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Abstract

To estimate the changing structure of a varying-coefficieamying-structure

(VCVS) model remains an important and open problem in dynaystem mod-

elling, which includes learning trajectories of stock ps¢ or uncovering the
topology of an evolving gene network. In this paper, we itigege sparsistent
learning of a sub-family of this model — piecewise consta@\5 models. We

analyze two main issues in this problem: inferring time powwhere structural
changes occur and estimating model structure (i.e., madetton) on each of
the constant segments. We propose a two-stage adaptivedoires which first

identifies jump points of structural changes and then ifiestielevant covariates
to a response on each of the segments. We provide an asyengtetlysis of

the procedure, showing that with the increasing sample simmber of structural
changes, and number of variables, the true model can bestemidy selected. We
demonstrate the performance of the method on syntheticasatapply it to the

brain computer interface dataset. We also consider howaftpties to structure
estimation of time-varying probabilistic graphical maglel

1 Introduction

Consider the following regression model:

Y—zzxiﬁ(ti)"’_eu t=1,...,n, (1)
where the design variablé§; € RP arei.i.d. zero mean random variables sampled at some con-
ditions indexed by = 1,...,n, such as the prices of a set of stocks at timer the signals from
some sensors deployed at locatipthe noise:, . . ., ¢, arei.i.d. Gaussian variables with variance
o? independent of the design variables; aid;) = (51(t:), - .., 3,(t:))" : [0,1] — R? is a vector
of unknown coefficient functions. Since the coefficient eeds a function of the conditions rather
than a constant, such a model is calledhaying-coefficient mod¢l2]. Varying-coefficient models
are a non-parametric extension to the linear regressioret®oahich unlike other non-parametric
models, assume that there is a linear relationship (gepebéé to log-linear relationship) between
the feature variables and the output variable, albeit agihgrone. The model given in Eqg. (1) has
the flexibility of a non-parametric model and the interpbdey of an ordinary linear regression.

Varying-coefficient models were popularized in the work@jfand [16]. Since then, they have been
applied to a variety of domains, including multidimensibregression, longitudinal and functional

data analysis, and modeling problems in econometrics aadd@& to model and predict time- or

space- varying response to multidimensional inputs ésgg12] for an overview.) One can easily

imagine a more general form of such a model applicable tetlemains, where both the coefficient
value and the model structure change with values of othéxhlas. We refer to this class of models
as varying-coefficient varying-structure (VCVS) modelseTnore challenging problem of structure
recovery (or model selection) under VCVS has started tchcaiiention very recently [1, 24].

*LS is supported by a Ray and Stephenie Lane Research Fellowship. ER)éperted by grant ONR
N000140910758, NSF DBI-0640543, NSF DBI-0546594, NSFIT33379 and an Alfred P. Sloan Research
Fellowship. We also thank Z&iHarchaoui for useful discussions.
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Figure 1: (a) lllustration of an VCVS as varying functions of time. The inter{@l1] is partitioned into
{0,0.25,0.4,0.7, 1}, which defines blocks on which the coefficient functions are constardifférent blocks
only covariates with non-zero coefficient affect the respoaggeon the intervalB3, = (0.25,0.4) covariates
X5 and X, do not affect response. (b) Schematic representation of the csaifiecting the response during
the second block in panel (a), which is reminiscent of neighborholedtsan in graph structure learning. (c)
and (d) Application of VCVS for graph structure estimation (see Sectiafi iidn-piecewise constant evolving
graphs. Coefficients defining neighborhoods of different nodeskange on different partitions.

