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Abstract: We study the problem of estimating a temporally varying co-
efficient and varying structure (VCVS) graphical model underlying data
collected over a period of time, such as social states of interacting indi-
viduals or microarray expression profiles of gene networks, as opposed to
i.i.d. data from an invariant model widely considered in current literature
of structural estimation. In particular, we consider the scenario in which
the model evolves in a piece-wise constant fashion. We propose a procedure
that estimates the structure of a graphical model by minimizing the tempo-
rally smoothed L1 penalized regression, which allows jointly estimating the
partition boundaries of the VCVS model and the coefficient of the sparse
precision matrix on each block of the partition. A highly scalable proximal
gradient method is proposed to solve the resultant convex optimization
problem; and the conditions for sparsistent estimation and the convergence
rate of both the partition boundaries and the network structure are estab-
lished for the first time for such estimators.
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1. Introduction

Networks are a fundamental form of representation of relational information
underlying large, noisy data from various domains. For example, in a biologi-
cal study, nodes of a network can represent genes in one organism and edges
can represent associations or regulatory dependencies among genes. In a social
analysis, nodes of a network can represent actors and edges can represent inter-
actions or friendships between actors. Exploring the statistical properties and
hidden characteristics of network entities, and the stochastic processes behind
temporal evolution of network topologies is essential for computational knowl-
edge discovery and prediction based on network data.

In many dynamical environments, such as a developing biological system, it is
often technically impossible to experimentally determine the network topologies
specific to every time point in a certain time period. Resorting to computational
inference methods, such as extant structural learning algorithms, is also difficult
because for every model unique to a single time point, there exist as few as only
a single snapshot of the nodal states distributed accordingly to the model in
question. In this paper, we consider an estimation problem under a particular
dynamic context, where the model evolves piecewise constantly, i.e., staying
structurally invariant during unknown segments of time, and then jump to a
different structure.

Approximately piecewise constantly evolving networks can be found under-
lying many natural dynamic systems of intellectual and practical interest. For
example, in a biological developmental system such as the fruit fly, the entire
life cycle of the fly consists of 4 discrete developmental stages, namely, embryo,
larva, pupa, and adult; across the stages, one expect to see dramatical rewiring
of the regulatory network to realize very different regulation functions due to
different developmental needs, whereas within each stage, the change of the
network topology are expected to be relatively more mild as revealed by the
smoother trajectories of the gene expression activities, because a largely stable
regulatory machinery is employed to control stage-specific developmental pro-
cesses. Such phenomena are not uncommon in social systems. For example, in
an underlying social network between the senators, even it is not visible to out-
siders, we would imagine the network structure being more stable between the
elections but more volatile when the campaigns start. Although it is legitimate
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to use a completely unconstrained time-evolving network model to describe or
analysis such systems, an approximately piecewise constantly evolving network
model is better at capturing the different amount of network dynamics during
different phases of a entire life cycle, and detecting boundaries between different
phases when desirable.

A popular technique for deriving the network structure from iid sample is
to estimate a sparse precision matrix. The importance of estimating precision
matrices with zeros was recognized by Depmster [11] who coined the term covari-
ance selection. The elements of the precision matrix represent the associations
or conditional covariances between corresponding variables. Once a sparse preci-
sion matrix is estimated, a network can be drawn by connecting variables whose
corresponding elements of the precision matrix are non-zero. Recent studies have
shown that covariance selection methods based on the penalized likelihood max-
imization can lead to a consistent estimate of the network structure underlying
a Gaussian Markov Random Fields [12, 32]. Moreover, a particular procedure
for covariance selection known as neighborhood selection, which is built on ℓ1
norm regularized regression, can produce a consistent estimate of the network
structure when the sample is assumed to follow a general Markov Random Field
distribution whose structure corresponds to the network in question [33, 28, 31].
Specifically, a Markov Random Field (MRF) is a probabilistic graphical model
defined on a graph G = (V,E), where V = {1, . . . , p} is a vertex set correspond-
ing to the set of random variables to be modeled (in this paper we call them
nodes and variables interchangeably), and E ⊆ V × V is the edge set capturing
conditional independencies among these nodes. Let X = (X1, . . . , Xp)

′ denote a
p-dimensional random vector, whose elements are indexed by the nodes of the
graph G. Under the MRF, a pair (a, b) is not an element of the edge set E if
and only if the variable Xa is conditionally independent of Xb given all the rest
of variables XV \{a,b}, Xa ⊥ Xb|XV \{a,b}. A distribution over X can be defined
by taking the following log linear form that makes explicit use of the (presence
and absence of edges in the) edge set: p(X) ∝ exp{∑(a,b)∈V θabXaXb}. When

the elements of the random vector X are discrete, e.g., X ∈ {0, 1}p, the model
is referred to as a discrete MRF, sometimes known as an Ising model in statis-
tics physics community; whereas when X is a continuous vector, the model is
referred to as a Gaussian graphical model (GGM) because one can easily show
that the p(X) above is actually a multivariate Gaussian. The MRF have been
widely used for modeling data with graphical relational structures over a fixed
set of entities [39, 14]. The vertices can describe entities such as genes in a bi-
ological regulatory network, stocks in the market, or people in society; while
the edges can describe relationships between vertices, for example, interaction,
correlation or influence.

The statistical problem we concern in this paper is to estimate the struc-
ture of the Gaussian graphical model from observed samples of nodal states in
a dynamic world. Traditional methods handle this problem with the assump-
tion that the samples are iid. Let D = {x1, . . . ,xn} be an independent and
identically distributed sample according to a p-dimensional multivariate normal
distribution Np(0,Σ), where Σ is the covariance matrix. Let Ω := Σ−1 denote
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the precision matrix, with elements (ωab), 1 ≤ a, b ≤ p. Then one can obtain
an estimator of the Ω from D via optimizing a proper statistical loss function,
such as likelihood or penalized likelihood. As mentioned earlier, the precision
matrix Ω encodes the conditional independence structure of the distribution
and the pattern of the zero elements in the precision matrix define the struc-
ture of the associated graph G. There has been a dramatic growth of interest
in recent literature in the problem of covariance selection, which deals with
the graph estimation problem above. Existing works range from algorithmic
development focusing on efficient estimation procedures, to theoretical analy-
sis focusing on statistical guarantees of different estimators. We do not intend
to give an extensive overview of the literature here, but interested readers can
follow the pointers bellow. In the classical literature (e.g., [22]), procedures are
developed for small dimensional graphs and commonly involve hypothesis test-
ing with greedy selection of edges. More recent literature estimates the sparse
precision matrix by optimizing penalized likelihood [42, 12, 4, 35, 13, 32, 16, 44]
or through neighborhood selection [28, 31, 15, 40], where the structure of the
graph is estimated by estimating the neighborhood of each node. Both of these
approaches are suitable for high-dimensional problems, even when p ≫ n, and
can be efficiently implemented using scalable convex program solvers.

Most of the above mentioned work assumes that a single invariant network
model is sufficient to describe the dependencies in the observed data. However,
when the observed data are not iid, such an assumption is not justifiable. For
example, when data consist of microarray measurements of the gene expres-
sion levels collected throughout the cell cycle or development of an organism,
different genes can be active during different stages. This suggests that differ-
ent distributions and hence different networks should be used to describe the
dependencies between measured variables at different time intervals. In this pa-
per, we are going to tackle the problem of estimating the structure of the GGM
when the structure is allowed to change over time. By assuming that the pa-
rameters of the precision matrix change with time, we obtain extra flexibility to
model a larger class of distributions while still retaining the interpretability of
the static GGM. In particular, as the coefficients of the precision matrix change
over time, we also allow the structure of the underlying graph to change as well.
This semi-parametric generalization of the parametric model is referred to as a
varying coefficient varying structure (VCVS) model.

Now, let {xi}i∈[n] ∈ R
p be a sequence of n conditionally independent ob-

servations 1 (we use [n] to denote the set {1, . . . , n}) from some p-dimensional
multivariate normal distributions, not necessarily the same for every observa-
tion. Let {Bj}j∈[B] be a disjoint partitioning of the set [n] where each block of

the partition consists of consecutive elements, that is, Bj ∩ Bj′ = ∅ for j 6= j′

and
⋃

j Bj = [n] and Bj = [Tj−1 : Tj ] := {Tj−1, Tj−1 + 1, . . . , Tj − 1}. Let
T := {T0 = 1 < T1 < · · · < TB = n+ 1} denote the set of partition boundaries.

1We emphasize that the independence is only present when each instance of the latent time
varying model is given. In practice, such models are unknown, and therefore marginally the
samples are dependent. Furthermore, the instances of the latent evolving models generating
the samples are NOT independent, as we can see in later presentation.
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We consider the following model

xi ∼ Np(0,Σ
j), i ∈ Bj, (1.1)

such that observations indexed by elements in Bj are p-dimensional realizations
of a multivariate normal distribution with zero mean and the covariance ma-
trix Σj = (σj

ab)a,b∈[p], which suggest that it is only unique to segment j of
the time series. Let Ωj := (Σj)−1 denote the precision matrix with elements
(ωj

ab)a,b∈[p]. With the number of partitions, B, and the boundaries of partitions,
T , unknown, we study the problem of estimating both the partition set {Bj}
and the non-zero elements of the precision matrices {Ωj}j∈[B] from the sample
{xi}i∈[n]. Note that in this work we study a particular case of the VCVS model,
where the coefficients are piece-wise constant functions of time. Although this
model does not yet entirely agree with how a real world time series data would
behave, as none existing model does, this instantiation of the VCVS model come
one step closer in some sense to the real world scenario than other popular ap-
proaches for time series modeling, such as Hidden Markov Models or state space
models, where stationary emission models such as linear Gaussian are usually
employed to relate observation at different time points to simple latent states.
Here, instead of positing an observation at time t to be derived from a latent
state that transitions stationarily from a previous time point, we assume that
such an observation is generated from a latent network model that are related to
the network models active at the previous and subsequent time points nonpara-
metrically. As suggested in the introduction, many real world dynamic systems,
such as the stage-specific development of multi-cellular organisms like the fruit
fly, and the evolving network of latent relatedness between politicians, are likely
to behave approximately piecewise constantly; therefore time series data from
such systems, such as the continuous-valued gene expression microarray time
series, and the discrete-valued voting records, are suitable examples where our
proposed models can be applied to [1]. A scenario where the coefficients are
smoothly varying functions of time has been considered in [44] for the GGM
and in [21] and [19] for an Ising model, which complements the model studied
in this paper, whose asymptotic properties are somewhat easier to analyze as
we have shown earlier.

If the partitions {Bj}j were known, the problem would be trivially reduced to
the setting analyzed in the previous work. Dealing with the unknown partitions,
together with the structure estimation of the model, calls for new methods. We
propose and analyze a method based on time-coupled neighborhood selection,
where the model estimates are forced to stay similar across time using a fusion-
type total variation penalty and the sparsity of each neighborhood is obtained
through the ℓ1 penalty. Details of the approach are given in §2.

The model in Eq. (1.1) is related to the varying-coefficient models (e.g.,
[18]) with the coefficients being piece-wise constant functions. Varying coeffi-
cient regression models with piece-wise constant coefficients are also known as
segmented multivariate regression models [24] or linear models with structural
changes [2]. The structural changes are commonly determined through hypoth-
esis testing and a separate linear model is fit to each of the estimated segments.
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In our work, we use the penalized model selection approach to jointly estimate
the partition boundaries and the model parameters.

