

crowds for robust gene network inference. Nat Methods 9: 796–804.

16. Bar-Joseph Z, Gitter A, Simon I (2012) Studying and modelling dynamic

biological processes using time-series gene expression data. Nat Rev Genet 13:

552–564.

17. Friedman N, Linial M, Nachman I, Pe’er D (2000) Using Bayesian networks to

analyze expression data. J Comput Biol 7: 601–620.

18. Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, et al. (2006)

ARACNE: an algorithm for the reconstruction of gene regulatory networks in a

mammalian cellular context. BMC Bioinformatics 7 Suppl 1: S7.

19. Yeung MK, Tegner J, Collins JJ (2002) Reverse engineering gene networks using

singular value decomposition and robust regression. Proc Natl Acad Sci U S A

99: 6163–6168.

20. Ahmed A, Xing EP (2009) Recovering time-varying networks of dependencies in

social and biological studies. Proc Natl Acad Sci U S A 106: 11878–11883.

21. Song L, Kolar M, Xing EP (2009) KELLER: estimating time-varying

interactions between genes. Bioinformatics 25: i128–136.

22. Song L, Kolar M, Xing EP (2009) Time-Varying Dynamic Bayesian Networks.

In: Bengio Y, Schuurmans D, Lafferty J, Williams CKI, Culotta A, editors.

Advances in Neural Information Processing Systems 22. pp. 1732–1740.

23. Grzegorczyk M, Husmeier D (2011) Improvements in the reconstruction of

time-varying gene regulatory networks: dynamic programming and

regularization by information sharing among genes. Bioinformatics 27:

693–699.

24. Parikh AP, Wu W, Curtis RE, Xing EP (2011) TREEGL: reverse engineering

tree-evolving gene networks underlying developing biological lineages. Bioinfor-

matics 27: i196–204.

25. Koller D, Friedman N (2009) Probabilistic graphical models: principles and

techniques: MIT press.

26. Meinshausen N, Buhlmann P, Zurich E (2006) High-dimensional graphs and

variable selection with the lasso. Annals of Statistics 34: 1436–1462.

27. Ravikumar P, Wainwright MJ, Lafferty J (2010) High-dimensional ising model

selection using ,1-regularized logistic regression. Annals of Statistics 38: 1287–

1319.

28. Kolar M, Xing EP (2012) Estimating Networks With Jumps. Electronic Journal

of Statistics 6: 38.

29. Kolar M, Song L, Xing EP (2009) Sparsistent Learning of Varying-coefficient

Models with Structural Changes. Advances in Neural Information Processing

Systems 21: .

30. Segal E, Shapira M, Regev A, Pe’er D, Botstein D, et al. (2003) Module

networks: identifying regulatory modules and their condition-specific regulators

from gene expression data. Nat Genet 34: 166–176.

31. Davidson EH (2001) Genomic regulatory systems. San Diego: Academic Press.

32. Baselga J, Albanell J, Ruiz A, Lluch A, Gascon P, et al. (2005) Phase II and

tumor pharmacodynamic study of gefitinib in patients with advanced breast

cancer. J Clin Oncol 23: 5323–5333.

33. Nahta R, Yu D, Hung MC, Hortobagyi GN, Esteva FJ (2006) Mechanisms of

disease: understanding resistance to HER2-targeted therapy in human breast

cancer. Nat Clin Pract Oncol 3: 269–280.

34. Di Cosimo S, Baselga J (2010) Management of breast cancer with targeted

agents: importance of heterogeneity. [corrected]. Nat Rev Clin Oncol 7: 139–

147.

35. Huang S, Bjornsti MA, Houghton PJ (2003) Rapamycins: mechanism of action

and cellular resistance. Cancer Biol Ther 2: 222–232.

36. Nakayama KI, Nakayama K (2006) Ubiquitin ligases: cell-cycle control and

cancer. Nat Rev Cancer 6: 369–381.

37. Coussens LM, Fingleton B, Matrisian LM (2002) Matrix metalloproteinase

inhibitors and cancer: trials and tribulations. Science 295: 2387–2392.

38. Kessenbrock K, Plaks V, Werb Z (2010) Matrix metalloproteinases: regulators of

the tumor microenvironment. Cell 141: 52–67.

39. van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA, et al. (2002) A gene-

expression signature as a predictor of survival in breast cancer. N Engl J Med

347: 1999–2009.

40. Han JD, Bertin N, Hao T, Goldberg DS, Berriz GF, et al. (2004) Evidence for

dynamically organized modularity in the yeast protein-protein interaction

network. Nature 430: 88–93.