In this paper, we analyze VCVS as functions of time, and thanmaeal is to estimate théynamic
structureandjump pointsof the unknown vector functiofi(t). To be more specific, we consider the
case where the functiofi(t) is time-varying, but piecewise constant (see Fig.i.E), there exists
apartition7 = {T; =0 < Ty < ... < Tp = 1}, 1 < B < n, of the time interval (scaled to)
[0,1], such that3(t) = ~;, t € [T;—1,T}) for some constant vectorg € R?, j =1,...,B. We
refer to pointsTy, ..., T as jump points Furthermore, we assume that at each time anly

a few covariates affect the response,, the vector3(t;) is sparse. A good estimation procedure
would be able to identify the correct partition of the int&r{, 1] so that within each segment the
coefficient function is constant. In addition, the procedcan identify active coefficients and their
values within each segmernte., the time-varying structure of the model. This estimatioobtem

is particularly important in applications where one needsricover dynamic relational information
or model structures from time series data. For example, anewant to infer at chosen time points
the (changing) set of stocks that are predictive of a pddicstock one has been holding from a
time series of all stock prices; or to understand the evgleincuitry of gene regulation at different
growth stages of an organism that determines the activitytafget gene based on other regulative
genes, based on time series of microarray data. Anothentanggroblem is to identify structural
changes in fields such as signal processing, EEG segmengattbanalysis of seismic signals. In
all these problems, the goal is not to estimate the optimuorevaf 3(t) for predictingY’, but to
consistently uncover the zero and non-zero patterfgdpat time points of interest that reveal the
changing structure of the model. In this paper, we providevaagorithm to achieve this goal, and
a theoretical analysis that proves the asymptotic comsigtef our algorithm.

Our problem is remotely related to, but very different fraarlier works on linear regression models
with structural changes [4], and the problem of changetpdétection €.9.[19]), which can also
be analyzed in the framework of varying-coefficient modefsnumber of existing methods are
available to identify only one structural change in the dateorder to identify multiple changes
these methods can be applied sequentially on smaller aitettvat are assumed to harbor only one
change [14]. Another common approach is to assume that #me®& changes and use Dynamic
Programming to estimate them [4]. In this paper, we proposksmalyze a penalized least squares
approach, which automatically adapts to the unknown nurabstructural changes present in the
data and performs the variable selection on each of the aon®gions.

2 Preliminaries

For a varying-coefficient regression model described in(Eywith structural changes, a reason-
able estimator of the time-varying structure can be obthine minimizing the so-called TESLA
(temporally smoothed.; -regularized regression) loss proposed in [1]: (for sigipliwe suppress
the sample-size notationin the regularization constani$ = {7, A} }, but it should be clear that
their values depend om)

P

Bt N, .. ﬂ(tn,»—argmmz (¥ = XLB(6))7 + 20 S8, + 220 Y 18l lpy . ()

i=1 =1 k=1

where ||-||; denotes thel/; norm, and||-||, denotes a total variation normj|G||ty =
S o 1Bk(t:) — Br(ti—1)|- From the analysis of [20], it is known that each componentfion



Or can be chosen as a piecewise constant and right continuoctioiv,i.e., 5, is a spline function,
with potential jump points at observation timgs « = 1,...,n. In this particular case, the total
variation penalty defined above allows us to conceptudljzas a vector irR™, whose components
Br.i = Br(t;) correspond to function values@ti = 1, ..., n, but not as a functiofd, 1] — R. We
continue to use the vector representation through the fdzmaqnaper as it will simplify the notation.

The estimation problem defined in Eq. (2) has a few appealioggsties. The objective function on
the right-hand-side is convex and there exists a solytiowhich can be found efficiently using a
standard convex optimization package. Furthermore, thalpeterms in Eq. (2) are constructed in
a way to perform model selection. Observe thapenalty encourages sparsity of the signal at each
time point and enables a selection over the relevant casifigj whereas the total variation penalty
is used to partition the intervéd, 1] so that3;, is constant within each segment. However, there are
also some drawbacks of the procedure, as shown in Lemmaw.belo

Let’s start with some notational clarifications. L¥tdenote the design matrix, input observation
X; at timei corresponds to théth row in X. For simplicity, we assume throughout the paper
that X are normalized to have unit length columns,, each dimension has unit Euclidean norm.
LetB;,j =1,...,B, denote the set of time points that fall into the interf@l_,, T;); when the
meaning is clear from the context, we also tiseas a shorthand of this interval. For examﬂ(qg
andYjp, represent the submatrix & and subvector of’, respectively, that include elements onIy

corresponding to time points within interval;. For a given solutiond to Eqg. (2), there exists a
block partition? = {71,...,T} of [0, 1] (possibly a trivial one) and unique vecters€ R?, j =
1,...,B,suchtha ; = 4; for t; € B;. The set of relevant covariates during inveri#al i.e., the
support of vectory;, is denoted as, = {k | 7,1 # 0}. Likewise we defineé‘éj overy;.