Little work has been done so far towards modeling dynamic networks and es-
timating changing precision matrices. [44] develops a nonparametric method for
estimation of time-varying GGM, where xt ∼ Np(0,Σ(t)) and Σ(t) is smoothly
changing over time. The procedure is based on the penalized likelihood approach
of [42] with the empirical covariance matrix obtained using a kernel smoother.
Our work is very different from the one of [44], since under our assumptions
the network changes abruptly rather than smoothly. Furthermore, as we outline
in §2, our estimation procedure is not based on the penalized likelihood ap-
proach. Estimation of time-varying Ising models has been discussed in [1] and
[21]. [41] and [20] studied nonparametric ways to estimate the conditional co-
variance matrix. The work of [1] is most similar to our setting, where they also
use a fused-type penalty combined with an ℓ1 penalty to estimate the structure
of the varying Ising model. Here, in addition to focusing on GGMs, there is
an additional subtle, but important, difference to [1]. In this work, we use a
modification of the fusion penalty (formally described in §2) which allows us to
characterize the model selection consistency of our estimates and the conver-
gence properties of the estimated partition boundaries, which is not available in
the earlier work.

The remaining of the paper is organized as follows. In §2, we describe our
estimation procedure and provide an efficient first-order optimization proce-
dure capable of estimating large graphs. The optimization procedure is based
on the smoothing procedure of [29] and converges in O(1/ǫ) iterations, where
ǫ is the desired accuracy. Our main theoretical results are presented in §3. In
particular, we show that the partition boundaries are estimated consistently.
Furthermore, the graph structure is consistently estimated on every block of
the partition that contains enough samples. In §4, we discuss alternative esti-
mation procedures based on penalized maximum likelihood estimation, instead
of the neighborhood selection. Numerical studies showing the finite sample per-
formance of our procedure are given in §5. The proofs of the main results are
relegated to §7, with some technical details presented in Appendix.

Notation schemes

For clarity, we end the introduction with a summary of the notations used in
the paper. We use [n] to denote the set {1, . . . , n} and [l : r] to denote the
set {l, l + 1, . . . , r − 1}. We use Bj to denote j-th block of the partition T .
With some abuse of notation, we also use Bj to denote the set [Tj−1 : Tj].
The number of samples in the block Bj is denoted as |Bj|. For a set S ⊂ V ,
we use the notation XS to denote the set {Xa : a ∈ S} of random variables.
We use X to denote the n × p matrix whose rows consist of observations. The
vector Xa = (x1,a, . . . , xn,a)

′ denotes a column of matrix X and, similarly,
XS = (Xb : b ∈ S) denotes the n × |S| sub-matrix of X whose columns are

indexed by the set S and XBj

denotes the sub-matrix |Bj| × p whose rows are
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Table 1

Summary of symbols used throughout the paper

Symbol Meaning Example
[n] used to denote the set {1, . . . , n}

[t1 : t2] used to denote the set {t1, t1 + 1, . . . , t2 − 1}
i used for indexing related to samples xi or βa

·,i

j, k used for indexing related to block θa,j or Sk
a

a, b used for indexing nodes in a graph a, b ∈ V

G the graph consisting of vertices and edges G = (V, E)
V the set of nodes in a graph V = [p]
Ei the set of edges at time i

Xa the component of a random vector X indexed by the vertex a

βa
·,i the vector of regression coefficients for sample i

θa,j the vector of regression coefficients for block j

T the set of partition boundaries
{τj}j the set of boundary fractions Tj = ⌊nτj⌋
Bj an index set for the samples in the partition j Bj ⊂ [n]
B denotes the number of partitions

S
j
a the set of neighbors of node a in block j

S(θa,j) the set of non-zero elements of θa,j

S̄
j
a the closure of Sj

a S̄
j
a = S

j
a ∪ {a}

N
j
a nodes not in the neighborhood of the node a in block j N

j
a = [p]\S̄j

a

\a the set of all vertices excluding the vertex a \a = [p]\{a}
| · | cardinality of a set or absolute value
Σ the covariance matrix
σab an element of the covariance matrix
Ω the precision matrix
ωab an element of the precision matrix
〈·, ·〉 the dot product 〈a,b〉 = a′b

〈〈·, ·〉〉 the dot product between matrices 〈〈A,B〉〉 = tr(A′B)
ξmin the minimum change between regression coefficient ‖θa,j−θa,j−1‖2≥ξmin

θmin the minimum size of a coefficient |θa,j
b

| ≥ θmin

∆min the minimum size of a block |Bj | ≥ ∆min

indexed by the set Bj. For simplicity of notation, we will use \a to denote the
index set [p]\{a}, X\a = (Xb : b ∈ [p]\{a}). For a vector a ∈ R

p, we let
S(a) denote the set of non-zero components of a. Throughout the paper, we
use c1, c2, . . . to denote positive constants whose value may change from line to

line. For a vector a ∈ R
n, define ||a||1 =

∑

i∈[n] |ai|, ||a||2 =
√

∑

i∈[n] a
2
i and

||a||∞ = maxi |ai|. For a symmetric matrixA, Λmin(A) denotes the smallest and
Λmax(A) the largest eigenvalue. For a matrix A (not necessarily symmetric),
we use |||A|||∞ = maxi

∑

j |Aij |. For two vectors a,b ∈ R
n, the dot product is

denoted 〈a,b〉 =∑i∈[n] aibi. For two matrices A,B ∈ R
n×m, the dot product is

denoted as 〈〈A,B〉〉 = tr(A′B). Given two sequences {an} and {bn}, the notation
an = O(bn) means that there exists a constant c1 such that an ≤ c1bn; the
notation an = Ω(bn) means that there exists a constant c2 such that an ≥ c2bn
and the notation an ≍ bn means that an = O(bn) and bn = O(an). Similarly,
we will use the notation an = op(bn) to denote that b−1

n an converges to 0 in
probability.
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2. Graph estimation via Temporal-Difference Lasso

In this section, we introduce our time-varying covariance selection procedure,
which is based on the time-coupled neighborhood selection using the fused-type
penalty. We call the proposed procedure Temporal-Difference Lasso (TD-Lasso).
We start by reviewing the basic neighborhood selection procedure, which has
previously been used to estimate graphs in, e.g., [31, 28, 33, 15].

We start by relating the elements of the precision matrix Ω to a regression
problem. Let the set Sa to denote the neighborhood of the node a. Denote S̄a the
closure of Sa, S̄a := Sa ∪ {a}, and Na the set of nodes not in the neighborhood
of the node a, Na = [p]\S̄a. It holds that Xa ⊥ XNa

|XSa
. The neighborhood of

the node a can be easily seen from the non-zero pattern of the elements in the
precision matrix Ω, Sa = {b ∈ [p]\{a} : ωab 6= 0}. See [22] for more details. It
is a well known result for Gaussian graphical models that the elements of

θa = argmin
θ∈Rp−1

E

(

Xa −
∑

b∈\a
Xbθb

)2

are given by θab = −ωab/ωaa. Therefore, the neighborhood of a node a, Sa, is
equal to the set of non-zero coefficients of θa. Using the expression for θa, we
can write Xa =

∑

b∈Sa
Xbθ

a
b + ǫ, where ǫ is independent of X\a.

The neighborhood selection procedure was motivated by the above relation-
ship between the regression coefficients and the elements of the precision matrix.
[28] proposed to solve the following optimization procedure

θ̂a = argmin
θ∈Rp−1

1

n
||Xa −X\aθ||22 + λ||θ||1 (2.1)

and proved that for iid sample the non-zero coefficients of θ̂a consistently esti-
mate the neighborhood of the node a, under a suitably chosen penalty param-
eter λ.

In this paper, we build on the neighbourhood selection procedure to esti-
mate the changing graph structure in model (1.1). We use Sj

a to denote the
neighborhood of the node a on the block Bj and N j

a to denote nodes not in
the neighborhood of the node a on the j-th block, N j

a = V \Sj
a. Consider the

following estimation procedure

β̂a = argmin
β∈Rp−1×n

L(β) + penλ1,λ2
(β) (2.2)

where the loss is defined for β = (βb,i)b∈[p−1],i∈[n] as

L(β) :=
∑

i∈[n]

(

xi,a −
∑

b∈\a
xi,bβb,i

)2

(2.3)

and the penalty is defined as

penλ1,λ2
(β) := 2λ1

n
∑

i=2

||β·,i − β·,i−1||2 + 2λ2

n
∑

i=1

∑

b∈\a
|βb,i|. (2.4)
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The penalty term is constructed from two terms. The first term ensures that
the solution is going to be piecewise constant for some partition of [n] (possibly
a trivial one). The first term can be seen as a sparsity inducing term in the
temporal domain, since it penalizes the difference between the coefficients β·,i
and β·,i+1 at successive time-points. The second term results in estimates that
have many zero coefficients within each block of the partition. The estimated
set of partition boundaries

T̂ = {T̂0 = 1} ∪ {T̂j ∈ [2 : n] : β̂a
·,T̂j

6= β̂a
·,T̂j−1

} ∪ {T̂B̂ = n+ 1}

contains indices of points at which a change is estimated, with B̂ being an
estimate of the number of blocks B. The estimated number of the block B̂ is
controlled through the user defined penalty parameter λ1, while the sparsity of
the neighborhood is controlled through the penalty parameter λ2.

Based on the estimated set of partition boundaries T̂ , we can define the
neighborhood estimate of the node a for each estimated block. Let θ̂a,j = β̂a

·,i,

∀i ∈ [T̂j−1 : T̂j ] be the estimated coefficient vector for the block B̂j = [T̂j−1 : T̂j ].

Using the estimated vector θ̂a,j, we define the neighborhood estimate of the node
a for the block B̂j as

Ŝj
a := S(θ̂a,j) := {b ∈ \a : θ̂a,jb 6= 0}.

Solving (2.2) for each node a ∈ V gives us a neighborhood estimate for each
node. Combining the neighborhood estimates we can obtain an estimate of the
graph structure for each point i ∈ [n].

The choice of the penalty term is motivated by the work on penalization using
total variation [34, 27], which results in a piece-wise constant approximation of
an unknown regression function. The fusion-penalty has also been applied in
the context of multivariate linear regression [36], where the coefficients that
are spatially close, are also biased to have similar values. As a result, nearby
coefficients are fused to the same estimated value. Instead of penalizing the ℓ1
norm on the difference between coefficients, we use the ℓ2 norm in order to
enforce that all the changes occur at the same point.

The objective (2.2) estimates the neighborhood of one node in a graph for
all time-points. After solving the objective (2.2) for all nodes a ∈ V , we need to
combine them to obtain the graph structure. We will use the following procedure
to combine {β̂a}a∈V ,

Êi = {(a, b) : max(|βa
b,i|, |βb

a,i|) > 0}, i ∈ [n].

