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Abstract Many vision tasks require a multi-class classifier
to discriminate multiple categories, on the order of hundreds
or thousands. In this paper, we propose sparse output coding,
a principled way for large-scale multi-class classification, by
turning high-cardinality multi-class categorization into a bit-
by-bit decoding problem. Specifically, sparse output coding
is composed of two steps: efficient coding matrix learning
with scalability to thousands of classes, and probabilistic
decoding. Empirical results on object recognition and scene
classification demonstrate the effectiveness of our proposed
approach.

Keywords Scalable classification · Output cod-
ing · Probabilistic decoding · Object recognition ·
Scene recognition

1 Introduction

Big data has recently attracted a great deal of interest in
the vision community. However, previous research has been
largely focused on situations involving only large number
of data points and/or high-dimensional features, but rela-
tively small task size. For example, many popular benchmark
datasets (Fei-Fei et al. 2004; Griffin et al. 2007; Russell
et al. 2008) involve only a limited number of class labels.
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In a modern era when prevalence of social media data and
consumer-driven problems are inspiring attention on datasets
and tasks mimicking human intelligence in real world, a new
dimension of large scale machine learning and computer
vision—large task space, merits serious attention due to a
lack of scalable and robust new learning framework to meet
the present and future challenges that are challenging the
decade-old classical approaches still in service, such as kNN
or one-vs-all style classification. Indeed, problems involving
a large number of possible category labels (i.e., classes), in
the order of tens or even hundreds of thousands, in addition to
the large volume of data points and features, are easily within
our reach. For example, ImageNet (Deng et al. 2009) for
object recognition spans a total of 21,841 classes. Similarly,
TinyImage (Torralba et al. 2008) contains 80 million 32×32
low resolution images, with each image loosely labeled with
one of 75,062 English nouns. Clearly, these are no longer
artificial visual categorization problems created for machine
learning, but insteadmore like a human-level cognition prob-
lem for real world object recognition with a much bigger
set of objects. A natural way to formulate this problem is
a multi-class or multi-task classification, but the seemingly
standard formulation on such gigantic dataset poses a com-
pletely new challenge both to computer vision and machine
learning. Unfortunately, despite the well-known advantages
and recent advancements of multi-class classification tech-
niques (Bakker and Heskes 2003; Jacob et al. 2008; Binder
et al. 2011) in machine learning, complexity concerns have
driven most research on such large-scale datasets back to
simple methods such as nearest neighbor search (Boiman
et al. 2008), least squares regression (Fergus et al. 2010) or
learning tens of thousands of binary classifiers (Lin et al.
2011).

With such large number of classes, it is no surprise that
classical algorithms such as one-vs-rest, one-vs-one, or kNN,
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often favored for their simplicity (Rifkin and Klautau 2004;
Boiman et al. 2008), will be brought to their knees not only
because of the training time and storage cost they incur (Kos-
mopoulos et al. 2010), but also because of the conceptual
awkwardness of such algorithms in massive multi-class par-
adigms. For example, with 21,841 classes in the ImageNet
problem, should we go ahead and build 21,841 classifiers
each trained for 1-vs-21,840 classification? Just imagine the
resultant data imbalance issue at its extreme, let alone the
terrible irregularities of the decision boundaries of such clas-
sifiers. Worse still, the number of classes can even grow
further in the future.Onepossible alternative that is attempted
but still not popular is hierarchical classification (HC) (Koller
and Sahami 1997; Dekel et al. 2004; Cai and Hofmann 2004;
Bengio et al. 2010; Deng et al. 2011; Zhou et al. 2011;
Beygelzimer et al. 2009; Beygelzimer et al. 2009), which in
principle can reduce the number of classification decisions
to O(log K ), where K is the number of leaf classes. How-
ever,HC faces remarkable difficulty in practice for large scale
problems because of a number of undesirable intrinsic prop-
erties, such as sensitivity to reliability of near-root classifiers,
error propagation along the tree path, over-heterogeneity of
training data for near-root super classes, etc. Clearly, mas-
sive multi-class classification with the number of classes
approaching or even surpassing human cognitive capabil-
ity is an important yet under-addressed research problem,
and requires new, out-of-the-box rethinking of classical
approaches and more effective yet simple alternatives (we
emphasize simplicity as for massive multi-class problems,
any computationally intensemethodswould immediately fall
out of favor by practitioners).

Our goal in this work is to design a multi-class classifi-
cation method that is both accurate and fast when facing a
large number of categories. Specifically, we propose sparse
output coding (SpOC), which turns the original large-scale
K -class classification into an L-bit code construction prob-
lem, where L = O(log(K )) and each bit can be constructed
in parallel through a binary off-the-shelf classifier; followed
by a probabilistic decoding scheme to extract the class label.

1.1 Previous Work

The following lines of research are related to our work.

1.1.1 Large-Scale Visual Recognition

Very recently, we have seen successful attempts in large-
scale visual recognition (Lin et al. 2011; Sanchez et al. 2013;
Le et al. 2012; Bengio et al. 2010; Deng et al. 2011; Gao
and Koller 2011). Specifically, (Lin et al. 2011) employs
sparse coding to represent each image as a high-dimensional
coding vector. Similarly, (Sanchez et al. 2013) designs high-
dimensional Fisher vector by describing image patches using

their deviation from a “universal” Gaussian mixture model.
Then (Le et al. 2012) utilizes deep neural networks to learn
nonlinear feature representation for images via heavy paral-
lel computation. However, all three works discussed above
focus on designing high-dimensional feature representation
for images,where classifier is trainedusing conventional one-
vs-rest approach. SpOC serves as an important complement
to this line of research, in the sense that we could very easily
combine our classification method with feature representa-
tions learned in Lin et al. (2011), Le et al. (2012) to yield
even better results. On the other hand, (Bengio et al. 2010;
Deng et al. 2011) learn tree classifiers, where multiple clas-
sifiers are organized in a tree and a test image traverses the
tree from root to leaf to obtain its class label. However, tree
structured classifiers face the well-known error propagation
problem, where errors made close to the root node are prop-
agated through the tree and yield misclassification. On the
other hand, SpOC is robust to errors in local classifiers, as a
result of the error correcting property of output coding.More-
over, Gao and Koller 2011 introduced relaxed tree hierarchy,
where a class can appear on both left child and right child
of a node, with the ability to at least partially avoid error
propagation. However, allowing a class to appear on both
child nodes increases the computational complexity of the
tree classifier. Moreover, Gao and Koller (2011) learns the
relaxed tree structure and classifiers in a unified optimization
framework, via alternating optimization. The fact that Gao
and Koller (2011) needs to train classifiers multiple times
in alternating optimization, renders it rather expensive com-
putationally, especially for large-scale classification with
big task space. We will show empirical results in Sect. 4
to demonstrate the efficiency of SpOC against relaxed tree
classifier in Gao and Koller (2011).

