Parallel Markov Chain Monte Carlo
for Nonparametric Mixture Models

Sinead A. Williamson
Avinava Dubey
Eric P. Xing

SINEADQCS.CMU.EDU
AKDUBEYQCS.CMU.EDU
EPXINGQCS.CMU.EDU

Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA 15201, USA

Abstract

Nonparametric mixture models based on the
Dirichlet process are an elegant alternative
to finite models when the number of under-
lying components is unknown, but inference
in such models can be slow. Existing at-
tempts to parallelize inference in such models
have relied on introducing approximations,
which can lead to inaccuracies in the poste-
rior estimate. In this paper, we describe aux-
iliary variable representations for the Dirich-
let process and the hierarchical Dirichlet pro-
cess that allow us to perform MCMC using
the correct equilibrium distribution, in a dis-
tributed manner. We show that our approach
allows scalable inference without the deteri-
oration in estimate quality that accompanies
existing methods.

1. Introduction

Models based on the Dirichlet process (DP, Ferguson,
1973) and its extension the hierarchical Dirichlet pro-
cess (HDP, Teh et al., 2006) have a number of appeal-
ing properties. They allow a countably infinite num-
ber of mixture components a priori, meaning that a
finite dataset will be modeled using a finite, but ran-
dom, number of parameters. If we observe more data,
the model can grow in a consistent manner. Unfortu-
nately, while this means that such models can theoret-
ically cope with data sets of arbitrary size and latent
dimensionality, in practice inference can be slow, and
the memory requirements are high.

Parallelization is a technique often used to speed
up computation, by splitting the computational and

Proceedings of the 30" International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

memory requirements of an algorithm onto multiple
machines. Parallelization of an algorithm involves
exploitation of (conditional) independencies. If we
can update one part of a model independently of an-
other part, we can split the corresponding sections of
code onto separate processors or cores. Unfortunately,
many models do not have appropriate independence
structure, making parallelization difficult. For exam-
ple, in the Chinese restaurant process representation
of a Dirichlet process mixture model, the conditional
distribution over the cluster allocation of a single data
point depends on the allocations of all the other data
points.

In such cases, a typical approach is to apply approxi-
mations that break some of the long-range dependen-
cies. While this can allow us to parallelize inference in
the approximate model, the posterior estimate will, in
general, be less accurate. Another option is to use a se-
quential Monte Carlo approach, where the posterior is
approximated with a swarm of independent particles.
In its simplest form, this approach is inherently par-
allelizable, but such a naive implementation will run
into problems of variance overestimation. We can im-
prove the estimate quality by introducing global steps
such as particle resampling and Gibbs steps, but these
steps cannot easily be parallelized.

In this paper, we show how the introduction of aux-
iliary variables into the DP and HDP can create the
conditional independence structure required to obtain
a parallel Gibbs sampler, without introducing approx-
imations. As a result, we can make use of the powerful
and elegant representations provided by the DP and
HDP, while maintaining manageable computational
requirements. We show that the resulting samplers
are able to achieve significant speed-ups over existing
inference schemes for the “exact” models, with no loss
in quality. By performing inference in the true model,
we are able to achieve better results than those ob-
tained using approximate models.

Parallel Markov Chain Monte Carlo for Nonparametric Mixture Models

2. Background

The Dirichlet process is a distribution over discrete
probability measures D = > 7, midp, with count-
ably infinite support, where the finite-dimensional
marginals are distributed according to a finite Dirich-
let distribution. It is parametrized by a base proba-
bility measure H, which determines the distribution
of the atom locations, and a concentration parameter
«a > 0, which acts like an inverse variance. The DP can
be used as the distribution over mixing measures in a
nonparametric mixture model. In the Dirichlet pro-
cess mixture model (DPMM, Antoniak, 1974), data
{z;}, are assumed to be generated according to

zi~ f(0:). (1)

While the DP allows an infinite number of clusters a
priori, any finite dataset will be modeled using a finite,
but random, number of clusters.

D ~DP(o,H), 6;~D,

Hierarchical Dirichlet processes extend the DP to
model grouped data. The HDP is a distribution over
probability distributions D,,,m = 1,..., M, each of
which is conditionally distributed according to a DP.
These distributions are coupled using a discrete com-
mon base-measure, itself distributed according to a
DP. Each distribution D,, can be used to model a
collection of observations x,,, := {:cmi}fv:*{, where

Dy ~ DP(O{,H),
emi ~ Dma

D?n ~ DP(’)/, DO) ;
2

form=1,...,Mandi=1,...,N,,. HDPs have been
used to model data including text corpora (Teh et al.,
2006), images (Sudderth et al., 2005), time series data
(Fox et al., 2008), and genetic variation (Sohn & Xing,
2000).