By construction, no consecutive vectdgysand;,; are identical. Note that both the number of

partitions B = \T|, and the elements in the partitiéh, are random quantities. The following
lemma characterizes the vectdrsusing the subgradient equation of Eq. (2).

Lemmal Let#; and I’S‘j, j = 1,...,B be vectors and segments obtained from a minimizer of
Eq.(2). Then each; can be found as a solution to the subgradient equation:
~ 5 1A ~(TV
X} X 4 — Xpg Vg, + M|B;18 + 003 =0, ©)
where (1)
570 € 91135ll, = sign(y;), 4)
by conventiorsign(0) € [—1, 1], ands<TV € R? such that
Sy _ -1 ek =41k >0 sov [ Mg =T >0 g
51,k 1 If’?z,k—’%’}c <0 ’ Bk -1 Ifﬁ/B’,k_ﬁ/B’fl,k <0

and, forl < j < B,

V) _ 2 A0 =Yk > 0,958 — -1k <O
Sik = =2 Y0 — Yk < 0,956 — V- 1k>0 (6)

0 if (Fje — Yi—1.6) Vit 1,6 — Fj6) = 1.
Lemma 1 does not provide a practical way to estimat&, but it does characterize a solution.
From Eq. (3) we can see that the coefficients in each of theatd blocks are biased by two terms
coming from the/; and||-||,, penalties. The larger the estimated segments, the snizadleelative
influence of the bias from the total variation, while the miige of the bias introduced by the
penalty is uniform across different segments. The additibas coming from the total variation
penalty was also noted in the problem of signal denoising [28the next section, we introduce a
two step procedure which alleviate this effect.

3 Atwo-step procedure for estimating time-varying structues

In this section, we propose a new algorithm for estimatimgtitme-varying structure of the varying-
coefficient model in Eq. (1), which does not suffer from thasbintroduced by minimizing the
objective in Eq. (2). The algorithm is a two-step procedunaarized as follows:



1. Estimate the block partitioi’, on which the coefficient vector is constant within each
block. This can be obtained by minimizing the following atijee:
n p
> (¥ = XiB(t)* + 222 Y 1Ballry )
=1 k=1

which we refer to as gemporal differenc€TD) regression for reasons that will be clear
shortly. We will employ a TD-transformation to Eq. (7) andrtit into an¢;-regularized
regression problem, and solve it using the randomized Ld3stails of the algorithm and

how to extract/” from the TD-estimate will be given shortly.

2. For each block of the partitior3;,1 < j < B, estimatey; by minimizing the Lasso
objective within the block:

5y = argmin 3 (¥; — Xi7)? + 2 [l ®

We name this procedure TDB-Lasso (or TDBL), after the twest@D randomized Lasso, and
Lasso within Blocks) given above. The advantage of the T[2B8do compared to a minimizer of
Eq. (2) comes from decoupling the interactions betweer{tt@d TV penalties (note that the two
procedures result in different estimates). Now we disctegs ¥ in detail; step 2 is straightforward
using a standard Lasso toolbox.