That is, an edge between nodes a and b is included in the graph if at least
one of the nodes a or b is included in the neighborhood of the other node. We
use the max operator to combine different neighborhoods as we believe that
for the purpose of network exploration it is more important to occasionally
include spurious edges than to omit relevant ones. For further discussion on the
differences between the min and the max combination, we refer an interested
reader to [4].
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2.1. Numerical procedure

Finding a minimizer β̂a of (2.2) can be a computationally challenging task for an
off-the-shelf convex optimization procedure. We propose to use an accelerated
gradient method with a smoothing technique [29], which converges in O(1/ǫ)
iterations where ǫ is the desired accuracy.

We start by defining a smooth approximation of the fused penalty term. Let
H ∈ R

n×n−1 be a matrix with elements

Hij =







−1 if i = j
1 if i = j + 1
0 otherwise.

With the matrixH we can rewrite the fused penalty term as 2λ1

∑n−1
i=1 ||(βH)·,i||2

and using the fact that the ℓ2 norm is self dual (e.g., see [7]) we have the following
representation

2λ1

n
∑

i=2

||β·,i − β·,i−1||2 = max
U∈Q

〈〈U, 2λ1βH〉〉 (2.5)

where Q := {U ∈ R
p−1×n−1 : ||U·,i||2 ≤ 1, ∀i ∈ [n − 1]}. The following

function is defined as a smooth approximation to the fused penalty,

Ψµ(β) := max
U∈Q

〈〈U, 2λ1βH〉〉 − µ||U||2F (2.6)

where µ > 0 is the smoothness parameter. It is easy to see that

Ψµ(β) ≤ Ψ0(β) ≤ Ψµ(β) + µ(n− 1).

Setting the smoothness parameter to µ = ǫ
2(n−1) , the correct rate of convergence

is ensured. Let Uµ(β) be the optimal solution of the maximization problem in
(2.6), which can be obtained analytically as

Uµ(β) = ΠQ

(

λβH

µ

)

(2.7)

where ΠQ(·) is the projection operator onto the set Q. From Theorem 1 in [29],
we have that Ψµ(β) is continuously differentiable and convex, with the gradient

∇Ψµ(β) = 2λ1Uµ(β)H
′ (2.8)

that is Lipschitz continuous.
With the above defined smooth approximation, we focus on minimizing the

following objective

min
β∈Rp−1×n

F (β) := min
β∈Rp−1×n

L(β) + Ψµ(β) + 2λ2||β||1.
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Following [5] (see also [30]), we define the following quadratic approximation of
F (β) at a point β0

QL(β,β0) := L(β0) + Ψµ(β0) + 〈〈β − β0,∇L(β0) +∇Ψ(β0)〉〉

+
L

2
||β − β0||2F + 2λ2||β||1

(2.9)

where L > 0 is the parameter chosen as an upper bounds for the Lipschitz
constant of∇L+∇Ψ. Let pL(β0) be a minimizer of QL(β,β0). Ignoring constant
terms, pL(β0) can be obtained as

pL(β0) = argmin
β∈Rp−1×n

1

2

∥

∥

∥

∥

β −
(

β0 −
1

L

(

∇L+∇Ψ
)

(β0)
)

∥

∥

∥

∥

2

F

+
2λ2

L

∥

∥β
∥

∥

1
.

It is clear that pL(β0) is the unique minimizer, which can be obtained in a closed
form, as a result of the soft-thresholding,

pL(β0) = T

(

β0 −
1

L

(

∇L+∇Ψ
)

(β0),
2λ2

L

)

(2.10)

where T (x, λ) = sign(x)max(0, |x| − λ) is the soft-thresholding operator that is
applied element-wise.

In practice, an upper bound on the Lipschitz constant of ∇L +∇Ψ can be
expensive to compute, so the parameter L is going to be determined iteratively.
Combining all of the above, we arrive at Algorithm 1. In the algorithm, β0 is
set to zero or, if the optimization problem is solved for a sequence of tuning
parameters, it can be set to the solution β̂ obtained for the previous set of tun-
ing parameters. The parameter γ is a constant used to increase the estimate

Input: X ∈ R
n×p, β0 ∈ R

p−1×n, γ > 1, L > 0, µ = ǫ
2(n−1)

Output: β̂a

Initialize k := 1, αk := 1, zk := β0

repeat

while F (pL(zk)) > QL(pL(zk), zk) do

L := γL

βk := pL(zk) (using Eq. (2.10))

αk+1 := 1+
√
1+4αk

2

zk+1 := βk +
αk−1
αk+1

(

βk − βk−1

)

until convergence

β̂a := βk

Algorithm 1: Accelerated Gradient Method for Equation (2.2)
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of the Lipschitz constant L and we set it to γ = 1.5 in our experiments, while
L = 1 initially. Compared to the gradient descent method (which can be ob-
tain by iterating βk+1 = pL(βk)), the accelerated gradient method updates two
sequences {βk} and {zk} recursively. Instead of performing the gradient step
from the latest approximate solution βk, the gradient step is performed from the
search point zk that is obtained as a linear combination of the last two approxi-
mate solutions βk−1 and βk. Since the condition F (pL(zk)) ≤ QL(pL(zk), zk) is
satisfied in every iteration, we have the algorithm converges in O(1/ǫ) iterations
following [5]. As the convergence criterion, we stop iterating once the relative
change in the objective value is below some threshold value (e.g., we use 10−4).

2.2. Tuning parameter selection

The penalty parameters λ1 and λ2 control the complexity of the estimated
model. In this work, we propose to use the BIC score to select the tuning
parameters. Define the BIC score for each node a ∈ V as

BICa(λ1, λ2) := log
L(β̂a)

n
+

logn

n

∑

j∈[B̂]

|S(θ̂a,j)| (2.11)

where L(·) is defined in (2.3) and β̂a = β̂a(λ1, λ2) is a solution of (2.2). The
penalty parameters can now be chosen as

{λ̂1, λ̂2} = argmin
λ1,λ2

∑

a∈V

BICa(λ1, λ2). (2.12)

We will use the above formula to select the tuning parameters in our simulations,
where we are going to search for the best choice of parameters over a grid.

3. Theoretical results

This section is going to address the statistical properties of the estimation pro-
cedure presented in Section 2. The properties are addressed in an asymptotic
framework by letting the sample size n grow, while keeping the other parameters
fixed. For the asymptotic framework to make sense, we assume that there exists
a fixed unknown sequence of numbers {τj} that defines the partition boundaries
as Tj = ⌊nτj⌋, where ⌊a⌋ denotes the largest integer smaller that a. This assures
that as the number of samples grow, the same fraction of samples falls into every
partition. We call {τj} the boundary fractions.

We give sufficient conditions under which the sequence {τj} is consistently
estimated. In particular, if the number of partition blocks is estimated correctly,
then we show that maxj∈[B] |T̂j−Tj| ≤ nδn with probability tending to 1, where
{δn}n is a non-increasing sequence of positive numbers that tends to zero. If the
number of partition segments is over estimated, then we show that for a distance
defined for two sets A and B as

h(A,B) := sup
b∈B

inf
a∈A

|a− b|, (3.1)
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we have h(T̂ , T ) ≤ nδn with probability tending to 1. With the boundary seg-
ments consistently estimated, we further show that under suitable conditions
for each node a ∈ V the correct neighborhood is selected on all estimated block
partitions that are sufficiently large.

The proof technique employed in this section is quite involved, so we briefly
describe the steps used. Our analysis is based on careful inspection of the opti-
mality conditions that a solution β̂a of the optimization problem (2.2) need to

satisfy. The optimality conditions for β̂a to be a solution of (2.2) are given in
§3.2. Using the optimality conditions, we establish the rate of convergence for
the partition boundaries. This is done by proof by contradiction. Suppose that
there is a solution with the partition boundary T̂ that satisfies h(T̂ , T ) ≥ nδn.
Then we show that, with high-probability, all such solutions will not satisfy
the KKT conditions and therefore cannot be optimal. This shows that all the
solutions to the optimization problem (2.2) result in partition boundaries that
are “close” to the true partition boundaries, with high-probability. Once it is
established that T̂ and T satisfy h(T̂ , T ) ≤ nδn, we can further show that the
neighborhood estimates are consistently estimated, under the assumption that
the estimated blocks of the partition have enough samples. This part of the
analysis follows the commonly used strategy to prove that the Lasso is sparsis-
tent (e.g., see [9, 38, 28]), however important modifications are required due to
the fact that position of the partition boundaries are being estimated.

Our analysis is going to focus on one node a ∈ V and its neighborhood.
However, using the union bound over all nodes in V , we will be able to carry
over conclusions to the whole graph. To simplify our notation, when it is clear
from the context, we will omit the superscript a and write β̂, θ̂ and S, etc., to
denote β̂a, θ̂a and Sa, etc.

3.1. Assumptions

Before presenting our theoretical results, we give some definitions and assump-
tions that are going to be used in this section. Let ∆min := minj∈[B] |Tj −Tj−1|
denote the minimum length between change points, ξmin := mina∈V minj∈[B−1] ×
||θa,j+1 − θa,j||2 denote the minimum jump size and θmin = mina∈V minj∈[B] ×
minb∈Sj |θa,jb | the minimum coefficient size. Throughout the section, we assume
that the following holds.

A1 There exist two constants φmin > 0 and φmax < ∞ such that

φmin = min {Λmin(Σ
j) : j ∈ [B], a ∈ V }

and
φmax = max {Λmax(Σ

j) : j ∈ [B], a ∈ V }.
A2 Variables are scaled so that σj

aa = 1 for all j ∈ [B] and all a ∈ V .

The assumption A1 is commonly used to ensure that the model is identifiable.
If the population covariance matrix is ill-conditioned, the question of the correct
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model identification if not well defined, as a neighborhood of a node may not
be uniquely defined. The assumption A2 is assumed for the simplicity of the
presentation. The common variance can be obtained through scaling.

A3 There exists a constant M > 0 such that

max
a∈V

max
j,k∈[B]

‖θa,k − θa,j‖2 ≤ M.

The assumption A3 states that the difference between coefficients on two dif-
ferent blocks, ||θa,k − θa,j||2, is bounded for all j, k ∈ [B]. This assumption is
simply satisfied if the coefficients θa were bounded in the ℓ2 norm.

A4 There exist a constant α ∈ (0, 1], such that the following holds

max
j∈[B]

|||ΣNj
aS

j
a
(ΣSj

aS
j
a
)−1|||∞ ≤ 1− α, ∀a ∈ V.

The assumption A4 states that the variables in the neighborhood of the node a,
Sj
a, are not too correlated with the variables in the set N j

a . This assumption is
necessary and sufficient for correct identification of the relevant variables in
the Lasso regression problems (e.g., see [43, 37]). Note that this condition is
sufficient also in our case when the correct partition boundaries are not known.

A5 The minimum coefficient size θmin satisfies θmin = Ω(
√

log(n)/n).

The lower bound on the minimum coefficient size θmin is necessary, since if a
partial correlation coefficient is too close to zero the edge in the graph would
not be detectable.

A6 The sequence of partition boundaries {Tj} satisfy Tj = ⌊nτj⌋, where {τj}
is a fixed, unknown sequence of the boundary fractions belonging to [0, 1].

The assumption is needed for the asymptotic setting. As n → ∞, there will
be enough sample points in each of the blocks to estimate the neighborhood of
nodes correctly.