1.1.2 Error Correcting Output Coding

For a K class problem, error correcting output coding
(ECOC) Allwein et al. (2001) consists of two stages: coding
and decoding. An output code B is a matrix of size K × L
over {−1, 0,+1}where each row of B corresponds to a class
y ∈ Y = {1, . . . , K }. Each column βl of B defines a par-
tition of Y into three disjoint sets: positive partition (+1 in
βl ), negative partition (−1 in βl ), and ignored classes (0 in
βl ). Binary learning algorithms are then used to construct bit
predictor hl using training data

Zl = {(x1, By1,l), . . . , (xm, Bym ,l)} (1)

with Byi ,l �= 0, for l = 1, . . . , L , where {xi }mi=1 are feature
vectors for training examples, and {yi }mi=1 are correspond-
ing labels (throughout the rest of this paper, we use “bit
predictor” to denote the binary classifier associated with a
column of the coding matrix). Clearly, classical multi-class
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categorization algorithms, such as one-vs-one and one-vs-all
are special cases under the ECOC framework, with special
choice of coding matrix (Allwein et al. 2001). Moreover,
results in Allwein et al. (2001) suggest that learning a coding
matrix in a problem-dependent way is better than using a pre-
defined one. However, strong error-correcting ability alone
does not guarantee good classification (Crammer and Singer
2002), since the performance of output coding is also highly
dependent on the accuracy of the individual bit predictors.
Consequently, several approaches (Schapire 1997; Crammer
and Singer 2002; Gao and Koller 2011) optimizing coding
matrix and bit predictors simultaneously have been proposed.
However, the coupling of learning coding matrix and bit pre-
dictors in a unified optimization framework is both a blessing
and a curse. On the one hand, it could directly assess the
accuracy of each bit predictor and hence pick the coding
matrix that avoids difficult bit prediction problems; on the
other hand, simultaneous optimization often results in expen-
sive computation, hindering these approaches from being
applied to large-scale multi-class problems. Consequently,
for the sake of scalability to massive number of classes,
SpOC decouples the learning processes of code matrix and
bit predictors. Therefore, the expensive procedure of learning
bit predictors only needs to be carried out once, instead of
multiple times in aforementioned approaches that learn code
matrix and bit predictors simultaneously. However, our pro-
posed approach still balances error-correcting ability of the
code matrix and potential accuracy of associated bit predic-
tors. Moreover, we also consider other properties that could
affect classification accuracy of output coding based multi-
class classifier, such as correlation among bit predictors, and
complexity of each bit prediction problem. To the best of
our knowledge, we provide the first attempt in learning opti-
mal code matrix that explicitly considers multiple competing
factors, and the fact that code matrix is learned without train-
ing associated binary classifiers multiple times enables our
approach capable of handling massive multi-class classifica-
tion problems.

Given a test instance x, the decoding procedure finds
the class y whose codeword in B is “closest” to h(x) =
(h1(x), . . . , hL(x)). For binary output coding scenario,
where B ∈ {−1,+1}K×L , either Hamming distance or
Euclidean distance could be adopted to measure distance
between two codewords. However, in the ternary case, where
B ∈ {−1, 0,+1}K×L , the special 0 symbol indicating
ignored classes could raise problems. Specifically, previous
attempts in decoding ternary codes (Escalera et al. 2010)
either (1) treat “0” bits the same way as non-zero bits, or (2)
ignore those “0” bits entirely and only use non-zero bits for
decoding. However, neither of the above approaches would
prove sufficient. Specifically, treating “0” bits the same way
as non-zero ones would introduce bias in decoding, since
the distance increases with the number of positions that con-

tain the zero symbol. On the other hand, ignoring “0” bits
entirely would discard great amount of information. In our
proposed framework,probabilistic decodingutilizes zerobits
by propagating labels from non-zero bits to zero ones subject
to smoothness constraints, and proves effective especially on
large scale problems.

1.1.3 Attributes

This line of research (Farhadi et al. 2009; Kumar et al.
2009; Lampert et al. 2009; Wang et al. 2009; Torresani et al.
2010; Li et al. 2010; Deng et al. 2011; Patterson et al. 2012;
Rastegari et al. 2012; Bergamo and Torresani 2012) employs
attribute descriptors,mid-level semantic visual concepts such
as “short”, “furry”, “leg”, etc.,which are shareable across cat-
egories, to encode categorical information as image features.
Each attribute could be a response map of binary classifiers,
and the object recognition task is carried out by utilizing
multiple attributes as image features for training classifier.
Specifically, the Meta-Class algorithm (Bergamo and Torre-
sani 2012) employs label tree learning (Bengio et al. 2010) to
learn meta-classes, which are set of classes that can be easily
separated from others. Meta-Class algorithm could be seen
as generalization of one-vs-rest, where instead of using only
one class as positive data, it selects a set of classes called
Meta-Class as positive data in learning binary classifiers.

1.1.4 Label Embedding

Another line of research related to this work is label embed-
ding (Weinberger et al. 2008; Hsu et al. 2009; Weston et al.
2011; Zhang and Schneider 2012), where each class is rep-
resented by a prototype vector in some subspace, into which
all training data points are also projected. The projection is
optimized such that data points are mapped close to their
corresponding class prototype. Classification is then carried
out using nearest neighbor search in the subspace. Different
from label embedding, our proposedmethod follows the idea
of divide-and-conquer, which breaks a massive problem into
a series of bit predictions, and combines all bit predictors for
final classification through probabilistic decoding.

1.2 Summary of Contributions

To conclude the introduction, we summarize our main
contributions as follows. (1) We propose an approach for
large-scale visual recognition, with scalability to problems
with tens of thousands of classes. SpOC is robust to errors
in bit predictors, simple to parallelize, and its computational
time scales sub-linearly with the number of classes. (2) We
propose efficient optimization based on alternating direc-
tion method of multipliers, where each sub-problem is solved
using gradient descent with Cayley transform to preserve
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orthogonality constraint and curvilinear search for optimal
step size. (3) We propose probabilistic decoding to effec-
tively utilize semantic similarity between visual categories
for accurate decoding. (4). We provide promising empirical
results, tested on ImageNet with around 16,000 classes.

A shorter version of this work has appeared in Zhao
and Xing (2013). The improvements in this work compared
with Zhao and Xing (2013) are summarized as follows: (1)
In Zhao and Xing (2013), we did not constrain the correla-
tion among bit predictors, while in this work, we have added
orthogonally constraints to ensure uncorrelated bit predic-
tors. (2) Optimization is completely different. In Zhao and
Xing (2013), we used constrained concave-convex procedure
(CCCP) and dual proximal gradient method for optimiza-
tion.However, the introduction of the orthogonally constraint
greatly complicates the optimization, as in each step of gra-
dient descent, we have to ensure the orthogonally constraint
is satisfied. Moreover, we adopted a more efficient algorithm
(ADMM) to handle the L1 norm in objective function. (3)
We have added experimental results on the large ImageNet
dataset.

2 Coding

In this section, we provide details of the formulation for
learning optimal code matrix for large-scale multi-class
classification, together with efficient optimization algo-
rithm.

2.1 Formulation

Output coding employs a code matrix to break a potentially
massive multi-class problem into a series of binary bit pre-
dictions. Clearly, code matrix is crucial for the success of
output coding, and its suitability could be measured using
several competing factors, such as error-correcting ability,
learnability of each bit predictor, and correlation between bit
predictors.

As its most attractive advantage, the code matrix in output
coding is usually chosen for strong error-correcting ability.
That is to say, the optimal code matrix should have max-
imal separation between codewords for different classes.
Besides codeword separation, since output coding is essen-
tially aggregating discriminative information residing in each
bit, learning accurate bit predictors is also crucial for its suc-
cess. However, we usually do not know whether a binary
partition can be well handled by the base bit predictor,
unless a bit predictor has been learned on the partition.
Unfortunately, the high computational cost associated with
methods optimizing coding matrix and bit predictors simul-
taneously (Gao and Koller 2011) renders them unfavorable
in large-scale problems. To overcome this difficulty, we pro-

pose to use the training data and structure information among
classes, to provide a measure of separability for each binary
partition problem. Specifically, if some classes are closely
related but are given different codes in the lth bit, the bit
predictor hl may not be easily learnable. However, a binary
partition is more likely to be well solved if the intra-partition
similarity is large while the inter-partition similarity is small.
Moreover, as output coding predicts class label by combining
information from all bits, an ideal code matrix should have
uncorrelated columns. Specifically, uncorrelated columns
mean each bit predictor is focusing on a unique sub-problem
of the original multi-class classification, while highly cor-
related columns severely limit the amount of information
available at decoding. Finally, enforcing sparsity of the code
matrix, i.e., introducing ignored classes in bit predictions, is
crucial for massive multi-class classification. In this section,
wewill provide details for each of the aforementioned pieces,
and formulate learning optimal code matrix as an orthogo-
nality constrained optimization problem.