41. Deng XA, Norris A, Panaviene Z, Moncman CL (2008) Ectopic expression of

LIM-nebulette (LASP2) reveals roles in cell migration and spreading. Cell Motil

Cytoskeleton 65: 827–840.

42. Citri A, Yarden Y (2006) EGF-ERBB signalling: towards the systems level. Nat

Rev Mol Cell Biol 7: 505–516.

43. Revillion F, Lhotellier V, Hornez L, Bonneterre J, Peyrat JP (2008) ErbB/HER

ligands in human breast cancer, and relationships with their receptors, the bio-

pathological features and prognosis. Ann Oncol 19: 73–80.

Network Analysis of Breast Cancer Cells

PLOS Computational Biology | www.ploscompbiol.org 17 July 2014 | Volume 10 | Issue 7 | e1003713



44. Miyamoto S, Yagi H, Yotsumoto F, Horiuchi S, Yoshizato T, et al. (2007) New

approach to cancer therapy: heparin binding-epidermal growth factor-like
growth factor as a novel targeting molecule. Anticancer Res 27: 3713–3721.

45. Vanacova S, Stefl R (2007) The exosome and RNA quality control in the

nucleus. EMBO Rep 8: 651–657.
46. Jeong H, Mason SP, Barabasi AL, Oltvai ZN (2001) Lethality and centrality in

protein networks. Nature 411: 41–42.
47. Yu H, Greenbaum D, Xin Lu H, Zhu X, Gerstein M (2004) Genomic analysis of

essentiality within protein networks. Trends Genet 20: 227–231.

48. Petersen OW, Ronnov-Jessen L, Howlett AR, Bissell MJ (1992) Interaction with
basement membrane serves to rapidly distinguish growth and differentiation

pattern of normal and malignant human breast epithelial cells. Proc Natl Acad
Sci U S A 89: 9064–9068.

49. Beliveau A, Mott JD, Lo A, Chen EI, Koller AA, et al. (2010) Raf-induced
MMP9 disrupts tissue architecture of human breast cells in three-dimensional

culture and is necessary for tumor growth in vivo. Genes Dev 24: 2800–2811.

50. Lee GY, Kenny PA, Lee EH, Bissell MJ (2007) Three-dimensional culture
models of normal and malignant breast epithelial cells. Nat Methods 4: 359–365.

51. Fournier MV, Martin KJ, Kenny PA, Xhaja K, Bosch I, et al. (2006) Gene
expression signature in organized and growth-arrested mammary acini predicts

good outcome in breast cancer. Cancer Res 66: 7095–7102.

52. Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of
normalization methods for high density oligonucleotide array data based on

variance and bias. Bioinformatics 19: 185–193.

53. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, et al. (2003)

Exploration, normalization, and summaries of high density oligonucleotide array

probe level data. Biostatistics 4: 249–264.

54. Holder D, Raubertas RF, Pikounis VB, Svetnik V, Soper K (2001) Statistical

analysis of high density oligonucleotide arrays: a SAFER approach. In:

Proceedings of the ASA Annual Meeting; Atlanta, Georgia.

55. Zhou X, Wu W, Hu H, Milosevic J, Konishi K, et al. (2011) Genomic

differences distinguish the myofibroblast phenotype of distal lung fibroblasts

from airway fibroblasts. Am J Respir Cell Mol Biol 45: 1256–1262.

56. Lauritzen SL (1996) Graphical models: Oxford University Press.

57. Tibshirani R (1996) Regression shrinkage and selection via the lasso. Journal of

the Royal Statistical Society Series B (Methodological) 58: 267–288.

58. Grant M, Boyd S, Y. Y (2008) CVX: Matlab software for disciplined convex

programming.

59. Kolar M, Xing EP (2012) Estimating networks with jumps. Electronic Journal of

Statistics 6: 2069–2106.

60. Liu H, Roeder K, Wasserman L (2010) Stability Approach to Regularization

Selection (StARS) for High Dimensional Graphical Models. Advances in Neural

Information Processing Systems 23.

61. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: A practical

and powerful approach to multiple testing. J Roy Statist Soc Ser B 57: 289–300.

62. Beissbarth T, Speed TP (2004) GOstat: find statistically overrepresented Gene

Ontologies within a group of genes. Bioinformatics 20: 1464–1465.

Network Analysis of Breast Cancer Cells

PLOS Computational Biology | www.ploscompbiol.org 18 July 2014 | Volume 10 | Issue 7 | e1003713