3.2. Convergence of the partition boundaries

In this subsection we establish the rate of convergence of the boundary partitions
for the estimator (2.2). We start by giving a lemma that characterizes solutions
of the optimization problem given in (2.2). Note that the optimization problem
in (2.2) is convex, however, there may be multiple solutions to it, since it is not
strictly convex.

Lemma 1. Let xi,a = x′
i,\aθa + ǫi. A matrix β̂ is optimal for the optimiza-

tion problem (2.2) if and only if there exist a collection of subgradient vectors

{ẑi}i∈[2:n] and {ŷi}i∈[n], with ẑi ∈ ∂||β̂·,i − β̂·,i−1||2 and ŷi ∈ ∂||β̂·,i||1, that
satisfies

n
∑

i=k

xi,\a〈xi,\a, β̂·,i − β·,i〉 −
n
∑

i=k

xi,\aǫi + λ1ẑk + λ2

n
∑

i=k

ŷi = 0 (3.2)

for all k ∈ [n] and ẑ1 = ẑn+1 = 0.
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The following theorem provides the convergence rate of the estimated bound-
aries of T̂ , under the assumption that the correct number of blocks is known.

Theorem 2. Let {xi}i∈[n] be a sequence of observation according to the model
in (1.1). Assume that A1-A3 and A5-A6 hold. Suppose that the penalty pa-
rameters λ1 and λ2 satisfy

λ1 ≍ λ2 = O(
√

log(n)/n). (3.3)

Let {β̂·,i}i∈[n] be any solution of (2.2) and let T̂ be the associated estimate of the
block partition. Let {δn}n≥1 be a non-increasing positive sequence that converges
to zero as n → ∞ and satisfies ∆min ≥ nδn for all n ≥ 1. Furthermore, suppose
that (nδnξmin)

−1λ1 → 0, ξ−1
min

√
pλ2 → 0 and (ξmin

√
nδn)

−1
√
p logn → 0, then

if |T̂ | = B + 1 the following holds

P[max
j∈[B]

|Tj − T̂j| ≤ nδn]
n→∞−−−−→ 1.

The proof builds on techniques developed in [17] and is presented in §7.
Suppose that δn = (logn)γ/n for some γ > 1 and ξmin = Ω(

√

logn/(logn)γ),
the conditions of Theorem 2 are satisfied, and we have that the sequence of
boundary fractions {τj} is consistently estimated. Since the boundary fractions
are consistently estimated, we will see below that the estimated neighborhood
S(θ̂j) on the block B̂j consistently recovers the true neighborhood Sj.

Unfortunately, the correct bound on the number of block B may not be
known. However, a conservative upper bound Bmax on the number of blocks
B may be known. Suppose that the sequence of observation is over segmented,
with the number of estimated blocks bounded by Bmax. Then the following
proposition gives an upper bound on h(T̂ , T ) where h(·, ·) is defined in (3.1).

Proposition 3. Let {xi}i∈[n] be a sequence of observation according to the

model in (1.1). Assume that the conditions of Theorem 2 are satisfied. Let β̂ be
a solution of (2.2) and T̂ the corresponding set of partition boundaries, with B̂
blocks. If the number of blocks satisfy B ≤ B̂ ≤ Bmax, then

P[h(T̂ , T ) ≤ nδn]
n→∞−−−−→ 1.

The proof of the proposition follows the same ideas of Theorem 2 and its
sketch is given in the appendix.

The above proposition assures us that even if the number of blocks is overesti-
mated, there will be a partition boundary close to every true unknown partition
boundary. In many cases it is reasonable to assume that a practitioner would
have an idea about the number of blocks that she wishes to discover. In that
way, our procedure can be used to explore and visualize the data. It is still an
open question to pick the tuning parameters in a data dependent way so that
the number of blocks are estimated consistently.
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Fig 1. The figure illustrates where we expect to estimate a neighborhood of a node consistently.
The blue region corresponds to the overlap between the true block (bounded by gray lines)
and the estimated block (bounded by black lines). If the blue region is much larger than the
orange regions, the additional bias introduced from the samples from the orange region will not
considerably affect the estimation of the neighborhood of a node on the blue region. However,
we cannot hope to consistently estimate the neighborhood of a node on the orange region.

3.3. Correct neighborhood selection

In this section, we give a result on the consistency of the neighborhood esti-
mation. We will show that whenever the estimated block B̂j is large enough,
say |B̂j| ≥ rn where {rn}n≥1 is an increasing sequence of numbers that satisfy

(rnλ2)
−1λ1 → 0 and rnλ

2
2 → ∞ as n → ∞, we have that S(θ̂j) = S(βk),

where βk is the true parameter on the true block Bk that overlaps B̂j the most.
Figure 1 illustrates this idea. The blue region in the figure denotes the overlap
between the true block and the estimated block of the partition. The orange
region corresponds to the overlap of the estimated block with a different true
block. If the blue region is considerably larger than the orange region, the bias
coming from the sample from the orange region will not be strong enough to
disable us from selecting the correct neighborhood. On the other hand, since the
orange region is small, as seen from Theorem 2, there is little hope of estimating
the neighborhood correctly on that portion of the sample.

Suppose that we know that there is a solution to the optimization prob-
lem (2.2) with the partition boundary T̂ . Then that solution is also a minimizer
of the following objective

min
θ1,...,θB̂

∑

j∈B̂

||XB̂j

a −XB̂j

\aθ
j||22+2λ1

B̂
∑

j=2

||θj−θj−1||2+2λ2

B̂
∑

j=1

|B̂j|||θj ||1. (3.4)

Note that the problem (3.4) does not give a practical way of solving (2.2), but
will help us to reason about the solutions of (2.2). In particular, while there
may be multiple solutions to the problem (2.2), under some conditions, we can
characterize the sparsity pattern of any solution that has specified partition
boundaries T̂ .

Lemma 4. Let β̂ be a solution to (2.2), with T̂ being an associated estimate of
the partition boundaries. Suppose that the subgradient vectors satisfy |ŷi,b| < 1

for all b 6∈ S(β̂·,i), then any other solution β̃ with the partition boundaries T̂
satisfy β̃b,i = 0 for all b 6∈ S(β̂·,i).
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The above Lemma states sufficient conditions under which the sparsity pat-
tern of a solution with the partition boundary T̂ is unique. Note, however, that
there may other solutions to (2.2) that have different partition boundaries.

Now, we are ready to state the following theorem, which establishes that the
correct neighborhood is selected on every sufficiently large estimated block of
the partition.

Theorem 5. Let {xi}i∈[n] be a sequence of observation according to the model
in (1.1). Assume that the conditions of theorem 2 are satisfied. In addition,
suppose that A4 also holds. Then, if |T̂ | = B + 1, it holds that

P[Sk = S(θ̂k)]
n→∞−−−−→ 1, ∀k ∈ [B].

Under the assumptions of theorem 2 each estimated block is of size O(n). As
a result, there are enough samples in each block to consistently estimate the un-
derlying neighborhood structure. Observe that the neighborhood is consistently
estimated at each i ∈ B̂j ∩ Bj for all j ∈ [B] and the error is made only on the
small fraction of samples, when i 6∈ B̂j ∩ Bj , which is of order O(nδn).

Using proposition 3 in place of theorem 2, it can be similarly shown that,
for a large fraction of samples, the neighborhood is consistently estimated even
in the case of over-segmentation. In particular, whenever there is a sufficiently
large estimated block, with |B̂k ∩ Bj| = O(rn), it holds that S(B̂k) = Sj with
probability tending to one.

4. Alternative estimation procedures

In this section, we discuss some alternative estimation methods to the neighbor-
hood selection detailed in §2. We start describing how to solve the objective (2.2)
for different penalties than the one given in (2.4). In particular, we describe how
to minimize the objective when the ℓ2 is replaced with the ℓq (q ∈ {1,∞}) norm
in (2.4). Next, we describe how to solve the penalized maximum likelihood
objective with the temporal difference penalty. We do not provide statistical
guarantees for solutions of these objective functions.

4.1. Neighborhood selection with modified penalty

We consider the optimization problem given in (2.2) with the following penalty

penλ1,λ2
(β) := 2λ1

n
∑

i=2

||β·,i − β·,i−1||q + 2λ2

n
∑

i=1

∑

b∈\a
|βb,i|, q ∈ {1,∞}.

(4.1)
We call the penalty in (4.1) the TDq penalty. As in §2.1, we apply the smoothing
procedure to the first term in (4.1). Using the dual norm representation, we have

2λ1

n
∑

i=2

||β·,i − β·,i−1||q = max
U∈Qq

〈〈U, 2λ1βH〉〉
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where
Q1 := {U ∈ R

p−1×n−1 : ||U·,i||∞ ≤ 1, ∀i ∈ [n− 1]}
and

Q∞ := {U ∈ R
p−1×n−1 : ||U·,i||1 ≤ 1, ∀i ∈ [n− 1]}.

Next, we define smooth approximation to the norm as

Ψq
µ(β) := max

U∈Qq
〈〈U, 2λ1βH〉〉 − µ||U||2F (4.2)

where µ > 0 is the smoothness parameter. Let

Uq
µ(β) = ΠQq

(

λβH

µ

)

(4.3)

be the optimal solution of the maximization problem in (4.2), where ΠQq (·) is
the projection operator onto the set Qq. We observe that the projection on the
ℓ∞ unit ball can be easily obtained, while a fast algorithm for projection on the
ℓ1 unit ball can be found in [8]. The gradient can now be obtained as

∇Ψq
µ(β) = 2λ1U

q
µ(β)H

′, (4.4)

and we can proceed as in § 2.1 to arrive at the update (2.10).
We have described how to optimize (2.2) with the TDq penalty for q ∈

{1, 2,∞}. Other ℓq norms are not commonly used in practice. We also note
that a different procedure for q = 1 can be found in [26].

4.2. Penalized maximum likelihood estimation

In §2, we have related the problem of estimating zero elements of a precision
matrix to a penalized regression procedure. Now, we consider estimating a sparse
precision matrix using a penalized maximum likelihood approach. That is, we
consider the following optimization procedure

min
{Ωi≻0}i∈[n]

∑

i∈[n]

(trΩixix
′
i − log |Ωi|) + penλ1,λ2

({Ωt}t∈[n]) (4.5)

where

penλ1,λ2
({Ωi}i∈[n]) := 2λ1

n
∑

i=2

||Ωi −Ωi−1||F + 2λ2

n
∑

i=1

|Ωi|1. (4.6)

In order to optimize (4.5) using the smoothing technique described in §2.1, we
need to show that the gradient of the log-likelihood is Lipschitz continuous. The
following Lemma establishes the desired result.

Lemma 6. The function f(A) = trSA− log |A| has Lipschitz continuous gra-
dient on the set {A ∈ Sp : Λmin(A) ≥ γ}, with Lipschitz constant L = γ−2.
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Following [3], we can show that a solution to the optimization problem (4.5),
on each estimated block, is indeed positive definite matrix with smallest eigen-
value bounded away from zero. This allows us to use the Nesterov’s smoothing
technique to solve (4.5).

Penalized maximum likelihood approach for estimating sparse precision ma-
trix was proposed by [42]. Here, we have modified the penalty to perform estima-
tion under the model (1.1). Although the parameters of the precision matrix can
be estimated consistently using the penalized maximum likelihood approach, a
number of theoretical results have shown that the neighborhood selection pro-
cedure requires lest stringent assumptions in order to estimate the underlying
network consistently [28, 32]. We observe this phenomena in our simulation
studies as well.