A number of inference schemes have been developed
for the DP and the HDP. The most commonly
used class of inference methods is based on the Chi-
nese restaurant process (CRP, see for example Aldous
(1985)). Such schemes integrate out the random mea-
sures (D in Eq. 1; Dg and {D,,}M_, in Eq. 2) to obtain
the conditional distribution for the cluster allocation
of a single data point, conditioned on the allocations
of all the other data points. A variety of Gibbs sam-
plers based on the CRP can be constructed for the DP
(Neal, 1998) and the HDP (Teh et al., 2006). Unfor-
tunately, because the conditional distribution for the
cluster allocation of a single data point depends on
all the data, this step cannot be parallelized without
introducing approximations.

An alternative class of inference schemes involve ex-
plicitly instantiating the random measures (Ishwaran
& James, 2001). In this case, the observations are

i.i.d. given the random measures, and can be sampled
in parallel. However, since the random measure de-
pends on the cluster allocations of all the data points,
sampling the random measure cannot be parallelized.

Among existing practical schemes for parallelizable in-
ference in DP and HDP, the following three are the
most popular:

2.1. Sequential Monte Carlo methods

Sequential Monte Carlo (SMC) methods approximate
a distribution of interest using a swarm of weighted,
sequentially updated, particles. SMC methods have
been used to perform inference in a number of mod-
els based on the DP (Fearnhead, 2004; Ulker et al.,
2010; Rodriguez, 2011; Ahmed et al., 2011). Such
methods are appealing when considering paralleliza-
tion, because each particle (and its weight) are up-
dated independently of the other particles, and need
consider only one data point at a time. However, a
naive implementation where each particle is propa-
gated in isolation leads to very high variance in the
resulting estimate. To avoid this, it is typical to in-
troduce resampling steps, where the current swarm of
particles is replaced by a new swarm sampled from the
current posterior estimate. This avoids an explosion in
the variance of our estimate, but the resampling can-
not be performed in parallel.

2.2. Variational inference

Variational Bayesian inference algorithms have been
developed for both the DP (Blei & Jordan, 2004; Kuri-
hara et al., 2007) and the HDP (Teh et al., 2007; Wang
et al., 2011). Variational methods approximate a pos-
terior distribution p(6]|X) with a distribution ¢(6) be-
longing to a more manageable family of distributions
and try to find the “best” member of this family, typ-
ically by minimizing the Kullback-Leibler divergence
between p(0|X) and ¢(0). This also gives us a lower
bound on the log likelihood, logp(X). A typical ap-
proach to selecting the family of approximating distri-
butions is to assume independencies that may not be
present in the true posterior. This means that varia-
tional algorithms are often easy to parallelize. How-
ever, by searching only within a restricted class of
models we lose some of the expressiveness of the model,
and will typically obtain less accurate results than
MCMC methods that asymptotically sample from the
true posterior.

2.3. Approximate parallel Gibbs sampling

An approximate distributed Gibbs sampler for the
HDP is described by Asuncion et al. (2008). The ba-

Parallel Markov Chain Monte Carlo for Nonparametric Mixture Models

sic sampler alternates distributed Gibbs steps with a
global synchronization step. If there are P processors,
in the distributed Gibbs steps, each processor updates
1/P of the cluster allocations. To sample the cluster
allocation for a given observation, rather than use the
current allocations of all the other data, the sampler
uses the current cluster allocations for the observations
stored on the same processor, and for all other obser-
vations it uses the allocations after the last synchro-
nization step. In the synchronization step, the clus-
ter counts are amalgamated. This can lead to prob-
lems with cluster alignment. In particular, there is no
clear way to decide whether to merge a new cluster
on processor p with a new cluster on processor p’. An
asynchronous version of the algorithm avoids the bot-
tleneck of a global synchronization step; however in
practice it obtains slower convergence.

3. Introducing auxiliary variables to
obtain conditional independence

The key to developing a parallel inference algorithm
is to exploit or introduce independencies. In the se-
quential Monte Carlo samplers, this independence can
lead to high variance in the resulting estimate. In the
other algorithms described, the independence is only
achieved by introducing approximations.