Before presenting the detailed formulation for learning
the code matrix, we would like to re-emphasize that the goal
and contribution of this work is effective multi-class classi-
fication with massive number of classes, where any complex
method would fail, and simplicity prevails. As a result, moti-
vation for design of each piece in the optimization problem is
balance between effectiveness and efficiency. Although there
might bemore sophisticated formulations of the optimization
problem, they will very likely increase computational cost,
ultimately rendering the method incapable of handling mas-
sive multi-class classification.

2.1.1 Codeword Separation

Given an example x, an L-dimensional bit predictor h(x) =
[h1(x), . . . , hL(x)] is computed. We then predict its label y
based on which row in B is “closest” to h(x). To increase
tolerance of errors occurred in bit predictions, a crucial
design objective of the code matrix is to ensure that the
rows in B are separated as far from each other as possi-
ble. Hence, we propose to maximize the distance between
rows in B. Equivalently, we could minimize their inner prod-
ucts. Thus, codeword correlation of B could be computed as
following:

K∑

k=1

K∑

k′=1

r�
k rk′ = e�

K (BB�)eK = tr(B�EB) (2)

where tr(·) is matrix trace, r�
1 , . . . , r�

K are row vectors of
code matrix B, eK ∈ R

K is the all-one vector and E = eK e�
K

is the K × K all-one matrix.
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2.1.2 Learnability of Bit Predictors

One key property of optimal code matrix is to ensure that
the resulting bit prediction problems could be accurately
solved. The key motivation of our mathematical formulation
is to compute the following two measures using seman-
tic relatedness matrix S (defined later in this section) for
each binary partition problem: intra-partition similarity, and
inter-partition similarity. Specifically, in each binary parti-
tion problem, both positive partition and negative partition
are composed of data points frommultiple classes in the orig-
inal problem. To encourage better separation, those classes
composing the positive partition should be similar to each
other. The similar argument goes for those classes compos-
ing the negative partition, but they should be dissimilar from
the former set which composes the positive partition. Specif-
ically, separability of the lth binary partition problem could
be measured as follows:

∑

Bkl Bk′l>0

Skk′ −
∑

Bkl Bk′l<0

Skk′ =
K∑

k=1

K∑

k′=1

Bkl Bk′l Skk′ (3)

It should be noted that the above definedmeasure should sub-
tract

∑
k Skk . However, as

∑
k Skk is constant and will not

affect optimization ofB, we omit this step. Finally, learnabil-
ity of all bit predictions could be measured as

L∑

l=1

K∑

k=1

K∑

k′=1

Bkl Bk′l Skk′ =
L∑

l=1

e�
K

[
βlβ

�
l �S

]
eK

= e�
K

[
BB��S

]
eK

= tr(BB�S)= tr(B�SB) (4)

where � is Hadamard (a.k.a., element-wise) product of two
matrices, βl is the lth column ofB, and we have used the fact
that BB� = ∑

l βlβ
�
l and e�(A � B)e = tr(AB).

Semantic Relatedness Matrix S measures similarity
between classes, using training data and structure infor-
mation among classes. Let Xi = {X (i)

1 , . . . , X (i)
|Xi |} and

X j = {X ( j)
1 , . . . , X ( j)

|X j |} be two classes from the multi-
class problem. Several approaches have been proposed to
measure similarity/distance between them, such as Haus-
dorff distance, match kernel (Haussler 1999; Parsana et al.
2007), divergence between probability distributions esti-
mated from Xi and X j (Póczos et al. 2011), or even
classification accuracy of binary classifiers trained to sep-
arate the classes (Bengio et al. 2010). In this work, we use
summatch kernel (Haussler 1999), and define data similarity
between Xi and X j as

SD
i j = 1

|Xi |
1

|X j |
|Xi |∑

p=1

|X j |∑

q=1

KD(X (i)
p , X ( j)

q ) (5)

where superscript D indicates that the similarity is estimated
from data (in comparison to the similarity estimated from
class structure discussed later), KD is a Mercer kernel and in
this work we use linear kernel.

Moreover, classes in massive multi-class problems are
rarely organized in a flat fashion, but instead with a taxo-
nomical structure (Deng et al. 2009; Cai and Hofmann 2004;
Deng et al. 2011), such as a tree. Besides, algorithms for
learning class structure have also been proposed (Bengio
et al. 2010; Zhou et al. 2011), although this is beyond the
scope of this work. Following Budanitsky and Hirst (2006)
we define structural affinity Ai j between class i and class j
as the number of nodes shared by their two parent branches,
divided by the length of the longest of the two branches

Ai j = intersect(Pi , Pj )/max(length(Pi ), length(Pj )) (6)

where Pi is the path from root node to node i and
intersect(Pi , Pj ) counts nodes shared by two paths Pi and
Pj . We then construct structural similarity matrix

SS = exp(−κ(E − A)) (7)

where κ is a constant controlling the decay factor. It should
be noted that although we use class structure to define sim-
ilarity, the goal of this work is not to propose yet another
hierarchical classifier. In cases without such hierarchy, other
ways of defining similarity between classes suffice as well
(for example, we could simply use SD only). Finally, seman-
tic relatedness matrix S is the weighted sum

S = αSD + (1 − α)SS (8)

with α ∈ [0, 1] being the weight.

2.1.3 Relaxation and Bit Correlation

Theoretical work Crammer and Singer (2002) shows that
learning discrete code matrix directly is NP-complete. Thus,
we followCrammer and Singer (2002) and allow codematrix
to take real values, followed by post-processing (taking the
sign) to get the discrete code matrix.

Moreover, the power of output coding formulti-class clas-
sification stems from the fact that the final prediction is
obtained by combining information frommultiple bit predic-
tors. Consequently, the more uncorrelated the bit predictors
are, the more information we have at decoding time, and
hence the better classification accuracy can be expected. As
an extreme example, if all columns of the code matrix are
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solving the same binary separation problem, the amount of
information available at decoding time is one single bit, and
it is obviously not sufficient for accurate multi-class classifi-
cation. Therefore, to ensure maximal amount of information
at decoding, an ideal code matrix should have uncorrelated
columns, such that each bit predictor is tackling a unique
sub-problem. To minimize bit correlation, we constrain the
columns in code matrix to be orthogonal to each other, i.e.,

B�B = I (9)

where I is the identity matrix.

2.1.4 Sparse Code Matrix

For massive multi-class problems, it is crucial to introduce
ignored classes, i.e., 0 in the codematrix (Allwein et al. 2001;
Schapire and Freund 2012). Otherwise, every bit predictor
needs to consider the entire data. As an illustrating example,
consider the ImageNet problem. With each of the 21,841
classes participating in training a bit predictor, we will likely
be facing a binary partition problem where both the posi-
tive and negative partitions are populated with data points
coming from thousands of different classes. Clearly, learn-
ing bit predictor for such binary partition will be extremely
difficult, due to the huge intra-partition dissimilarity. There-
fore, to introduce ignored classes in bit predictors, we further
regularize the l1 norm of B.