To obtain a consistent estimate Bffrom the TD-regression in Eq. (7), we can transform Eq. (7)
into an equivalent/; penalized regression problem, which allows us to castZhestimation
problem as a feature selection problem. ’B%E; denote thaemporal differencéetween the re-
gression coefficients corresponding to the same covakiadé successive time points_; and

tii Bl = Br(t) — Be(tic), k = L....p, i = 1,....n with Bi(t)) = 0, by conven-
tion. It can be shown that the model in Eq. (1) can be expreaséd’ = X'3T + ¢f, where
YT € R” is a transformed vector of the TDs of respondes, each eIemean =Y, -Y,_1;

Xt = (XI, ..., XI) € R™" is the transformed design matrix with lower triangular ricats
XL € R™*™ corresponding to TD features computed from the covariafess R” is the trans-
formed TD-error vector; and!’ € R"” is a vector obtained by stacking TD-coefficient vect,ﬁ,ts

(See Appendix for more details of the transformation.) Nb# the elements of the vecter are
noti.i.d. any more. Using the transformation above, the estimatioblpm defined on objective
Eqg. (7) can be expressed in the following matrix form:

N . 2
ﬁT:argmmHYT—XTﬁTH2—|—2)\2HﬁTH1. 9)
BER™P
This transformation was proposed in [8] in the context of-dimeensional signal denoising, how-
ever, we are interested in the estimation of jump points édbntext of time-varying coefficient
model.

The estimator defined in Eq. (9) is not robust with respectalkperturbations of datae., small
changes of variableX,; orY; would resultin a differen?". To deal with the problem of robustness,
we employed thestability selectiorprocedure of [22] (see also the bootstrap Lasso [2], however
we have decided to use the stability selection because ofiélad&er assumptions). The stability
selection approach to estimating the jump-points is coseprdf two main components: i) simulat-
ing multiple datasets using bootstrap, and ii) using theloanized Lasso outlined in Algorithm 1
(see also Appendix) to solve (9). While the bootstrap stepovgs the robustness of the estimator,
the randomized Lasso weakens the conditions under whickstireator3' selects exactly the true
features.

Let {BZ, jj}{,‘il represent the set of estimates and their suppbetsihdex of non-zero elements)
obtained by minimizing (9) for each of the bootstrapped datasets. We obtain a stable estimate of
the support by selecting variables that appear in multippgperts

M 5t
j‘r:{k‘ Zb:l“gejb}

> 7} (10)

which is then used to obtain the block partition estintateThe parameter is a tuning parameter
that controls the number of falsely identified jump points.
4



Algorithm 1 Randomized Lasso

Input: Dataset{XiA ,Yi}ie, X, € RP, penalty parametex, weakness parametere (0, 1]
Output: Estimateg € RP, supportS

1: Choose randomly weights{}},_, from interval[c, 1]

2: 3 = argmingep, iy (Vi — Xif)? + 23 30, el

3 S ={k|pr #0}

4 Theoretical analysis

We provide a theoretical analysis of TDB-Lasso, and show uhder certain conditions both the
jump points and structure of VCVS can be consistently eséohaProofs are deferred to Appendix.

4.1 Estimating jump points

We first address the issue of estimating jump points by aimaythe transformed TD-regression
problem Eq. (9) and its feature selection properties. Theufe selection using penalization has
been analyzed intensively over the past few years and wed=pt aome of the existing results to
the problem at hand. To prove that all the jump points areutted in.7 ™, we first state aparse
eigenvalue conditioron the design€.g.[6]). The minimal and maximal sparse eigenvalue, for
matrix X € R"*P, are defined as

|Xall, Xall,
@min(k, X) := , © k,X) := sup
min(hs X) = I Tl max(k X):= S e Tlally

Note that in Eq. (11) eigenvalues are computed over subreataf size; (i.e., due to the constraint
ona by the||-||, norm). We can now express the sparse eigenvalues condititrealesign.

, k<p (11)

Al: Let 7' be the true support gff andJ = | 7T|. There exist somé& > 1 andx > 10 such that
max CJ2’ XT
Pmax ( ) .

VC/k. (12)
Corin(C.J2,X1)
This condition guarantees a correlation structure betwd&etransformed covariates that allows for
detection of the jump points. Comparing to ihepresentible conditionf30, 21, 27], necessary for
the ordinary Lasso to perform feature selection, condifidris much weaker [22] and is sufficient
for the randomized Lasso to select the relevant featurehigth probability (see also [26]).