5. Numerical studies

In this section, we present a small numerical study on simulated networks. A full
performance test and application on real world data is beyond the scope of this
paper which mainly focuses on the theory of time-varying model estimation.
In all of our simulations studies we set p = 30 and B = 3 with |B1| = 80,
|B2| = 130 and |B3| = 90, so that in total we have n = 300 samples. We
consider two types of random networks: a chain and a nearest neighbor network.
We measure the performance of the estimation procedure outlined in §2 on
the following metrics: average precision of estimated edges, average recall of
estimated edges and average F1 score which combines the precision and recall
score. The precision, recall and F1 score are respectively defined as

precision =
1

n

∑

i∈[n]

∑

a∈[p]

∑p
b=a+1 1I{(a, b) ∈ Êi ∧ (a, b) ∈ Ei}

∑

a∈[p]

∑p
b=a+1 1I{(a, b) ∈ Êi}

recall =
1

n

∑

i∈[n]

∑

a∈[p]

∑p
b=a+1 1I{(a, b) ∈ Êi ∧ (a, b) ∈ Ei}

∑

a∈[p]

∑p
b=a+1 1I{(a, b) ∈ Ei}

F1 =
2 ∗ precision ∗ recall
precision+ recall

.

Furthermore, we report results on estimating the partition boundaries using
n−1h(T̂ , T ), where h(T̂ , T ) is defined in (3.1). Results are averaged over 50 sim-
ulation runs. We compare the TD-Lasso algorithm introduced in §2.1 against
an oracle algorithm which exactly knows the true partition boundaries. In this
case, it is only needed to run the algorithm of [28] on each block of the parti-
tion independently. We use a BIC criterion to select the tuning parameter for
this oracle procedure as described in [31]. Furthermore, we report results using
neighborhood selection procedures introduced in §4, which are denoted TD1-
Lasso and TD∞-Lasso, as well as the penalized maximum likelihood procedure,
which is denoted as LLmax. We choose the tuning parameters for the penalized
maximum likelihood procedure using the BIC procedure.
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Fig 2. A chain graph

Fig 3. Plots of the precision, recall and F1 scores as functions of the penalty parameters λ1

and λ2 for chain networks estimated using the TD-Lasso. The parameter λ1 is obtained as
100 ∗ 0.9850+i, where i indexes y-axis. The parameter λ2 is computed as 285 ∗ 0.98230+j ,
where j indexes x-axis. Black dot represents the selected tuning parameters. The white region
of each plot corresponds to a region of the parameter space that we did not explore.

Chain networks We follow the simulation in [12] to generate a chain network
(see Figure 2). This network corresponds to a tridiagonal precision matrix (after
an appropriate permutation of nodes). The network is generated as follows.
First, we choose to generate a random permutation π of [n]. Next, the covariance
matrix is generated as follows: the element at position (a, b) is chosen as σab =
exp(−|tπ(a) − tπ(b)|/2) where t1 < t2 < · · · < tp and ti − ti−1 ∼ Unif(0.5, 1)
for i = 2, . . . , p. This processes is repeated three times to obtain three different
covariance matrices, from which we sample 80, 130 and 90 samples respectively.

For illustrative purposes, Figure 3 plots the precision, recall and F1 score
computed for different values of the penalty parameters λ1 and λ2. Table 2
shows the precision, recall and F1 score for the parameters chosen using the
BIC score described in 2.2, as well as the error in estimating the partition
boundaries. The numbers in parentheses correspond to standard deviation. Due
to the fact that there is some error in estimating the partition boundaries,
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Table 2

Performance of different procedures when estimating chain networks

Method name Precision Recall F1 score n−1h(T̂ ,T )
TD-Lasso 0.84 (0.04) 0.80 (0.04) 0.82 (0.04) 0.03 (0.01)
TD1-Lasso 0.78 (0.05) 0.70 (0.03) 0.74 (0.04) N/A
TD∞-Lasso 0.83 (0.03) 0.80 (0.03) 0.81 (0.03) 0.03 (0.01)

LLmax 0.72 (0.03) 0.65 (0.03) 0.68 (0.04) 0.06 (0.02)
Oracle procedure 0.97 (0.02) 0.89 (0.02) 0.93 (0.02) 0 (0)

Fig 4. An instance of a random neighborhood graph with 30 nodes.

we observe a decrease in performance compared to the oracle procedure that
knows the correct position of the partition boundaries. Further, we observe
that the neighborhood selection procedure estimate the graph structure more
accurately than the maximum likelihood procedure. For TD1-Lasso we do not
report n−1h(T̂ , T ), as the procedure does not estimate the partition boundaries.

Nearest neighbors networks We generate nearest neighbor networks fol-
lowing the procedure outlined in [23]. For each node, we draw a point uni-
formly at random on a unit square and compute the pairwise distances be-
tween nodes. Each node is then connected to 4 closest neighbors (see Figure 4).
Since some of nodes will have more than 4 adjacent edges, we remove randomly
edges from nodes that have degree larger than 4 until the maximum degree of
a node in a network is 4. Each edge (a, b) in this network corresponds to a non-
zero element in the precision matrix Ω, whose value is generated uniformly on
[−1,−0.5] ∪ [0.5, 1]. The diagonal elements of the precision matrix are set to a
smallest positive number that makes the matrix positive definite. Next, we scale
the corresponding covariance matrix Σ = Ω−1 to have diagonal elements equal
to 1. This processes is repeated three times to obtain three different covariance
matrices, from which we sample 80, 130 and 90 samples respectively.

For illustrative purposes, Figure 5 plots the precision, recall and F1 score
computed for different values of the penalty parameters λ1 and λ2. Table 3 shows
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Fig 5. Plots of the precision, recall and F1 scores as functions of the penalty parameters λ1 and
λ2 for nearest neighbor networks estimated using the TD-Lasso. The parameter λ1 is obtained
as 100 ∗ 0.9850+i, where i indexes y-axis. The parameter λ2 is computed as 285 ∗ 0.98230+j ,
where j indexes x-axis. Black dot represents the selected tuning parameters. The white region
of each plot corresponds to a region of the parameter space that we did not explore.

Table 3

Performance of different procedure when estimating random nearest neighbor networks

Method name Precision Recall F1 score n−1h(T̂ ,T )
TD-Lasso 0.79 (0.06) 0.76 (0.05) 0.77 (0.05) 0.04 (0.02)
TD1-Lasso 0.70 (0.05) 0.68 (0.07) 0.69 (0.06) N/A
TD∞-Lasso 0.80 (0.06) 0.75 (0.06) 0.77 (0.06) 0.04 (0.02)

LLmax 0.62 (0.08) 0.60 (0.06) 0.61 (0.06) 0.06 (0.02)
Oracle procedure 0.87 (0.05) 0.82 (0.05) 0.84 (0.04) 0 (0)

the precision, recall, F1 score and n−1h(T̂ , T ) for the parameters chosen using
the BIC score, together with their standard deviations. The results obtained
for nearest neighbor networks are qualitatively similar to the results obtain for
chain networks.

6. Conclusion

We have addressed the problem of time-varying covariance selection when the
underlying probability distribution changes abruptly at some unknown points
in time. Using a penalized neighborhood selection approach with the fused-type
penalty, we are able to consistently estimate times when the distribution changes
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and the network structure underlying the sample. The proof technique used to
establish the convergence of the boundary fractions using the fused-type penalty
is novel and constitutes an important contribution of the paper. Furthermore,
our procedure estimates the network structure consistently whenever there is
a large overlap between the estimated blocks and the unknown true blocks of
samples coming from the same distribution. The proof technique used to estab-
lish the consistency of the network structure builds on the proof for consistency
of the neighborhood selection procedure, however, important modifications are
necessary since the times of distribution changes are not known in advance. Ap-
plications of the proposed approach range from cognitive neuroscience, where
the problem is to identify changing associations between different parts of a
brain when presented with different stimuli, to system biology studies, where
the task is to identify changing patterns of interactions between genes involved
in different cellular processes. We conjecture that our estimation procedure is
also valid in the high-dimensional setting when the number of variables p is
much larger than the sample size n. We leave the investigations of the rate of
convergence in the high-dimensional setting for a future work.

7. Proofs

7.1. Proof of Lemma 1

For each i ∈ [n], introduce a (p− 1)-dimensional vector γi defined as

γi =

{

β·,i for i = 1
β·,i − β·,i−1 otherwise

and rewrite the objective (2.2) as

{γ̂i}i∈[n] = argmin
γ∈Rn×p−1

n
∑

i=1

(

xi,a −
∑

b∈\a
xi,b

∑

j≤i

γj,b

)2

+ 2λ1

n
∑

i=2

||γi||2 + 2λ2

n
∑

i=1

∑

b∈\a

∣

∣

∣

∣

∑

j≤i

γj,b

∣

∣

∣

∣

.

(7.1)

A necessary and sufficient condition for {γ̂i}i∈[n] to be a solution of (7.1), is
that for each k ∈ [n] the (p − 1)-dimensional zero vector, 0, belongs to the
subdifferential of (7.1) with respect to γk evaluated at {γ̂i}i∈[n], that is,

0 = 2
n
∑

i=k

(−xi,\a)

(

xi,a −
∑

b∈\a
xi,bβ̂

a
b,i

)

+ 2λ1ẑk + 2λ2

n
∑

i=k

ŷi, (7.2)

where ẑk ∈ ∂|| · ||2(γ̂k), that is,

z̃k =

{

γ̃k

||γ̃k||2 if γ̃k 6= 0

∈ B2(0, 1) otherwise

and for k ≤ i, ŷi ∈ ∂|∑j≤i γ̂j |, that is, yi = sign(
∑

j≤i γ̂j) with sign(0) ∈
[−1, 1]. The Lemma now simply follows from (7.2).
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7.2. Proof of Theorem 2

We build on the ideas presented in the proof of Proposition 5 in [17]. Using the
union bound,

P[max
j∈[B]

|Tj − T̂j | > nδn] ≤
∑

j∈[B]

P[|Tj − T̂j | > nδn]

and it is enough to show that P[|Tj − T̃j| > nδn] → 0 for all j ∈ [B]. Define the
event An,j as

An,j :=
{

|Tj − T̂j | > nδn
}

and the event Cn as

Cn :=

{

max
j∈[B]

|T̂j − Tj | <
∆min

2

}

.

We show that P[An,j] → 0 by showing that both P[An,j ∩Cn] → 0 and P[An,j ∩
Cc

n] → 0 as n → ∞. The idea here is that, in some sense, the event Cn is a
good event on which the estimated boundary partitions and the true boundary
partitions are not too far from each other. Considering the two cases will make
the analysis simpler.