2.1.5 Final Formulation

Combining all pieces together, optimal code matrix should
have minimal codeword correlation, maximal learnability of
bit predictors, sufficient sparsity to reduce complexity of
learning bit predictors, and orthogonal columns for uncor-
related bits. Weighing the above objectives, we propose
the following formulation for learning optimal code matrix
B ∈ R

K×L

min
B

1

2
tr [B�(λrE − S)B] + λ1‖B‖1 (10)

s.t. B�B = I (11)

where ‖B‖1 = ∑
i, j |Bi j | is its l1 vector norm, λr and λ1 are

regularization parameters.

Selecting optimal parameters It should be noted that unlike
multi-class classification problems with small task space, the
sheer size of the problem SpOC is designed to handle, makes
it impossible to perform cross-validation or leave-one-out
procedures to select optimal values for the parameters, such
as α in (8), λr and λ1 in (10). Thus, our approach for para-
meter selection is based on grid search, where we try several

different values for each of {α, λr , λ1} and solve problem
(10) for optimal coding matrix. Then we compute the rela-
tive ratio among the three components in objective function
of (10). Finally, the optimal parameters are selected as the
group resulting in the relative ratio closest to 1. The moti-
vation for such strategy is to ensure that each piece in the
objective function has comparable value, such that all pieces
could contribute and compete for optimal code matrix.

2.2 Optimization

The difficulty of solving problem (10) lies in the non-
smoothness of the l1 regularization on B, and the orthog-
onality constraint (11). In this work, we employ alternating
directionmethodofmultipliers (ADMM) (Boyd et al. 2011) to
effectively reduce the l1 regularized problem into a series of
l2 regularized problems, where each problem is solved using
gradient descent with Cayley transform to preserve orthogo-
nality constraint on B and curvilinear search for optimal step
size (Wen and Yin 2012).

2.2.1 Alternating Direction Method of Multipliers

ADMM is a simple yet powerful algorithm, which takes the
form of a decomposition-coordination procedure (Boyd et al.
2011), where the solutions to small local subproblems are
coordinated to find a solution to a large global problem.
ADMM was first introduced in the 1970s (Gabay andMercier
1976), with most of the theoretical results established in the
1990s (Eckstein and Bertsekas 1992). Moreover, it is shown
in Boyd et al. (2011) that ADMM converges to local optimal
point for non-convex optimization problems. However, until
very recently, ADMM was not widely known in the computer
vision or machine learning community. For completeness,
we provide a brief review of the algorithm [for more details,
see Boyd et al. (2011)]. ADMM solves problems in the form

min
x,z

f (x) + g(z), s.t.Ax + Bz = c (12)

with variables x ∈ R
n and z ∈ R

m , where A ∈ R
p×n ,

B ∈ R
p×m , and c ∈ R

p. For problem (12), the augmented
Lagrangian is formed as follows:

Lρ(x, z, y) = f (x) + g(z) + y�(Ax + Bz − c)

+ρ

2
‖Ax + Bz − c‖22 (13)

where ρ >0 is called the penalty parameter. ADMM consists
of the following iterations (Boyd et al. 2011)
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xk+1 = argmin
x

Lρ(x, zk, yk) (14)

zk+1 = argmin
z

Lρ(xk+1, z, yk) (15)

yk+1 = yk + ρ(Axk+1 + Bzk+1 − c) (16)

To solve problem (10), we first reformulate it as follows

min
B,Z

1

2
tr [B�(λrE − S)B] + I(B�B = I) + λ1‖Z‖1 (17)

s.t. B − Z = 0 (18)

where I(B�B = I) = 0 if constraint B�B = I is satisfied,
and I(B�B = I) = +∞ otherwise. Then ADMM solves
problem (17) using the following iterations:

Bk+1 = argmin
B

(
f (B) + ρ

2
‖B − Zk + Uk‖22

)
(19)

Zk+1 = Sλ1/ρ(Bk+1 + Uk) (20)

Uk+1 = Uk + Bk+1 − Zk+1 (21)

where f (B) is defined as

f (B) = tr [B�(λrE − S)B] + I(B�B = I) (22)

and S is the soft-thresholding operator defined as

Sκ(a) = max{(1 − κ/|a|)a, 0} (23)

In the above ADMM iterations, both Z update (20) and U
update (21) are trivial to compute. The B update in (19) is
equivalent to the following constrained optimization

min
B

1

2
tr [B�(λrE − S)B] + ρ

2
‖B − Zk + Uk‖22 (24)

s.t. B�B = I (25)

Comparing the above problem with (10), we can see that
ADMM effectively reduces an l1 regularized problem into a
series of l2 regularized problems.

2.2.2 Solving Problem (24) Using Cayley Transform and
Curvilinear Search

Problem (24) is difficult to optimize due to the orthogonality
constraint (25) on B. In this work, we follow state-of-the-
art technique (Wen and Yin 2012), and solve problem (24)
using gradient descent, with Cayley transform to preserve the
orthogonality constraint and curvilinear search for optimal
step size. In each iteration of the algorithm, given current
feasible solution B, the gradient of the objective function
w.r.t. B could be computed as

G = (λrE − S)B + ρ(B − Zk + Uk) (26)

Then a skew-symmetric matrix A is computed as

A = GB� − BG� (27)

The next new trial point B(τ ) is determined by the Crank–
Nicolson like scheme Wen and Yin (2012)

B(τ ) =
(
I + τ

2
A

)−1 (
I − τ

2
A

)
B (28)

It is easy to verify that

B(τ )�B(τ ) = B�B (29)

i.e., every intermediate result is feasible, as long as initial
pointB satisfies the orthogonality constraint. For fast conver-
gence, we adopt the Barzilai–Borwein step size in curvilinear
search (Wen andYin 2012) to find optimal τ .Moreover, since
(I+ τ

2A)−1 dominates the computation in (28), we apply the
Sherman–Morrison–Woodbury theorem for efficient compu-
tation of matrix inverse. Theoretical results in Wen and Yin
(2012) show the above algorithm converges to local optimal
point.

Finally, we present in Algorithm 1 themethod for learning
optimal code matrix.

Algorithm 1 Sparse Output Coding: Optimal Code Matrix
Learning
Initialize B with randomly generated orthogonal matrix, Z = U = 0
repeat
repeat
Compute skew-symmetric matrix A
Curvilinear search for optimal step size τ

Update new trial point B(τ ) as in Eq. (28)
until stopping criterion satisfied Wen and Yin (2012)
Z update using Eq. (20)
U update using Eq. (21)

until stopping criterion satisfied Boyd et al. (2011)

3 Probabilistic Decoding

For large-scale multi-class categorization, a sparse output
coding matrix is necessary to ensure the learnability of each
bit predictor. However, the zero bits in coding matrix also
bring difficulty in decoding. Specifically, given an instance
x, we denote the vector of predictions generated by learned
bit predictors as h(x) = (h1(x), . . . , hL(x)). The decoding
procedure in output coding is to find the class y for which
codeword ofB is “closest” to h(x). In the simple casewhere a
binary codingmatrixB ∈ {−1,+1}K×L is adopted, the most
frequently applied decoding approaches include Hamming
decoding (Nilsson 1965; Dietterich and Bakiri 1995) and
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Table 1 Decoding strategies for error correcting output coding

Decoding algorithm Optimal label

Hamming decoding (Nilsson 1965; Dietterich and Bakiri 1995) y∗ = argminy∈Y
∑L

l=1
1
2 (1 − sgn(hl (x) · By,l))

Euclidean decoding (Pujol et al. 2006) y∗ = argminy∈Y
√∑L

l=1(hl(x) − By,l)2

Attenuated Euclidean decoding Escalera et al. (2010) y∗ = argminy∈Y
√∑L

l=1 |By,l |(hl (x) − By,l)2

Loss-based decoding (Allwein et al. 2001) y∗ = argminy∈Y
∑L

l=1 loss(hl (x)By,l)