If observations are modeled using a mixture model,
then conditioned on the cluster allocations the obser-
vations are independent. The key idea that allows us
to introduce conditional independence is the fact that,
for appropriate parameter settings, Dirichlet mixtures
of Dirichlet processes are Dirichlet processes. In The-
orems 1 and 2, we demonstrate situations where this
result holds, and develop mixtures of nonparametric
models with the appropriate marginal distributions
and conditional independence structures. The result-
ing models exhibit conditional independence between
parameters that are coupled in Eq. 1 and Eq. 2, al-
lowing us to perform parallel inference in Section 4
without resorting to approximations.

Theorem 1 (Auxiliary variable representation for the
DPMM). We can re-write the generative process for a
DPMM (given in Eq. 1) as
a .. o «a
D, ~DP (?H) . ¢ ~ Dirichlet (ﬁ, o P) »
7Ti~¢7 GiNDTriv xle(07)7

forj=1,...,P andi=1,...,N. The marginal dis-
tribution over the x; remains the same.

Proof. We prove a more general result, that if ¢ ~
Dirichlet(aq,...,ap) and D; ~ DP(aj, H;), then

D=3, 6;D; ~ DP(S; aj, ZE20),

A Dirichlet process with concentration parameter o
and base probability measure H can be obtained by
normalizing a gamma process with base measure aH.
Gamma processes are examples of completely random
measures (Kingman, 1967), and the superposition of
P completely random measures is again a completely
random measure. In particular, if G; ~ GaP(«o;Hj),
j=1,....P then G:= 3, G; ~ GaP(}_; a; H;).

Note that the total masses of the G; are gamma-
distributed, and therefore the vector of normalized
masses is Dirichlet-distributed. It follows that, if
¢ ~ Dirichlet(a1,...,ap) and D; ~ DP(«;, Hj), then

D :=Y,¢;D; ~ DP(Y, aj%) This result,
which is well known in the nonparametric Bayes com-
munity, is explored in more depth in Chapter 3 of
Ghosh & Ramamoorthi (2003). An alternative proof

is given in the supplementary material. O

The auxiliary variables 7; introduced in Eq. 3 intro-
duce conditional independence, which we exploit to
develop a distributed inference scheme. If we have P
processors, then we can split our data among them
according to the m;. Conditioned on their processor
allocations, the data points are distributed according
to independent Dirichlet processes. In Section 4, we
will see how we can combine local inference in these
independent Dirichlet processes with global steps to
move data between processors.

We can follow a similar approach with the HDP, as-
signing each observation z,,; in each collection x,,
to one of P groups corresponding to P processors.
However, to ensure the higher level DP can be split
in a manner consistent with the lower level DP, we
must impose some additional structure into the gen-
erative process described by Eq. 2 — specifically, that
v ~ Gamma(a).! We can then introduce auxiliary
variables as follows:

Theorem 2 (Auxiliary variable representation for the
HDP). If we incorporate the requirement that the
concentration parameter v for the bottom level DPs
{Dj}jM:1 depends on the concentration parameter «
for the top level DP Dgy as v ~ Gamma(a), then we
can rewrite the generative process for the HDP as:

¢; ~ Gamma(a/P),
Dyoj ~DP(a/P H),

U ~ Dirichlet(¢y, . ..
Dinj ~ DP(¢;, Doj)

Tmi ™~ Vm,
gmi NDMTMni 5

7<P)7 Tmi Nf(emz)a

(4)

!More generally, we can allow separate concentration
parameters -, for each Dirichlet process, provided v, ~
Gamma(a).

Parallel Markov Chain Monte Carlo for Nonparametric Mixture Models

forj=1,....P,m=1,.... M, and i = 1,...,N,,.
The marginal distribution over the X,,; is the same in
Eq.s 2 and 4.

Proof. 1f (; ~ Gamma(a/P), then v = >, ~
Gamma(w). Since Dy; ~ DP(«/P, H), it follows that
GOj = CjDOj ~ GaP (%H) and G() = Zj GOj ~
GaP(aH). If we normalize Gy, we find that Dy :=
Y; & Do; ~ DP(a, H), as required by the HDP.

If we write ij ~ GaP(GOj) = GaP(CjDoj), then we
can see that Goj = 7 j Dij, where n,,; ~ Gamma((;),
and ij ~ DP(C]‘,DOJ‘).

If we normalize the G,,;, we find that
Z s~ D
Zk nmk !

> ¢ Doj
~DP C'7j> :DP(aD)7
(Zo57 D

as required by the HDP. Since the n,; only ap-
pear as a normalized vector, we can write v,, =

(nmla e 777mP)/ 2521 Nmj ~ DiriChlet(CL e 7<P)'

A more in-depth version of this proof is given in the
supplementary material. O

Again, the application to distributed inference is clear:
Conditioned on the m,,; we can split our data into P
independent HDPs.