First, we show that P[An,j ∩Cn] → 0. Without loss of generality, we assume

that T̂j < Tj , since the other case follows using the same reasoning. Using (3.2)

twice with k = T̂j and with k = Tj and then applying the triangle inequality
we have

2λ1 ≥
∣

∣

∣

∣

∣

∣

∣

∣

Tj−1
∑

i=T̂j

xi,\a〈xi,\a, β̂·,i − β·,i〉 −
T̂j−1
∑

i=T̂j

xi,\aǫi + λ2

Tj−1
∑

i=T̂j

ŷi

∣

∣

∣

∣

∣

∣

∣

∣

2

. (7.3)

Some algebra on the above display gives

2λ1 + (Tj − T̂j)
√
pλ2 ≥

∣

∣

∣

∣

∣

∣

∣

∣

Tj−1
∑

i=T̂j

xi,\a〈xi,\a, θ
j − θj+1〉

∣

∣

∣

∣

∣

∣

∣

∣

2

−
∣

∣

∣

∣

∣

∣

∣

∣

Tj−1
∑

i=T̂j

xi,\a〈xi,\a, θ
j+1 − θ̂j+1〉

∣

∣

∣

∣

∣

∣

∣

∣

2

−
∣

∣

∣

∣

∣

∣

∣

∣

Tj−1
∑

i=T̂j

xi,\aǫi

∣

∣

∣

∣

∣

∣

∣

∣

2

=: ||R1||2 − ||R2||2 − ||R3||2.

The above display occurs with probability one, so that the event {2λ1 + (Tj −
T̂j)

√
pλ2 ≥ 1

3 ||R1||2} ∪ {||R2||2 ≥ 1
3 ||R1||2} ∪ {||R3||2 ≥ 1

3 ||R1||2} also occurs
with probability one, which gives us the following bound
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P[An,j ∩ Cn] ≤ P[An,j ∩Cn ∩ {2λ1 + (Tj − T̂j)
√
pλ2 ≥ 1

3
||R1||2}]

+ P[An,j ∩ Cn ∩ {||R2||2 ≥ 1

3
||R1||2}]

+ P[An,j ∩ Cn ∩ {||R3||2 ≥ 1

3
||R1||2}]

=: P[An,j,1] + P[An,j,2] + P[An,j,3].

First, we focus on the event An,j,1. Using lemma 9, we can upper bound P[An,j,1]
with

P[2λ1 + (Tj − T̂j)
√
pλ2 ≥ φmin

27
(Tj − T̂j)ξmin] + 2 exp(−nδn/2 + 2 logn).

Since under the assumptions of the theorem (nδnξmin)
−1λ1 → 0 and ξ−1

min

√
pλ2 →

0 as n → ∞, we have that P[An,j,1] → 0 as n → ∞.
Next, we show that the probability of the event An,j,2 converges to zero.

Let T̄j := ⌊2−1(Tj + Tj+1)⌋. Observe that on the event Cn, T̂j+1 > T̄j so that

β̂·,i = θ̂j+1 for all i ∈ [Tj , T̄j]. Using (3.2) with k = Tj and k = T̄j we have that

2λ1 + (T̄j − Tj)
√
pλ2 ≥

∣

∣

∣

∣

∣

∣

∣

∣

T̄j−1
∑

i=Tj

xi,\a〈xi,\a, θ
j+1 − θ̂j+1〉

∣

∣

∣

∣

∣

∣

∣

∣

2

−
∣

∣

∣

∣

∣

∣

∣

∣

T̄j−1
∑

i=Tj

xi,\aǫi

∣

∣

∣

∣

∣

∣

∣

∣

2

.

Using lemma 9 on the display above we have

||θj+1 − θ̂j+1||2 ≤
36λ1 + 18(T̄j − Tj)

√
pλ2 + 18||∑T̄j−1

i=Tj
xi,\aǫi||2

(Tj+1 − Tj)φmin
, (7.4)

which holds with probability at least 1−2 exp(−∆min/4+2 logn). We will use the
above bound to deal with the event {||R2||2 ≥ 1

3 ||R1||2}. Using lemma 9, we have

that φmin(Tj − T̂j)ξmin/9 ≤ ||R1||2 and ||R2||2 ≤ (Tj − T̂j)9φmax||θj+1 − θ̂j+1||2
with probability at least 1− 4 exp(−nδn/2+2 logn). Combining with (7.4), the
probability P[An,j,2] is upper bounded by

P[c1φ
2
minφ

−1
max∆minξmin ≤ λ1] + P[c2φ

2
minφ

−1
maxξmin ≤ √

pλ2]

+ P

[

c3φ
2
minφ

−1
maxξmin≤(T̄j−Tj)

−1

∣

∣

∣

∣

∣

∣

∣

∣

T̄j−1
∑

i=Tj

xi,\aǫi

∣

∣

∣

∣

∣

∣

∣

∣

2

]

+c4 exp(−nδn/2+2 logn).

Under the conditions of the theorem, the first term above converges to zero,
since ∆min > nδn and (nδnξmin)

−1λ1 → 0. The second term also converges to
zero, since ξ−1

min

√
pλ2 → 0. Using lemma 8, the third term converges to zero with

the rate exp(−c6 logn), since (ξmin

√
∆min)

−1
√
p logn → 0. Combining all the

bounds, we have that P[An,j,2] → 0 as n → ∞.
Finally, we upper bound the probability of the eventAn,j,3. As before, φmin(Tj−

T̂j)ξmin/9 ≤ ||R1||2 with probability at least 1 − 2 exp(−nδn/2 + 2 logn). This
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gives us an upper bound on P[An,j,3] as

P

[

φminξmin

27
≤

||∑Tj−1

i=T̂j

xi,\aǫi||2
Tj − T̂j

]

+ 2 exp(−nδn/2 + 2 logn),

which, using lemma 8, converges to zero as under the conditions of the theorem
(ξmin

√
nδn)

−1
√
p logn → 0. Thus we have shown that P[An,j,3] → 0. Since the

case when T̂j > Tj is shown similarly, we have proved that P[An,j ∩Cn] → 0 as
n → ∞.

We proceed to show that P[An,j ∩ Cc
n] → 0 as n → ∞. Recall that Cc

n =

{maxj∈[B] |T̂j − Tj | ≥ ∆min/2}. Define the following events

D(l)
n :=

{

∃j ∈ [B], T̂j ≤ Tj−1

}

∩ Cc
n,

D(m)
n :=

{

∀j ∈ [B], Tj−1 < T̂j < Tj+1

}

∩ Cc
n,

D(r)
n :=

{

∃j ∈ [B], T̂j ≥ Tj+1

}

∩ Cc
n

and write P[An,j ∩Cc
n] = P[An,j ∩D

(l)
n ] +P[An,j ∩D

(m)
n ] +P[An,j ∩D

(r)
n ]. First,

consider the event An,j ∩ D
(m)
n under the assumption that T̂j ≤ Tj. Due to

symmetry, the other case will follow in a similar way. Observe that

P[An,j ∩D(m)
n ]

≤ P[An,j ∩ {(T̂j+1 − Tj) ≥
∆min

2
} ∩D(m)

n ]

+ P[{(Tj+1 − T̂j+1) ≥
∆min

2
} ∩D(m)

n ]

≤ P[An,j ∩ {(T̂j+1 − Tj) ≥
∆min

2
} ∩D(m)

n ]

+

B−1
∑

k=j+1

P[{(Tk − T̂k) ≥
∆min

2
} ∩ {(T̂k+1 − Tk) ≥

∆min

2
} ∩D(m)

n ].

(7.5)

We bound the first term in (7.5) and note that the other terms can be bounded
in the same way. The following analysis is performed on the event An,j∩{(T̂j+1−
Tj) ≥ ∆min/2} ∩D

(m)
n . Using (3.2) with k = T̂j and k = Tj , after some algebra

(similar to the derivation of (7.3)) the following holds

||θj − θ̂j+1||2 ≤
18λ1 + 9(Tj − T̂j)

√
pλ2 + 9||∑Tj−1

i=T̂j

xi,\aǫi||
φmin(Tj − T̂j)

,

with probability at least 1−2 exp(−nδn/2+2 logn), where we have used lemma 9.
Let T̄j = ⌊2−1(Tj + Tj+1)⌋. Using (3.2) with k = T̄j and k = Tj after some al-
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gebra (similar to the derivation of (7.4)) we obtain the following bound

||θj − θj+1||2 ≤
18λ1 + 9(T̄j − Tj)

√
pλ2 + 9||∑T̄j−1

i=Tj
xi,\aǫi||2

φmin(T̄j − Tj)

+ 81φmaxφ
−1
min||θj − θ̂j+1||2,

which holds with probability at least 1 − c1 exp(−nδn/2 + 2 logn), where we
have used lemma 9 twice. Combining the last two displays, we can upper bound
the first term in (7.5) with

P[ξminnδn ≤ c1λ1] + P[ξmin ≤ c2
√
pλ2]

+ P[ξmin

√

nδn ≤ c3
√

p logn] + c4 exp(−c5 logn),

where we have used lemma 8 to obtain the third term. Under the conditions
of the theorem, all terms converge to zero. Reasoning similar about the other

terms in (7.5), we can conclude that P[An,j ∩D
(m)
n ] → 0 as n → ∞.

Next, we bound the probability of the event An,j ∩ D
(l)
n , which is upper

bounded by

P[D(l)
n ] ≤

B
∑

j=1

2j−1
P[max{l ∈ [B] : T̂l ≤ Tl−1} = j].

Observe that

{max{l ∈ [B] : T̂l ≤ Tl−1} = j}

⊆
B
⋃

l=j

{Tj − T̂j ≥
∆min

2
} ∩ {T̂j+1 − Tj ≥

∆min

2
}

so that we have

P[D(l)
n ] ≤ 2B−1

B−1
∑

j=1

∑

l>j

P[{Tl − T̂l ≥
∆min

2
} ∩ {T̂l+1 − Tl ≥

∆min

2
}].

Using the same arguments as those used to bound terms in (7.5), we have that

P[D
(l)
n ] → 0 as n → ∞ under the conditions of the theorem. Similarly, we

can show that the term P[D
(r)
n ] → 0 as n → ∞. Thus, we have shown that

P[An,j ∩ Cc
n] → 0, which concludes the proof.

7.3. Proof of Lemma 4

Consider T̂ fixed. The lemma is a simple consequence of the duality theory,
which states that given the subdifferential ŷi (which is constant for all i ∈ B̂j,
B̂j being an estimated block of the partition T̂ ), all solutions {β̌·,i}i∈[n] of (2.2)

need to satisfy the complementary slackness condition
∑

b∈\a ŷi,bβ̌b,i = ||β̌·,i||1,
which holds only if β̌b,i = 0 for all b ∈ \a for which |ŷi,b| < 1.
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7.4. Proof of Theorem 5

Since the assumptions of theorem 2 are satisfied, we are going to work on the
event

E := {max
j∈[B]

|T̂j − Tj | ≤ nδn}.

In this case, |B̂k| = O(n). For i ∈ B̂k, we write

xi,a =
∑

b∈Sj

xi,bθ
k
b + ei + ǫi (7.6)

where ei =
∑

b∈S xi,b(βb,i − θkb ) is the bias. Observe that ∀i ∈ B̂k ∩ Bk, the bias

ei = 0, while for i 6∈ B̂k ∩ Bk, the bias ei is normally distributed with variance
bounded by M2φmax under the assumption A1 and A3.

We proceed to show that S(θ̂k) ⊂ Sk. Since θ̂k is an optimal solution of (2.2),
it needs to satisfy

(XB̂k

\a )
′XB̂k

\a (θ̂
k − θk)− (XB̂k

\a )
′(eB̂

k

+ ǫB̂
k

)

+ λ1(ẑT̂k−1
− ẑT̂k

) + λ2|B̂k|ŷT̂k−1
= 0.