Probability-based decoding (Passerini et al. 2004) y∗ = argminy∈Y − log
(∏

l:By,l �=0 P(hl (x) = By,l) + K
)

Fig. 1 (Best viewed in color) Motivation for probabilistic decoding:
(Left). one possible coding matrix for 5-class categorization, with
red = +1, blue = −1, and green = 0; (Right). one test image
from class Husky, with its codeword shown in the bottom and Ham-

ming distance with codewords for the five classes shown to the left. For
the second bit (highlighted in dash box), although the first node (class
Husky) is ignored during learning the bit predictor, it has a preference
of being colored blue, rather than red than red (Color figure online)

Euclidean decodingPujol et al. (2006), defined inTable 1. For
ternary decoding with B ∈ {−1, 0,+1}K×L , we could still
apply those binary decoding strategies, treating 0 bits equally
as non-zero ones, although we will encounter decoding bias
as illustrated later in this section. One alternative strategy
proposed in the literature ignores all zero bits in the coding
matrix during decoding, and only counts the matching with
non-zero bits. One example is attenuated Euclidean decod-
ing (Escalera et al. 2010), an adaptation of the Euclidean
decoding strategy, which makes the measure unaffected by
the zero bits of the codeword.Moreover, Allwein et al. (2001)
further improves the ternary decoding strategy by replac-
ing the Euclidean distance with loss function, as defined
in Table 1, where hl(x)By,l corresponds to the margin and
loss(·) is a loss function that depends on the nature of the
binary bit predictor. Finally, the authors of Passerini et al.
(2004) propose a probability-based decoding strategy based
on the continuous output of binary classifiers to deal with
the ternary decoding. However, the probabilistic formula-
tion in Passerini et al. (2004) only uses non-zero bits in the
codematrix, and is thus equivalent to the loss-based decoding

strategy in Allwein et al. (2001) with a logistic loss function.
To sum up, although this latter group of approaches would
avoid the problem of decoding bias on 0 bits of the coding
matrix, it also discards significant amount of information, as
only those non-zero bits are used for decoding.

3.1 Motivating Example

As a motivating example, consider a five-class problem in
Fig. 1. Given a test image from class Husky, if we treat zero
bits the sameway as non-zero ones, both Hamming decoding
and Euclidean decoding would prefer Shepherd over Husky.
However, Husky is only worse than Shepherd as its code-
word has more zero. This effect occurs because the decoding
value increases with the number of positions that contain
the zero symbol and hence introduces bias. This problem
might not seem severe in the example shown in Fig. 1, how-
ever, for massive multi-class problems with large number of
class labels, the bias introduced through zero bits would sig-
nificantly affect classification accuracy. On the other hand,
ignoring zero bits entirely would discard great amount of
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information that could potentially help in decoding the cor-
rect class label. This is especially truewhen K is large, where
we expect a very sparse coding matrix to maximize learn-
ability of each binary classifier. For example, in Fig. 1, both
classes Husky and Tiger have only two non-zero bits in their
codewords. Since we cannot always have perfect bit predic-
tors, classification errors on bit 1 and bit 4 would severely
impair the overall accuracy. Therefore, it is our goal in this
work to effectively utilize information residing in zero bits
to effectively decode ternary output codes.

Fortunately, the semantic class similarity S computed
using training data and class taxonomy, provides venue for
effectively propagating information from non-zero bits to
zero ones. For the example in Fig. 1, class Husky is more
similar to (Shepherd, Wolf) than (Fox, Tiger). The second
bit predictor in Fig. 1 solves a binary partition of (Shep-
herd, Wolf) against Fox. Even though class Husky is ignored
in training for this bit, the binary partition on images from
this class will have a higher probability of being +1, due to
the fact that the two positive classes in this binary problem
are closely related to class Husky. Therefore, those classes
with non-zero bits in the coding matrix, should effectively
propagate their label to those initially ignored classes. In
this section, we propose probabilistic decoding, to effec-
tively utilize semantic class similarity for better decoding.
Specifically, we treat each bit prediction (without loss of
generality, say, the lth bit) as a label propagation (Zhu et al.
2003) problem, where the labeled data corresponds to those
classes whose codeword’s lth bit is non-zero, and unlabeled
data corresponds to those whose lth bit is zero. The goal of
label propagation is to define a prior distribution indicating
the probability of one class being classified as positive in the
lth binary partition. Combining this prior with the available
training data, we formulate the decoding problem in sparse
output coding as maximum a posteriori estimation.

3.2 Formulation

Given code matrix B ∈ {−1, 0,+1}K×L , our decoding
method estimates conditional probability of each class k
given input x and L bit predictors {h1, . . . , hL}. Without
loss of generality, we assume the bit predictors constructed
in the coding stage are linear classifiers, each parameterized
by a vector w as hl(x) = sign(w�

l x). Define (c1, . . . , cL) ∈
{−1,+1}L as a random vector of binary values, representing
one possible codeword for instance x. The decoding problem
is then to find the class k, which maximizes the following
conditional probability:

P(y = k|w1, . . . ,wL , x,μ)

=
∑

{cl }
P(y = k|{wl}, x,μ, {cl}) · P({cl}|{wl}, x,μ)

=
∑

{cl }
P(y = k|μ, {cl})

∏

l

P(cl |wl , x)

∝
∑

{cl }

∏

l

P(cl |y = k, μkl)
∏

l

P(cl |wl , x)

=
∑

{cl }

∏

l

μ
cl
kl(1 − μkl)

1−cl
∏

l

P(cl |wl , x)

=
∏

l

{μklP(cl =1|wl , x)+(1−μkl)(1−P(cl =1|wl , x))}

(30)

where {cl} = {c1, . . . , cL }, {wl} = {w1, . . . ,wL}, and μkl ∈
[0, 1] is the parameter in Bernoulli distributionP(cl = 1|y =
k) = μkl . Moreover, given the learned bit predictors, P(cl =
1|wl , x) could be computed using a logistic link function as
follows

P(cl = 1|wl , x) = 1

1 + exp(−w�
l x)

(31)

Therefore, in order to employ conditional probability in
decoding for ternary output codes, we need to learn the val-
ues of Bernoulli parameters {μkl}l=1,...,L

k=1,...,K , which measures
the probability of the lth bit being +1 given the true class as
y = k. Specifically, for the lth column of the coding matrix,
those classes corresponding to+1 in the lth bit, i.e., Bkl = 1,
will have μkl = 1, and similarly those classes correspond-
ing to −1, i.e., Bkl = −1, will have μkl = 0. However,
originally ignored classes (those corresponding to 0 in the
coding matrix) will also be likely to have a preference on the
value of the lth bit. For the example in Fig. 1, the second
bit predictor separates (Shepherd, Wolf) from Fox. Clearly,
P(cl = 1|Shepherd) = P(cl = 1|Wol f ) = 0 and P(cl =
1|Fox) = 1. Since classHusky is not directly involved in this
binary classification problem, a non-informative prior would
put P(cl = 1|Husky) = 0.5. However, if the true class for
an instance x is Husky, this bit clearly has a much higher
probability of being −1 than +1, due to the fact that Husky
is much closer to Shepherd andWolf semantically, than Fox.
Therefore, we should have P(cl = 1|Husky) < 0.5, and in
such way those classes with non-zero values in the lth bit
effectively propagate their label through the semantic class
similarity S to those initially ignored classes.