4. Inference

The auxiliary variable representation for the DP intro-
duced in Theorem 1 makes the cluster allocations for
data points where 7; = j conditionally independent of
the cluster allocations for data points where m; # j.
We can therefore split the data onto P parallel pro-
cessors or cores, based on the values of m;. We will
henceforth call m; the “processor indicator” for the ith
data point. We can Gibbs sample the cluster alloca-
tions on each processor independently, intermittently
moving data between clusters to ensure mixing of the
sampler.

4.1. Parallel inference in the Dirichlet process

We consider first the Dirichlet process. Under the con-
struction described in Eq. 3, each data point z; is as-
sociated with a processor indicator m; and a cluster
indicator z;. All data points associated with a single
cluster will have the same processor indicator, mean-
ing that we can assign each cluster to one of the P
processors (i.e., all data points in a single cluster are

assigned to the same processor). Note that the jth pro-
cessor will typically be associated with multiple clus-
ters, corresponding to the local Dirichlet process D;.
Conditioned on the assignments of the auxiliary vari-
ables 7;, the data points x; in Equation 3 depend only
on the local Dirichlet process D; and the associated
parameters.

We can easily marginalize out the D; and ¢. As-
sume that each data point x; is assigned to a proces-
sor m; € {1,..., P}, and a cluster z; residing on that
processor. We will perform local inference on the clus-
ter assignments z;, and intermittently we will perform
global inference on the ;.

4.1.1. LOCAL INFERENCE: SAMPLING THE z;

Conditioned on the processor assignments, sampling
the cluster assignments proceeds exactly as in a normal
Dirichlet process with concentration parameter a/P.
A number of approaches for Gibbs sampling in the
DPMM are described by Neal (1998).

4.1.2. GLOBAL INFERENCE: SAMPLING THE T;

Under the auxiliary variable scheme, each cluster is
associated with a single processor. We jointly resam-
ple the processor allocations of all data points within
a given cluster, allowing us to move an entire cluster
from one processor to another. We use a Metropolis
Hastings step with a proposal distribution that inde-
pendently assigns cluster k to processor j with prob-
ability 1/P. This means our accept/reject probability
depends only on the ratio of the likelihoods of the two
assignments.

The likelihood ratio is given by:

p(m}) _p{wi}|m)p({n] }Ho, P)

p{m:}) p{zi}mi)p({mi}|a, P)
_p{zi}m)p({i e, P)
({Zz}|7rl)p({7ri}|a,P) (5)
p max(N;,N}) ot

:'1_[1 H a’.*j.l’

i=1 L

where INV; is the number of data points on processor
j, and a;; is the number of clusters of size i on pro-
cessor j. In fact, we can simplify Eq. 5 further, since
many of the terms in the ratio of factorials will cancel.
A derivation of Eq. 5 is given in the supplementary
material.

The reassignment of clusters can be implemented in
a number of different manners. Actually transferring
data from one processor to another will lead to bot-
tlenecks, but may be appropriate if the entire data set

Parallel Markov Chain Monte Carlo for Nonparametric Mixture Models

is too large to be stored in memory on a single ma-
chine. If we can store a copy of the dataset on each
machine, or we are using multiple cores on a single ma-
chine, we can simply transfer updates to lists of which
data points belong to which cluster on which machine.
We note that the reassignments need not occur at the
same time, reducing the bandwidth required.

4.2. Parallel inference in the HDP

Again, we can assign tokens z,,; to one of P processors
according to m,,;. Conditioned on the processor assign-
ment and the values of (;, the data on each processor is
distributed according to an HDP. We instantiate the
processor allocations m,,; and the bottom-level DP pa-
rameters, plus sufficient representation to perform in-
ference in the processor-specific HDPs. We assume a
Chinese restaurant franchise representation (Teh et al.,
2006) — data points in the lower-level Dirichlet pro-
cesses are clustered into “tables”, and in the upper-
level Dirichlet process, these “tables” are clustered and
each cluster is assigned a “dish”.

4.2.1. LOCAL INFERENCE: SAMPLING THE TABLE
AND DISH ALLOCATIONS

Conditioned on the processor assignments, we simply
have P independent HDPs, and can use any exist-
ing inference algorithm for the HDP. In our experi-
ments, we used the Chinese restaurant franchise sam-
pling scheme (Teh et al., 2006); other representations
could also be used.