(7.7)

Now, we will construct the vectors θ̌k, žT̂k−1
, žT̂k

and y̌T̂k−1
that satisfy (7.7) and

verify that the subdifferential vectors are dual feasible. Consider the following
restricted optimization problem

min
θ1,...,θB̂; θk

Nk
=0

∑

j∈[B̂]

||XB̂j

a −XB̂j

\aθ
j||22

+ 2λ1

B̂
∑

j=2

||θj − θj−1||2 + 2λ2

B̂
∑

j=1

|B̂j|||θj ||1,
(7.8)

where the vector θk
Nk is constrained to be 0. Let {θ̌j}j∈[B̂] be a solution to the

restricted optimization problem (7.8). Set the subgradient vectors as žT̂k−1
∈

∂||θ̌k − θ̌k−1||, žTk
∈ ∂||θ̌k+1 − θ̌k|| and y̌T̂k−1,Sk = sign(θ̌k

Sk). Solve (7.7) for

y̌T̂k−1,Nk . By construction, the vectors θ̌k, žT̂k−1
, žT̂k

and y̌T̂k−1
satisfy (7.7).

Furthermore, the vectors žT̂k−1
and žT̂k

are elements of the subdifferential, and

hence dual feasible. To show that θ̌k is also a solution to (3.4), we need to show

that ||y̌T̂k−1,Nk ||∞ ≤ 1, that is, that y̌T̂k−1 is also dual feasible variable. Using

lemma 4, if we show that y̌T̂k−1,Nk is strict dual feasible, ||y̌T̂k−1,Nk ||∞ < 1,

then any other solution ˆ̌
θk to (3.4) will satisfy ˆ̌

θk
N = 0.

From (7.7) we can obtain an explicit formula for θ̌Sk

θ̌k
Sk = θk

Sk +
(

(XB̂k

Sk )
′XB̂k

Sk

)−1

(XB̂
Sk)

′(eB̂
k

+ ǫB̂
k

)

−
(

(XB̂k

Sk )
′XB̂k

Sk

)−1 (

λ1(žT̂k−1,Sk − žT̂k,Sk) + λ2|B̂k|y̌T̂k−1,Sk

)

.

(7.9)
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Recall that for large enough n we have that |B̂| > p, so that the matrix

(XB̂k

Sk )
′XB̂k

Sk is invertible with probability one. Plugging (7.9) into (7.7), we have
that ||y̌T̂k−1,Nk ||∞ < 1 if maxb∈Nk |Yb| < 1, where Yb is defined to be

Yb :=
(

XB̂k

b

)′ [

XB̂k

Sk

(

(XB̂k

Sk )
′XB̂k

Sk

)−1 (

y̌T̂k−1,Sk +
λ1(ẑT̂k−1,Sk − ẑT̂k,Sk)

|B̂k|λ2

)

+H
B̂k,⊥
Sk

(eB̂
k

+ ǫB̂
k

|B̂k|λ2

)

]

−
λ1(žT̂k−1,b

− žT̂k,b
)

|B̂k|λ2

,

(7.10)

where H
B̂k,⊥
Sk is the projection matrix

H
B̂k,⊥
Sk = I−XB̂k

Sk

(

(XB̂k

Sk )
′XB̂k

Sk

)−1 (

XB̂k

Sk

)′
.

Let Σ̃k and ˆ̃
Σk be defined as

Σ̃k =
1

|B̂k|
∑

i∈B̂k

E[xi
\a(x

i
\a)

′] and ˆ̃
Σk =

1

|B̂k|
∑

i∈B̂k

xi
\a(x

i
\a)

′.

For i ∈ [n], we let B(i) index the block to which the sample i belongs to. Now, for

any b ∈ Nk, we can write xi
b = Σ

B(i)

bSk (Σ
B(i)

SkSk)
−1xi

Sk + wi
b where wi

b is normally

distributed with variance σ2
b < 1 and independent of xi

Sk . Let Fb ∈ R
|B̂k| be

the vector whose components are equal to Σ
B(i)

bSk (Σ
B(i)

SkSk)
−1xi

Sk , i ∈ B̂k, and

Wb ∈ R
|B̂k| be the vector with components equal to wi

b. Using this notation, we
write Yb = T 1

b + T 2
b + T 3

b + T 4
b where

T 1
b = F′

bX
B̂k

Sk

(

(XB̂k

Sk )
′XB̂k

Sk

)−1 (

y̌T̂k−1
+

λ1(žT̂k−1,Sk − žT̂k,Sk)

|B̂k|λ2

)

(7.11)

T 2
b = F′

bH
B̂k,⊥
Sk

(eB̂
k

+ ǫB̂
k

|B̂k|λ2

)

(7.12)

T 3
b =

(

W̃b

)′ [

XB̂k

Sk

(

(XB̂k

Sk )
′XB̂k

Sk

)−1 (

y̌T̂k−1
+

λ1(žT̂k−1,Sk − žT̂k,Sk)

|B̂k|λ2

)

+H
B̂k,⊥
Sk

(eB̂
k

+ ǫB̂
k

|B̂k|λ2

)

]

(7.13)

and

T 4
b = −

λ1(žT̂k−1,b
− žT̂k,b

)

|B̂k|λ2

. (7.14)

We analyze each of the terms separately. Starting with the term T 1
b , after some

algebra, we obtain that
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F′
bX

B̂k

Sk

(

(XB̂k

Sk )
′XB̂k

Sk

)−1

=
∑

j : B̂k∩Bj 6=∅

|Bj ∩ B̂k|
|B̂k|

Σ
j
bSk(Σ

j
SkSk)

−1(Σ̂Bj∩B̂k

SkSk −Σ
j
SkSk)

(

ˆ̃
Σ

k

SkSk

)−1

+ Σ̃k
bSk((

ˆ̃
Σ

k

SkSk)−1 − (Σ̃k
SkSk)

−1)

+ Σ̃k
bSk(Σ̃

k
SkSk)

−1
.

(7.15)

Recall that we are working on the event E , so that |||Σ̃k
NkSk(Σ̃

k
SkSk)

−1|||∞ n→∞−−−−→
|||Σk

NkSk(Σ
k
SkSk)

−1|||∞ and (|B̂k|λ2)
−1λ1(žT̂k−1,Sk − žT̂k,Sk)

n→∞−−−−→ 0 element-

wise. Using (7.20) we bound the first two terms in the equation above. We bound
the first term by observing that for any j and any b ∈ Nk and n sufficiently
large

|Bj ∩ B̂k|
|B̂k|

||Σj
bSk(Σ

j
SkSk)

−1(Σ̂Bj∩B̂k

SkSk −Σ
j
SkSk)||∞

≤ |Bj ∩ B̂k|
|B̂k|

||Σj
bSk(Σ

j
SkSk)

−1||1||Σ̂Bj∩B̂k

SkSk −Σ
j
SkSk ||∞

≤ C1
|Bj ∩ B̂k|

|B̂k|
||Σ̂Bj∩B̂k

SkSk −Σ
j
SkSk ||∞ ≤ ǫ1

with probability 1−c1 exp(−c2 logn). Next, for any b ∈ Nk we bound the second
term as

||Σ̃k
bSk((

ˆ̃
Σ

k

SkSk)−1 − (Σ̃k
SkSk)

−1)||1

≤ C2||( ˆ̃Σ
k

SkSk)−1 − (Σ̃k
SkSk)

−1)||F
≤ C2||Σ̃k

SkSk ||2F || ˆ̃Σk
SkSk − Σ̃k

SkSk ||F +O(|| ˆ̃Σk
SkSk − Σ̃k

SkSk ||2F )
≤ ǫ2

with probability 1−c1 exp(−c2 logn). Choosing ǫ1, ǫ2 sufficiently small and for n
large enough, we have that maxb |T 1

b | ≤ 1−α+op(1) under the assumption A4.

We proceed with the term T 2
b , which can be written as

T 2
b = (|B̂k|λ2)

−1

(

Σk
bSk

(

Σk
SkSk

)−1 − F′
bX

B̂k

Sk

(

(XB̂k

Sk )
′XB̂k

Sk

)−1
)

∑

i∈Bk∩B̂k

xi
Skǫ

i

+ (|B̂k|λ2)
−1

∑

i6∈Bk∩B̂k

(

Σ
B(i)

bSk

(

Σ
B(i)

SkSk

)−1

−F′
bX

B̂k

Sk

(

(XB̂k

Sk )
′XB̂k

Sk

)−1
)

xi
Sk(e

i+ǫi).

Since we are working on the event E the second term in the above equation is
dominated by the first term. Next, using (7.15) together with (7.20), we have
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that for all b ∈ Nk

||Σk
bSk

(

Σk
SkSk

)−1 − F′
bX

B̂k

Sk

(

(XB̂k

Sk )
′XB̂k

Sk

)−1

||2 = op(1).

Combining with Lemma 8, we have that under the assumptions of the theorem

max
b

|T 2
b | = op(1).

We deal with the term T 3
b by conditioning on XB̂k

Sk and ǫB̂
k

, we have that Wb

is independent of the terms in the squared bracket in T 3
b , since all žT̂k−1,S

, žT̂k,S

and ŷT̂k−1,S
are determined from the solution to the restricted optimization

problem. To bound the second term, we observe that conditional on XB̂k

Sk and

ǫB̂
k

, the variance of T 3
b can be bounded as

Var(T 3
b ) ≤ ||XB̂k

Sk

(

(XB̂k

Sk )
′XB̂k

Sk

)−1

η̌Sk +H
B̂k,⊥
Sk

(eB̂
k

+ ǫB̂
k

|B̂k|λ2

)

||22

≤ η̌′Sk

(

(XB̂k

Sk )
′XB̂k

Sk

)−1

η̌Sk +
∥

∥

∥

eB̂
k

+ ǫB̂
k

|B̂k|λ2

∥

∥

∥

2

2
,

(7.16)

where

η̌Sk =
(

y̌T̂k−1,Sk +
λ1(žT̂k−1,Sk − žT̂k,S

)

|B̂|λ2

)

.

Using lemma 9 and Young’s inequality, the first term in (7.16) is upper bounded
by

18

|B̂|φmin

(

s+
2λ2

1

|B̂|2λ2
2

)

with probability at least 1 − 2 exp(−|B̂k|/2 + 2 logn). Using lemma 7 we have
that the second term is upper bounded by

(1 + δ′)(1 +M2φmax)

|B̂|λ2
2

with probability at least 1−exp(−c1|B̂k|δ′2+2 logn). Combining the two bounds,
we have that Var(T 3

b ) ≤ c1s(|B̂k|)−1 with high probability, using the fact that

(|B̂k|λ2)
−1λ1 → 0 and |B̂k|λ2 → ∞ as n → ∞. Using the bound on the variance

of the term T 3
b and the Gaussian tail bound, we have that

max
b∈N

|T 3
b | = op(1).

Combining the results, we have that maxb∈Nk |Yb| ≤ 1 − α + op(1). For a
sufficiently large n, under the conditions of the theorem, we have shown that
maxb∈N |Yb| < 1 which implies that P[S(θ̂k) ⊂ Sk]

n→∞−−−−→ 1.
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Next, we proceed to show that P[Sk ⊂ S(θ̂k)]
n→∞−−−−→ 1. Observe that

P[Sk 6⊂ S(θ̂k)] ≤ P[||θ̂k
Sk − θk

Sk ||∞ ≥ θmin].