3.2.1 Prior Distribution via Label Propagation

Following the motivating example in Fig. 1, we define a prior
distribution over Bernoulli parameters μ such that labeled
nodes effectively propagate their labels to those unlabeled
nodes following the class hierarchy. Since each column βl in
the coding matrix will have its own labeling (different com-
position of positive classes, negative classes, and ignored
classes) and label propagation for each column is indepen-
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dent of others, without loss of generality, wewill focus on the
lth column. Suppose we have l̂ classes participating in learn-
ing the lth binary classifier, corresponding to the l̂ non-zero
terms in the lth column βl of coding matrix B. Moreover,
we also have û = K − l̂ ignored classes, corresponding to
zeros in βl . Without loss of generality, we assume the first l̂

classes are labeled as (y1, . . . , yl̂) ∈ {−1,+1}l̂ . Consider a
connected graph G = (V, E) with K nodes V corresponding
to the K classes, where nodes L̂ = {1, . . . , l̂} correspond to
the labeled classes, andnodes Û = {l̂+1, . . . , K } correspond
to ignored classes. Our task is to assign probabilities to nodes
Û being labeled as positive, using label information on nodes
L̂ and the graph structure of G. Define μl = (μ1l , . . . , μKl)

as labels on nodes V , where μkl = 1 for those classes
labeled as +1 and μkl = 0 for those classes labeled as
−1 in the lth column of coding matrix B. Consequently, the
value of μl on those unlabeled nodes represents our belief
of it being labeled as +1. Equivalently, the distribution of
μl defines a prior on our Bernoulli parameters, in the sense
that μkl = P(cl = 1|y = k). Intuitively, we want unlabeled
nodes that are nearby in the graph to have similar labels, and
this motivates the choice of the following quadratic energy
function (Zhu et al. 2003):

E(μl) = 1

2

∑

i, j

Si j (μil − μ jl)
2 (32)

where S is the semantic similarity matrix. To assign proba-
bility distribution on μl , we form Gaussian field (Zhu et al.
2003)

pC (μl) = 1

ZC
exp(−CE(μl)) (33)

where C is inverse temperature parameter, and

ZC =
∫

μl |∀k∈L̂:μkl= 1
2 (Bkl+1)

exp(−CE(μl))dμl (34)

is a normalizing constant over all possible μl constrained to
βl on non-zero terms, i.e., the labeled nodes in the graph
corresponding to βl . Define diagonal degree matrix D with
Dii = ∑

j Si j and graph Laplacian� = D−S, the Gaussian
field defined on μ could be equivalently formulated as fol-
lows:

pC (μl) = 1

ZC
exp(−Cμ�

l �μl) (35)

with μkl = 1 on classes labeled as +1 in βl and μkl = 0 on
classes labeled as −1 in βl . Consequently, pC (μl) defines a
prior distribution on μl , following the semantic class simi-
larity, by clamping the labels on non-zero terms, and forcing

smoothness of labels for zero terms, i.e., closely related
classes should receive similar labels.

3.2.2 Parameter Learning

Given the L bit predictors learned in the coding stage of
sparse output coding, and m training data points Z =
{(x1, y1), . . . , (xm, ym)}, we could calculate the conditional
log-likelihood as follows:

logP(Y |{wl},X,μ)

=
m∑

i=1

L∑

l=1

log
{
μyi lPli + (1 − μyi l)(1 − Pli )

}
(36)

where Pli = P(cl = 1|wl , xi ). Combining the above defined
data likelihood with prior distribution over μ, we get the
following optimization problem for learning parameters μ

using MAP estimation

min
μ

−
m∑

i=1

L∑

l=1

log
{
μyi lPli + (1 − μyi l)(1 − Pli )

}

+C
L∑

l=1

μ�
l �μl (37)

s.t.0 ≤ μkl ≤ 1, k = 1, . . . , K , l = 1, . . . , L (38)

μkl = 1, if Bkl = +1 (39)

μkl = 0, if Bkl = −1 (40)

where μ = [μ1, . . . ,μL ]. Clearly, μl in the above opti-
mization problem is independent of each other, and could
therefore be optimized separately. We use projected gradient
descent to solve the above optimization problem.

3.3 Decoding

Given the learned Bernoulli parameters μ, the inference
targets to find the label k∗ that maximizes the conditional
probability:

k∗ = argmax
k

P(y = k|w1, . . . ,wL , x,μ) (41)

Clearly, once theBernoulli parametersμ are obtained, decod-
ing should take time that scales linearly with the number of
columns in the coding matrix, which could be as small as
L = O(log K ). It should be noted that in order to enforce
sparsity in the coding matrix, we usually pick L = C log K ,
where C is a constant usually picked around 10 (Allwein
et al. 2001). Still, our proposed probabilistic decoding is very
efficient, especially when K is large, making it promising
for large-scale multi-way classification. Moreover, besides
decoding the most probable class label for an instance x, the
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Table 2 Datasets details

Dataset #Class #Train #Test #Feature

Flower 462 170 K 170 K 170,006

Food 1308 467 K 467 K 170,006

SUN 397 19,850 19,850 170,006

ImageNet 15,952 2.5M 0.8M 338,163

probabilistic decoding approach also naturally assigns confi-
dence to each class, which will prove important when we not
only want to generate a single label for instance xwith poten-
tially high risk, especially when the confidence gap between
several classes is small.

4 Experiments

In this section, we test the performance of sparse output cod-
ing on two datasets: ImageNet (Deng et al. 2009) for object
recognition, and SUN database (Xiao et al. 2010) for scene
recognition.

4.1 Datasets and Feature Representations

Details of the datasets used in our experiments are provided
in Table 2.

4.1.1 Object Recognition on ImageNet

We start with two subtrees in ImageNet, with the root node
being flower and food, respectively. The flower image col-
lection contains a total of 0.34 million images covering 462
categories, and the food dataset contains a total of 0.93 mil-
lion images covering 1308 categories. For both datasets, we
randomly pick 50 % of images from each class as training
data, and test on the remaining 50% images. Besides, we also
carry out experiments on the entire ImageNet data. Specif-
ically, we follow the same experimental protocols specified
by Bengio et al. (2010), Weston et al. (2011), where the
dataset is randomly split into 2.5 million images for training,
0.8 million for validation, and 0.8 million for testing, remov-
ing duplicates between training, validation and test sets by
throwing away test examples which had too close a nearest
neighbor in training or validation set (Bengio et al. 2010).

4.1.2 Scene Recognition on SUN Database

The SUN database is by far the largest scene recognition
dataset, with 899 scene categories. We use 397 well-sampled
categories to run the experiment (Xiao et al. 2010). For each
class, 50 images are used for training and the other 50 for
test.

4.1.3 Feature Representations

For flower, food and SUN datasets, we employ the same
feature representation for images as in Lin et al. (2011).
Specifically, we compute SIFT (Lowe 2004) descriptors for
each image, and then run k-means clustering on a random
subset of 1 million SIFT descriptors to form a visual vocab-
ulary of 8192 visual words. Using the learned vocabulary,
we employ Locality-constrained Linear Coding (LLC) (Lin
et al. 2011) for feature coding. Finally, a single feature vector
is computed for each image using max pooling on a spatial
pyramid (Lin et al. 2011). Similar feature engineering is per-
formed on the large ImageNet dataset, but with a dictionary
containing 16,384 visual words, resulting in 338,163 dimen-
sional feature representation for each image.