Theorem 1 Let Al be satisfied; and let the weaknesse given asy? = v, (CJ2, X1 /(CJ?),
for anyv € (7/k,1/+/2). If the minimum size of the jump is bounded away from zero as

min |5]| > 0.3(CJ)*? A, (13)
keJt

wherel i, = 201 (VCJ + 1)/ 82 andot® > Var(Y]"), fornp > 10 and.J > 7, there exists

somed = d; € (0,1) such that for allr > 1 — 4, the collection of the estimated jump pOiLHs
satisfies,

P(J" =77 >1-5/np. (14)

Remark: Note that Theorem 1 gives conditions under which we can ecewvery jump point in
every covariates. In particular, there are no assumptionth® number of covariates that change
values at a jump point. Assuming that multiple covariateangfe their values at a jump point, we
could further relax the condition on the minimal size of a pugiven in Eg. (13). It was also pointed
to us that the framework of [18] may be a more natural way tiorede jump points.

4.2 ldentifying correct covariates

Now we address the issue of selecting the relevant featoresvery estimated segment. Under
the conditions of Theorem 1, correct jump points will be degd with probability arbitrarily close

to 1. That means under the assumption Al, we can run the rdgagao on each of the estimated
segments to select the relevant features therein. We wilinas that the mutual coherence condition

[10] holds for each segmet®;. Let &7 = @ Zie,@j XX, with oil = (2)k.

5



A2: We assume there is a constant d < 1 such that

J < = —
P (ke;rsr;?ﬁ;ék {Iokl| — |SB]'| }) L (15)

The assumption A2 is a mild version of the mutual coherenoglition used in [7], which is neces-

sary for identification of the relevant covariates in eadgmsent. Lety;, k =1,..., B,, denote the
Lasso estimates for each segment obtained by minimizing (8)

Theorem 2 Let A2 be satisfied. Also, assume that the conditions of €hedrare satisfied. Let
K = max;<;<p||v;||, be the upper bound on the number of features in segments aufidde
an upper bound on elements Xf Letp = min;<;<p |B;| denote the number of samples in the
smallest segment. Then for a sequeheed,, — 0,

In 22 In 42
A\ >4Lo o \v8L J and min_ min |y, x| > 2A4,
0 p 1<j<B keSs,

we have R
lim P(B=B) =1, (16)
Jim | max P45 —ll, =0) =1, 17)
lim min P(S5, = Si,;) = 1. (18)

n—o01<j<B

Theorem 2 states that asymptotically, the two stage proeeektimates the correct modek.,, it
selects the correct jump points and for each segment betim@gnmp points it is able to select the
correct covariates. Furthermore, we can conclude thatritiepure is consistent.

5 Practical considerations

As in standard Lasso, the regularization parameters in TB&0 need to be tuned appropriately
to attain correct structural recovery. The TD regressiac@dure requires three parameters: the
penalty parametex,, cut-off parameter, and weakness parameter From our empirical experi-
ence, the recovered set of jump poifits/ary very little with respect to these parameters in a wide
range. The result of Theorem 1 is valid as longAass larger than\,,;, given in the statement
of the theorem. Theorem 1 in [22] gives a way to select theftutavhile controlling the number
of falsely included jump points. Note that this relievesradeom carefully choosing the range of
parameten,, which is challenging. The weakness parameter can be closgiite a large interval
(see Appendix on the randomized Lasso) and we report oultsesing the values = 0.6.

In the second step of the algorithm, the ordinary Lasso mz@sEq. (8) on each estimated segment
to select relevant variables, which requires a choice ofpihrealty parametek;. We do so by
minimizing the BIC criterion [25].

In practice, one cannot verify assumptions Al and A2 on ratdskts. In cases where the assump-
tions are violated, the resulting set of estimated jump tsamlarger than the true sét, e.g. the
points close to the true jump points get included into theltEsy estimateZ. We propose to use
anad hocheuristic to refine the initially selected set of jump poirdsscommonly used procedure
for estimation of linear regression models with structutahnges [3] is a dynamic programming
method that considers a possible structural change at ia@atjont;, i = 1,...,n, with a compu-
tational complexity of0(n?) (see also [15]). We modify this method to consider jump oorly

in the estimated sef’ and thus considerably reducing the computational comylemiO(|7|2),

since|7| < n. The algorithm effectively chooses a sub%et 7 of size B that minimizes the BIC
objective.