From (7.7) we have that ||θ̂k
Sk − θk

Sk ||∞ is upper bounded by

∣

∣

∣

∣

∣

∣

∣

∣

(

1

|B̂k|
(XB̂k

Sk )
′XB̂k

Sk

)−1
1

|B̂k|
(XB̂k

Sk )
′(ẽB̂

k

+ ǫB̂
k

)

∣

∣

∣

∣

∣

∣

∣

∣

∞

+

∣

∣

∣

∣

∣

∣

∣

∣

(

(XB̂k

Sk )
′XB̂k

Sk

)−1 (

λ1(žT̂k−1,Sk − žT̂k,Sk)− λ2|B̂B̂k |y̌T̂k−1,Sk

)

∣

∣

∣

∣

∣

∣

∣

∣

∞
.

Since ẽi 6= 0 only on i ∈ B̂k\Bk and nδn/|B̂k| → 0, the term involving ẽB̂
k

is

stochastically dominated by the term involving ǫB̂
k

and can be ignored. Define
the following terms

T1 =

(

1

|B̂k|
(XB̂k

Sk )
′XB̂k

Sk

)−1
1

|B̂k|
(XB̂k

Sk )
′ǫB̂

k

,

T2 =

(

1

|B̂k|
(XB̂k

Sk )
′XB̂k

Sk

)−1
λ1

|B̂k|λ2

(žT̂k−1,Sk − žT̂k,Sk),

T3 =

(

1

|B̂k|
(XB̂k

Sk )
′XB̂k

Sk

)−1

y̌T̂k−1,Sk .

Conditioning on XB̂k

Sk , the term T1 is a |Sk| dimensional Gaussian with variance
bounded by c1/n with probability at least 1− c1 exp(−c2 logn) using lemma 9.
Combining with the Gaussian tail bound, the term ||T1||∞ can be upper bounded
as

P

[

||T1||∞ ≥ c1

√

log s

n

]

≤ c2 exp(−c3 logn). (7.17)

Using lemma 9, we have that with probability greater than 1− c1 exp(−c2 logn)

||T2||∞ ≤ ||T2||2 ≤ c3
λ1

|B̂k|λ2

→ 0

under the conditions of theorem. Similarly ||T3||∞ ≤ c1
√
s, with probability

greater than 1− c1 exp(−c2 logn). Combining the terms, we have that

||θk − θ̂k||∞ ≤ c1

√

log s

n
+ c2

√
sλ2

with probability at least 1 − c3 exp(−c4 logn). Since θmin = Ω(
√

log(n)/n), we

have shown that Sk ⊆ S(θ̂k). Combining with the first part, it follows that

S(θ̂k) = Sk with probability tending to one.
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7.5. Proof of Lemma 6

We have that ∇f(A) = A−1. Then

||∇f(A)−∇f(A′)||F = ||A−1 − (A′)−1||F
≤ ΛmaxA

−1||A−A′||FΛmaxA
−1

≤ γ−2||A−A′||F .
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We are thankful to Zäıd Harchaoui for an early version of his manuscript [17]
and many useful discussions. We thank Larry Wasserman and Ankur P. Parikh
for providing comments on an early version of this work and many insight-
ful suggestions. Furthermore, we are very grateful to the Associate Editor and
two anonymous referees whose suggestions helped to tremendously improve the
manuscript.

Appendix

Technical results

In this section we collect some technical results needed for the proves presented
in §7.
Lemma 7. Let {ζi}i∈[n] be a sequence of iid N (0, 1) random variables. If vn ≥
C logn, for some constant C > 16, then

P

[

⋂

1≤l<r≤n

r−l>rn

{

r
∑

i=l

(ζi)2 ≤ (1 + C)(r − l + 1)
}

]

≥ 1− exp(−c1 logn)

for some constant c1 > 0.

Proof. For any 1 ≤ l < r ≤ n, with r − l > vn we have

P

[ r
∑

i=l

(ζi)2 ≥ (1 + C)(r − l+ 1)

]

≤ exp(−C(r − l + 1)/8)

≤ exp(−C logn/8)

using (7.21). The lemma follows from an application of the union bound.

Lemma 8. Let {xi}i∈[n] be independent observations from (1.1) and let {ǫi}i∈[n]

be independent N (0, 1). Assume that A1 holds. If vn ≥ C logn for some con-
stant C > 16, then

P

[

⋂

j∈[B]

⋂

l,r∈Bj

r−l>vn

{

1

r − l + 1

∣

∣

∣

∣

∣

∣

∣

∣

r
∑

i=l

xiǫi

∣

∣

∣

∣

∣

∣

∣

∣

2

≤ φ
1/2
max

√
1 + C√

r − l + 1

√

p(1 + C logn)
}

]

≥ 1− c1 exp(−c2 logn),

for some constants c1, c2 > 0.
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Proof. Let Σ1/2 denote the symmetric square root of the covariance matrix ΣSS

and let B(i) denote the block Bj of the true partition such that i ∈ Bj. With

this notation, we can write xi =
(

ΣB(i)
)1/2

ui where ui ∼ N (0, I). For any
l ≤ r ∈ Bj we have

∣

∣

∣

∣

∣

∣

∣

∣

r
∑

i=l

xiǫi

∣

∣

∣

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

∣

∣

∣

r
∑

i=l

(

Σj
)1/2

uiǫi

∣

∣

∣

∣

∣

∣

∣

∣

2

≤ φ1/2
max

∣

∣

∣

∣

∣

∣

∣

∣

r
∑

i=l

uiǫi

∣

∣

∣

∣

∣

∣

∣

∣

2

.

Conditioning on {ǫi}i, for each b ∈ [p],
∑r

i=l ui,bǫi is a normal random variable
with variance

∑r
i=l(ǫi)

2. Hence, ||∑r
i=l uiǫi||22/(

∑r
i=l(ǫi)

2) conditioned on {ǫi}i
is distributed according to χ2

p and

P

[

1

r − l + 1

∣

∣

∣

∣

∣

∣

∣

∣

r
∑

i=l

xiǫi

∣

∣

∣

∣

∣

∣

∣

∣

2

≥ φ
1/2
max

√
∑r

i=l(ǫi)
2

r − l + 1

√

p(1 + C logn)
∣

∣

∣
{ǫi}ri=l

]

≤ P[χ2
p ≥ p(1 + C logn)] ≤ exp(−C log n/8),

where the last inequality follows from (7.21). Using lemma 7, for all l, r ∈ Bj

with r − l > vn the quantity
∑r

i=l(ǫi)
2 is bounded by (1 + C)(r − l + 1) with

probability at least 1− exp(−c1 logn), which gives us the following bound

P

[

⋂

j∈[B]

⋂

l,r∈Bj

r−l>vn

{

1

r − l+ 1

∣

∣

∣

∣

∣

∣

∣

∣

r
∑

i=l

xiǫi

∣

∣

∣

∣

∣

∣

∣

∣

2

≤ φ
1/2
max

√
1 + C√

r − l + 1

√

p(1 + C logn)
}

]

≥ 1− c1 exp(−c2 logn).

Lemma 9. Let {xi}i∈[n] be independent observations from (1.1). Assume that
A1 holds. Then for any vn > p,

P

[

max
1≤l<r≤n

r−l>vn

Λmax

(

1

r − l + 1

r
∑

i=l

xi (xi)
′
)

≥ 9φmax

]

≤ 2n2 exp(−vn/2)

and

P

[

min
1≤l<r≤n

r−l>vn

Λmin

(

1

r − l+ 1

r
∑

i=l

xi (xi)
′
)

≤ φmin/9

]

≤ 2n2 exp(−vn/2).

Proof. For any 1 ≤ l < r ≤ n, with r − l ≥ vn we have

P

[

Λmax

(

1

r − l + 1

r
∑

i=l

xi (xi)
′
)

≥ 9φmax

]

≤ 2 exp(−(r − l + 1)/2)

≤ 2 exp(−vn/2)

using (7.18), convexity of Λmax(·) and A1. The lemma follows from an appli-
cation of the union bound. The other inequality follows using a similar argu-
ment.
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Proof of Proposition 3

The following proof follows main ideas already given in theorem 2. We provide
only a sketch.

Given an upper bound on the number of partitions Bmax, we are going to
perform the analysis on the event {B̂ ≤ Bmax}. Since

P[h(T̂ , T ) ≥ nδn
∣

∣ {B̂ ≤ Bmax}] ≤
Bmax
∑

B′=B

P[h(T̂ , T ) ≥ nδn
∣

∣ {|T̂ | = B′ + 1}],

we are going to focus on P[h(T̂ , T ) ≥ nδn
∣

∣ {|T̂ | = B′ + 1}] for B′ > B (for

B′ = B it follows from theorem 2 that h(T̂ , T ) < nδn with high probability).
Let us define the following events

Ej,1 = {∃l ∈ [B′] : |T̂l − Tj| ≥ nδn, |T̂l+1 − Tj| ≥ nδn and T̂l < Tj < T̂l+1}
Ej,2 = {∀l ∈ [B′] : |T̂l − Tj| ≥ nδn and T̂l < Tj}
Ej,3 = {∀l ∈ [B′] : |T̂l − Tj| ≥ nδn and T̂l > Tj}.

Using the above events, we have the following bound

P[h(T̂ , T ) ≥ nδn
∣

∣ {|T̂ | = B′ + 1}] ≤
∑

j∈[B]

P[Ej,1] + P[Ej,2] + P[Ej,3].

The probabilities of the above events can be bounded using the same reasoning
as in the proof of theorem 2, by repeatedly using the KKT conditions given in
(3.2). In particular, we can use the strategy used to bound the event An,j,2. Since
the proof is technical and does not reveal any new insight, we omit the details.

A collection of known results

This section collects some known results that we have used in the paper. We
start by collecting some results on the eigenvalues of random matrices. Let

x
iid∼ N (0,Σ), i ∈ [n], and Σ̂ = n−1

∑

xi(xi)
′ be the empirical covariance

matrix. Denote the elements of the covariance matrix Σ as [σab] and of the

empirical covariance matrix Σ̂ as [σ̂ab].
Using standard results on concentration of spectral norms and eigenvalues

[10], [38] derives the following two crude bounds that can be very useful. Under
the assumption that p < n,

P[Λmax(Σ̂) ≥ 9φmax] ≤ 2 exp(−n/2) (7.18)

P[Λmin(Σ̂) ≤ φmin/9] ≤ 2 exp(−n/2). (7.19)

From Lemma A.3. in [6] we have the following bound on the elements of the
covariance matrix

P[|σ̂ab − σab| ≥ ǫ] ≤ c1 exp(−c2nǫ
2), |ǫ| ≤ ǫ0 (7.20)

where c1 and c2 are positive constants that depend only on Λmax(Σ) and ǫ0.
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Next, we use the following tail bound for χ2 distribution from [25], which
holds for all ǫ > 0,

P[χ2
n > n+ ǫ] ≤ exp(−1

8
min(ǫ,

ǫ2

n
)). (7.21)
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