4.1.4 Experiment Design and Evaluation

We use one-vs-rest (OVR), one of the most widely applied
frameworks for multi-class classification, to serve as a base-
line. It is interesting to compare against OVR since it is
adopted as the major workhorse in several winning systems
for multi-class object recognition competitions (Rifkin and
Klautau 2004; Lin et al. 2011; Le et al. (2012)). Moreover,
we also compare with three output coding based multi-class
classification methods: (1) random dense code output coding
(RDOC) proposed in Allwein et al. (2001) where each ele-
ment in the code matrix is chosen at random from {−1,+1},
with probability 1/2 for −1 and +1 each; (2) random sparse
code output coding (RSOC) in Allwein et al. (2001), where
each element in the code matrix is chosen at random from
{−1, 0,+1}, with probability 1/2 for 0, and probability 1/4
for −1 and +1 each; (3) spectral output coding (SpecOC)
proposed in Zhang et al. (2009), which builds dense output
codes for multi-class classification, using spectral decompo-
sition of the graph Laplacian constructed to measure class
similarities. Moreover, to test the impact of probabilistic
decoding on SpOC, we report results of SpOC using a sim-
ple Hamming distance based decoding strategy, denoted as
SpOC-H. The third group of methods we compare with are
hierarchical classifiers, a popular alternative to large-scale
multi-class problems. Specifically, the first hierarchical clas-
sifier (HieSVM-1) follows a top-down approach, and trains
a multi-class SVM at each node in the class hierarchy (Kos-
mopoulos et al. 2010). The second one (HieSVM-2) adopts
the strategy in Dekel et al. (2004). Finally, we also com-
pare against the relaxed tree classifier (relaxTree) (Gao and
Koller 2011), which learns relaxed tree hierarchy and cor-
responding classifiers in a unified framework via alternating
optimization. Furthermore, we report results of two multi-
class classification methods designed for problems with a
large number of classes: (1) error-correcting tournaments
(ECT) (Beygelzimer et al. 2009) which also reduces multi-
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Table 3 Flat error comparison
on flower, food and SUN
datasets

Algorithm Flower (%) Food (%) SUN (%)

Top 1 Top 5 Top 10 Top 1 Top 5 Top 10 Top 1 Top 5 Top 10

OVR 72.77 39.95 27.43 75.02 46.59 34.23 83.38 69.72 61.83

RDOC 86.91 54.78 40.87 88.93 67.47 56.86 88.24 75.09 70.45

RSOC 87.12 53.69 39.04 86.52 66.88 57.45 88.11 75.12 71.83

SpecOC 78.63 47.75 35.91 81.94 58.12 45.70 85.91 72.63 64.38

SpOC-H 72.92 38.77 26.82 72.91 43.56 30.80 83.06 70.54 64.05

HieSVM-1 76.19 – – 82.76 – – 87.60 – –

relaxTree 72.57 – – 73.86 – – 81.09 – –

ECT 71.84 – – 73.52 – – 82.75 – –

LET 73.48 40.21 28.13 74.18 45.03 32.46 83.69 69.78 61.97

SpOC 69.73 34.35 24.08 70.98 43.28 29.00 81.78 68.65 61.26

Bold values correspond to best performance among competing algorithms

class problem into a series of binary classifications; (2) label
embedding tree (LET) (Bengio et al. 2010) which learns a
tree structure of classes by optimizing the overall tree loss,
and performs multi-class classification via label embedding.
Finally, for the largest dataset in our empirical study, the
ImageNet dataset, we also report published accuracies to put
our results into context (ideally, we would re-run those algo-
rithms on our machines, however, due to the sheer size of the
data, such computation is very expensive). To ensure a fair
comparison on the large ImageNet data, we also report the
results of SpOC using the same features as adopted in Ben-
gio et al. (2010), known as visual terms, a high-dimensional
sparse vector of color and texture features. We denote the
results of SpOC using visual terms for image features, as
SpOC-VT.

For all algorithms except label embedding tree and relaxed
tree classifier, we train linear SVM using averaged stochas-
tic gradient descent (Bottou 2010). For output coding based
methods, we set code length L = 200 for flower and SUN,
L = 300 for food, and L = 1000 for ImageNet. Data similar-
itymatrixSD is pre-computedwith linear kernel andα = 0.5.
ForRDOC andRSOC, 1000 randomcodingmatrices are gen-
erated for each scenario. The coding matrix with the largest
minimumpair-wiseHamming distances between codewords,
andwithout identical columns, is chosen. To decode the label
for OVR using learned binary classifiers, we pick the class
with the largest decision value. For RDOC, RSOC, SpecOC
and SpOC-H, we pick the class whose codeword has mini-
mumHamming distancewith the codeword of test data point.
Specifically, for decoding inRSOC and SpOC-H, we test both
strategies of treating zero bits the same way as non-zero ones
and ignoring zero bits entirely, and report the best result of
these twomethods. Finally, for error-correcting tournaments
(a.k.a. filter trees), we use the label tree structure learning
method in Bengio et al. (2010) to learn a binary tree among
classes, because we cannot use the given tree structure asso-
ciated with datasets as ECT requires a binary tree.

Performance is measured using flat error and hierarchical
error. For every data point, each algorithm will produce a
list of 10 classes in descending order of confidence (except
HieSVM-1, relaxTree and ECT, which only provide the most
confident class label), based on which the top-n flat error is
computed, n = 1, 5, 10 in our case. Specifically, flat error
equals 1 if the true class is not within the n most confident
predictions, and 0 otherwise. On the other hand, hierarchi-
cal error reports the minimum height of the lowest common
ancestors between true and predicted classes, using the given
class hierarchical structure associated with the datasets. For
each of the above two error measures, the overall error score
for an algorithm is the average error over all test data points.

4.2 Results

Classification results for various algorithms are shown in
Tables 3, 4, 5. For the ImageNet data, as the sheer size of the
data renders it very expensive to run competing algorithms,
we only provide accuracies of our method and relaxTree
in Table 5. However, we also compare with the accura-
cies reported in Bengio et al. (2010) using label embedding
tree and (Weston et al. 2011) using learning to rank (L2R).
Moreover, as feature engineering is crucial for image classifi-
cation, Weston et al. (2011) proposed an ensemble approach
(inTable 5), combiningmultiple feature representations, such
as spatial and multiscale color and texton histograms, and
generating the final classification as an average of 10 sepa-
rate models.

From results in Tables 3 and 4, we have the following
observations. (1) SpOC systematically outperforms OVR.
More interestingly, OVR classifier consists of more than
1300 binary classifiers on food dataset, while SpOC only
involves 300 bit predictors. Although previous work has
shown better results with OVR than output coding on small
scale problems (Rifkin and Klautau 2004), with the number
of classes increasing to thousands or tens of thousands, and
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Table 4 Hierarchical error comparison on flower, food and SUN
datasets

Flower Food SUN

OVR 1.95 3.26 1.15

RDOC 2.35 4.39 1.23

RSOC 2.38 4.10 1.24

SpecOC 2.27 4.02 1.21

SpOC-H 1.99 2.97 1.15

HieSVM-1 2.34 3.42 1.28

relaxTree 1.89 3.04 1.02

ECT 1.87 2.89 1.12

LET 1.98 3.09 1.16

SpOC 1.69 2.92 1.06

Bold values correspond to best performance among competing algo-
rithms

hierarchical structure among classes, output coding with a
carefully designed codematrix could outperformOVR, while
maintaining cheaper computational cost, due to the error-
correcting property introduced in the code matrix. (2) Both
SpOC andOVR beat RDOC and RSOC, revealing the impor-
tance of enforcing learnability of each bit predictor, since
randomly generated code matrix could very likely generate
difficult binary separation problems. (3) SpOC performs bet-
ter than SpecOC, which employs a dense code matrix. The
margin between SpOC and SpecOC is even more severe on
food, revealing the importance of having ignored classes in
each bit predictor. (4) SpOC-H generates inferior results than
SpOC across the board, indicating the necessity of proba-
bilistic decoding to handle zero bits in the code matrix. (5)
SpOC and OVR both outperform HieSVM-1, where errors
made in the higher level of the class hierarchy get propa-
gated into the lower levels, with no mechanism to correct
those early errors. However, the error-correcting property in
SpOC introduces robustness to errors made in bit predictors.
Results for HieSVM-2 are not available as it runs into out of
memory problems on all three datasets. (6) SpOC is compara-
ble with relaxTree on SUN dataset, but outperforms it on the
other two datasets. Though relaxTree defers the decision on
some difficult classes to lower level nodes, hence achieving
better accuracy than conventional hierarchical classifier such
as HieSVM-1, it still lacks the robustness or error correcting
ability introduced by the coding matrix in SpOC. More inter-
estingly, relaxTree involves multiple iterations of learning
base classifiers due to the adoption of alternating optimiza-
tion, and we will compare its time complexity against SpOC
later this section. (7) SpOC beats both ECT and LET, both
of which involve expensive procedure of learning optimal
semantic class structure from data, while SpOC simply uti-
lizes the class structure associated with the dataset.