6 Experiments on Synthetic Data

We compared the TDB-Lasso on synthetic data with commorey usethods for estimating VCVS
models. The synthetic data was generated as follows. Wedséine sample size from = 100
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Figure 2:Comparison results of different estimation procedures on a synthesiseta

to 500 time points, and fixed the number of covariates is fixeghte= 20. The block partition
was generated randomly and consists of ten blocks with mimiength set to 10 time points. In
each of the block, only 5 covariates out of 20 affected thparse. Their values were uniformly at
random drawn froni—1, —0.1]U[0.1, 1]. With this configuration, a dataset was created by randomly
drawingX; ~ N(0,1,),e; ~ N(0,1.5%) and computing’; = X;3(t;) +¢; fori = 1,...,n. For
each sample size, we independently generated 100 datagatspmrt results averaged over them.

A simple local regression method [13], which is commonlydufee estimation in varying coefficient
models, was used as the simplest baseline for comparinglttese performance of estimation. Our
first competitor is an extension of the baseline, which useddllowing estimator [28]:

n n P n
min Z Z(Y? — XB )2 Kty — t;) + Z Aj Z 51'2/4-7 (19)
j=1 ir=1

BeRexn i'=11i=1
whereK),(-) = + K(-/h) is the kernel function. We will call this method “Kernél/¢,". Another
competitor uses th& penalized local regression independently at each timet,patiich leads to
the following estimator ofs(¢),

n p

i Y, — X8 Ky (t; —t AilB;)- 20
i 2 (% = X0 K )+; 3141 (20)
We call this method “Kernef;”. The difference between the two methods is that “Keriglls”
biases certain covariates toward zero at every time poaged on global information; whereas
“Kernel ¢," biases covariates toward zero only based on local infaonafThe final competitor is
chosen to be the minimizer of Eq. (2) [1], which we cal| 4+ TV”". The bandwidth parameter for
“Kernel ¢;” and “Kernel ¢, /¢5” is chosen using a generalized cross validation of a noralpesd
estimator. The penalty parametersare chosen according to the BIC criterion [28]. For thg+
TV” method, we optimize the BIC criterion over a two-dimensibgrid of values for\; and\s.
We report the relative estimation err®@EE = 100 x %fﬁl %ﬁfl }Z’_ZJ: , whereg is the baseline

i=1 j=1 17,37 P4,
local linear estimator, as a measure of estimation accufEﬁ:;asses the performance of the model
selection, we report precision, recall and their harmon@am#; measure when estimating the
relevant covariates at each time point and the percentagmi@ctly identified irrelevant covariates.

From the experimental results, summarized in Fig. 2, we earntlsat the TDB-Lasso succeeds in
recovering the true model as the sample size increasesoleatimates the coefficient values with
better accuracy than the other methods. It worth notingttietKernel +¢,” performs better than
the “Kernel +¢; /¢>” approach, which is due to the violation of the assumptioaslenin [28]. The
“¢1 + TV” performs better than the local linear regression appresachowever, the method gets
very slow for the larger values of the sample size and it meguselecting two tuning parameters,
which makes it quite difficult to use. We conjecture that the+ TV” and TDB-Lasso have similar
asymptotic properties with respect to model selection,évar from our numerical experiments we
can see that for finite sample data, the TDB-Lasso perforitsrbe

7 Application to Time-varying Graph Structure Estimation

An interesting application of the TDB-Lasso is in structwestimation of time-varying undirected
graphical models [1, 17]. A graph structure estimation carpbsed as a neighborhood selection



problem, in which neighbors of each node are estimated smtdgntly. Neighborhood selection
in the time-varying Gaussian graphical models (GGM) is emjent to model selection in VCVS,
where value of one node is regressed to the rest of nodes. egnession problem for each node
can be solved using the TDB-Lasso. Graphs estimated in dayswill have neighborhoods of each
node that are constant on a partition, but the graph as a whaleges more flexibly (Fig. 1b-d).

The graph structure estimation using the TDB-  t=1.00s t=2.00s t=3.00s
Lasso is demonstrated on a real dataset of elecg| .. 1. - )
troencephalogram (EEG) measurements. We us§| Z@f
the brain computer interface (BCI) dataset IVag g—g
Az \

le\}g .

AN

A

from [11] in which the EEG data is collected from 2

5 subjects, who were given visual cues based on
which they were required to imagine right han&igure 3: Brain interactions for the subject 'aa’
or right foot for 3.5s. The measurement was pewhen presented with visual cues of the class 1
formed when the visual cues were presented on the

screen (280 times), intermitted by periods of random leigtivhich the subject could relax. We
use the down-sampled data at 100Hz. Fig. 3 gives a visualivaf the brain interactions over the
time of the experiment for the subject 'aa’ while presentéth wisual cues for the class 1 (right
hand). Estimated graphs of interactions between diffgparts of the brain for other subjects and
classes are given in Appendix due to the space limit.

We also want to study whether the estimated time-varying/oit are discriminative features for
classifying the type of imaginations in the EEG signal. Fos purpose, we perform unsupervised
clustering of EEG signals using the time-varying netwonkd atudy whether the grouping corre-
spond to the true grouping according to imagination labes. astimate a time-varying GGM using
the TDB-Lasso for each visual cue and cluster the graphgtissnspectral K-means clustering [29]
(using a linear kernel on the coefficients to measure siity)aEach cluster is labeled according to
the majority of points it contains. Finally, each cue if dified based on labels of the time-points
that it contains. Table 1 summarizes the classification raogufor each subject based ¢ = 4
clusters £ was chosen as a cutoff point, when there was little decrealkemheans objective). We
compare this approach to a case when GGMs with a static gteuate estimated [5]. Note that
the supervised classifiers with special EEG features aretatichieve much higher classification
accuracy, however, our approach does not use any labeladcaddtcan be seen as an exploratory
step. We also used TDB-Lasso for estimating the time-vargene networks from microarray data
time series data, but due to space limit, results will be megpldater in a biological paper.

Table 1:Classification accuracies based on learned brain interactions.
Subject aa al av aw ay
TDB-Lasso || 0.69 | 0.80 | 0.59 | 0.67 | 0.83

Static 0.58 | 0.63| 0.54 | 057 | 0.61

8 Discussion

We have developed the TDB-Lasso procedure, a novel appfoaniodel selection and variable es-
timation in the varying-coefficient varying-structure netslwith piecewise constant functions. The
VCVS models form a flexible nonparametric class of modelsritain interpretability of parametric
models. Due to their flexibility, important classical preiys, such as linear regression with struc-
tural changes and change point detection, and some morn grodlems, like structure estimation
of varying graphical models, can be modeled within thisslzfanodels. The TDB-Lasso compares
favorably to other commonly used [28] or latest [1] techig|for estimation in this class of models,
which was demonstrated on the synthetic data. The modeltseieproperties of the TDB-Lasso,
demonstrated on the synthetic data, are also supporteclifig¢bretical analysis. Furthermore, we
demonstrate a way of applying the TDB-Lasso for graph esiiman a real dataset.

Application of the TDB-Lasso procedure goes beyond thalinarying coefficient regression mod-
els. A direct extension is to generalized varying-coeffitimodelsg(m(X;,t;)) = X.08(t;), i =
1,...,n, whereg(-) is a given link function andn(X;,t;) = E[Y|X = X;,t = t;] is the con-
ditional mean. Estimation in generalized varying-coefifiti models proceeds by changing the
squared loss in Eq. (7) and Eq. (8) to a different approplése function. The generalized varying-
coefficient models can be used to estimate the time-vartmgtsre of discrete Markov Random
Fields, again by performing the neighborhood selection.
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