According to results in Table 5 for the large ImageNet
dataset, we see that SpOC clearly outperforms OVR, consis-
tent with results reported on other datasets. It is interesting

Table 5 Classification accuracyon ImageNet [accuracyofapproximate
kNN is reported by Weston et al. (2011)]

Accuracy (%)

OVR 2.27

Approximate KNN 1.55

LET (Bengio et al. 2010) 2.54

L2R (Weston et al. 2011) 6.14

relaxTree 5.28

SpOC-VT 9.15

SpOC 9.46

Ensemble (Weston et al. 2011) 10.03

Bold value corresponds to best performance among competing algo-
rithms

that SpOC also clearly beats relaxTree, revealing the impor-
tance of error correcting ability in real large-scale multi-class
problems. Moreover, comparison with numbers reported
in Bengio et al. (2010) and Weston et al. (2011) shows that
SpOC also outperforms label embedding tree and learning
to rank on the large ImageNet task. Also, using the same fea-
tures as (Bengio et al. 2010), SpOC-VT clearly beats label
embedding tree (Bengio et al. 2010) with a significant mar-
gin, revealing the effectiveness of our proposed sparse output
coding approach. Finally, SpOC result is comparable with
the accuracy of ensemble method, where classification is
obtained by combining various kinds of features and aver-
aging over 10 separate models.

Finally, we visualize the coding matrix learned for the
large ImageNet dataset using our proposed algorithm. Due
to the sheer size of the task space, we cannot show the entire
coding matrix or the entire bit predictor, as each bit predictor
usually involves thousands of original classes. Consequently,
we randomly selected 6 bit predictors and show randomly
picked classes from both positive and negative partitions.
Specifically, Fig. 2 shows the composition of positive parti-
tion and negative partition for several bit predictors, and we
could already see the similarity within each partition, and
distinction between the two partitions.

4.2.1 Remarks on How to Interpret Our ImageNet Result

It is widely acknowledged in vision community Lin et al.
(2011), Le et al. (2012) that feature engineering is an
important alternative source for boosting image classification
accuracy. Recently, with a standard OVR classifier system
but sophisticated feature engineering that learns feature rep-
resentations using deep network with 1 billion trainable
parameters, strong results surpassing what we report here
have been published Le et al. (2012). However, it should be
noted that ourwork focuses on techniques of training superior
massive multi-class classifiers under any given feature, and
the work of designing state-of-the-art feature representation
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Fig. 2 Visualization of 6 bit prediction problems generated by the
learned coding matrix for ImageNet with L = 1000. Each row cor-
responds to a binary problem, with the left panel showing categories

composing the positive partition, and right panel showing categories
composing the negative partition

for images, should not be be viewed as competing efforts,
but rather, complementary. Indeed we expect that one can
directly apply SpOC on top of a superior feature representa-
tions learned in previous works to yield even better results.
In fact, applying SpOC on feature representations learned
in Lin et al. (2011) already beats most state-of-the-art results
on ImageNet dataset. The superior result in Le et al. (2012)
using deep learning for feature design should not discredit
SpOC’s value as a principled way for massive multi-class
classification, as the two approaches focus on different stages
in the image classification pipeline. We consider combining
SpOC with feature representations learned in Le et al. (2012)
as an interesting future work.

4.3 Effect of Code Length

In this section, we investigate the effect of code length
on classification accuracy of SpOC. Specifically, we test
SpOC on the flower dataset with various code lengths and
report classification errors in Table 6. According to Table 6,
classification error of SpOC decreases as the code length
increases, as stronger error-correcting ability is accompanied
with longer codes. However, the fact that L = 200 performs
almost as well as L = 400 demonstrates that SpOC usually
requires much less bit predictors compared to the number of
classes in the multi-class classification problem.

4.4 Time Complexity

We also report computational time of SpOC on the flower
dataset with various code lengths in Table 6. Specifically,

Table 6 Classification error (flat error) and time complexity (seconds)
of SpOC with various code lengths

L = 100 L = 200 L = 300 L = 400

Top 1 (%) 74.71 69.73 68.82 68.79

Top 5 (%) 41.28 34.35 33.70 33.82

Top 10 (%) 30.12 24.08 22.83 22.76

Tc (seconds) 106.4 175.3 237.1 398.6

Tb (seconds) 1.72E7 3.24E7 4.89E7 6.49E7

Tc is the time for learning coding matrix and decoding, and Tb is the
time for learning bit predictors. (1E7=1 × 107)

Table 7 Time complexity comparison (seconds)

Flower Food SUN

OVR 1.68E8 2.63E8 1.71E7

ECT 5.60E7 8.07E7 4.28E6

LET 5.26E7 8.02E7 4.15E6

relaxTree 1.30E8 2.41E8 1.09E7

SpOC 3.24E7 5.02E7 3.72E6

computational time for SpOC consists of three parts: (1)
time for learning output coding matrix, (2) time for training
bit predictors, and (3) time for probabilistic decoding. We
implement SpOC using MATLAB 7.12 on a 3.40 GHZ Intel
i7 PC with 16.0 GB main memory. Bit predictors are trained
in parallel on a cluster composed of 200 nodes. Time for
training bit predictors is the summation of time spent on each
node of the cluster. According to Table 6, time for learning
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code matrix and probabilistic decoding is almost negligible
compared to the time spent on training bit predictors.

Moreover, we also compare the time complexity of SpOC
with that of OVR, ECT, LET and relaxTree. According to
Table 7, the total CPU time of SpOC is systematically shorter
thanOVR, which is expected as SpOC requires trainingmuch
less binary classifiers than OVR, and each bit predictor in
SpOC only involves a subset of classes from the original
problem, while each binary classifier inOVR is trained using
data from all classes in the multi-class problem. This again
reveals the advantage of SpOC over the widely popular OVR
onmassivemulti-class classification.Moreover,SpOC is also
more efficient than ECT and LET. One possible reason could
be the expensive tree learning procedure involved in both
ECT and LET, while the time spent on learning optimal code
matrix in SpOC is negligible compared to the time of training
bit predictors. Finally, SpOC clearly takes less computational
time than relaxTree, which requires multiple iterations of
learning base classifiers due to the alternating optimization
approach in learning relaxed tree classifier.

5 Conclusions and Future Works

Sparse output coding provides an initial foray into real-
world scale massive multi-class problem, by turning high-
cardinality multi-class classification into a bit-by-bit decod-
ing problem. Effectiveness of SpOC is demonstrated on both
large scale text classification and image categorization. The
fact that SpOC takes less bit predictors than one-vs-rest
multi-class classification while achieving better accuracy,
renders our proposed approach especially promising when
scaling up to human cognition level multi-class classifica-
tion.

For future works, one particularly interesting topic is to
apply SpOC on top of feature representations learned using
deep network (Le et al. 2012). Moreover, we would like
to study the selection of optimal code word length L , both
empirically and theoretically.
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