4.2.2. GLOBAL INFERENCE: SAMPLING THE T, ;
AND THE (j

We can represent the (; as (; := ~7§;, where
v ~ Gamma(a,1) and & = (&,...,&p) ~
Dirichlet(a/P, ..., a/P). We sample the m,,; and the
&; jointly, and then sample «, in order to improve the
acceptance ratio of our Metropolis-Hastings steps.

Again, we want to reallocate whole clusters rather
than independently reallocate individual tokens. So,
our proposal distribution again assigns cluster k to
processor j with probability 1/P. Note that this
means that a single data point does not necessar-
ily reside on a single processor — its tokens may be
split among multiple processors. We also propose
&" ~ Dirichlet(a/P, ..., a/P), and accept the result-

ing state with probability min(1,r), where

_p{zmit{7m}.},7, € o P)
p({mmi}l{ﬂmi}?77£>avp)
p({mnit. &) p(§7 e, P)

p({Tmi}7,€) p(€ler, P)
)T P (/P T (6)

H)To+a/P T T(a/P +T7)

~

n. M
H b]z' H a]rni!
bx,! 5!

i=1 Jt m=1

<.

A derivation of Eq. 6 is given in the supplementary ma-
terial. As before, many of the ratios can be simplified
further, reducing computational costs.

As with the Dirichlet process sampler, we can either
transfer the data between machines, or simply update
lists of which data points are “active” on each machine.
We can resample 7y after sampling the £; and m,,; using
a standard Metropolis Hastings step.

5. Experimental evaluation

Our goal in this paper is to employ parallelization to
speed up inference in the DP and HDP, without in-
troducing approximations that might compromise the
quality of our model estimate. To establish whether
we have achieved that goal, we perform inference in
both the DP and HDP using a number of inference
methods, and look at appropriate measures of model
quality as a function of inference time. This captures
both the speed of the algorithms and the quality of the
approximations obtained.

5.1. Dirichlet process mixture of Gaussians

We begin by evaluating the performance of the Dirich-
let process sampler described in Section 4.1. We gen-
erated a synthetic data set of one million data points
from a mixture of univariate Gaussians. We used 50
components, each with mean distributed according to
Uniform(0, 10) and fixed variance of 0.01. A synthetic
data set was chosen because it allows us to compare
performance with “ground truth”. We compared four
inference algorithms:

e Auxiliary variable parallel Gibbs sampler
(AVparallel) — the model proposed in this paper,
implemented in Java.

e Sequential Monte Carlo (SMC) — a basic se-
quential importance resampling algorithm, imple-
mented in Java.

Parallel Markov Chain Monte Carlo for Nonparametric Mixture Models

e Variational Bayes (VB) — the collapsed varia-
tional Bayesian algorithm described in Kurihara
et al. (2007). We used an existing Matlab imple-
mentation?.

e Synchronous approximate parallel DP
(Synch) — we modified the synchronous approxi-
mate sampler for the HDP (Asuncion et al., 2008)
to be applicable to the DP. We implemented the
sampler in Java, using the settings described in
Asuncion et al. (2008).

In each case, we ran the algorithms on one, two, four
and eight processors on a single multi-core machine?,
with one processor for the AVparallel method corre-
sponding to the regular Gibbs sampler. We initialized
each algorithm by clustering the data into 80 clusters
using K-means clustering, and split the resulting clus-
ters among the processors.

We consider the F1 score between the clusterings ob-
tained by each algorithm and the ground truth, as a
function of time. Let P9 be the set of pairs of ob-
servations that are in the same cluster under ground
truth, and let P(™ be the set of pairs of observations
that are in the same cluster in the inferred model.
Then we define the F1 score of a model as the har-
monic mean between the precision — the proportion
|P@) P /P of pairs that are co-clustered by
the model that also co-occur in the true partition —
and the recall — the proportion |P¥) N P™)|/|PW)]|
of true co-occurrences that are co-clustered by the
model. This definition of F1 is invariant to permuta-
tion, and so is appropriate in an unsupervised setting
(Xing et al., 2002).

Figure 1(a) shows the F1 scores for our auxiliary vari-
able method over time, using one, two, four and eight
processors. As we can see, increasing the number
of processors increases convergence speed without de-
creasing performance. Figure 1(b) shows the F1 scores
over time for the four methods, each using eight cores.
While we can get very fast results using variational
Bayesian inference, the quality of the estimate is poor.
Conversely, we achieve better performance (as mea-
sured by F1 score) than competing MCMC algorithms,
with faster convergence. Figure 1(c) shows the time
taken by each algorithm to reach convergence, for vary-
ing numbers of processors. AV parallel and Synch per-
form similarly. Figure 1(d) shows the relative time
spent sampling the processor allocations (the global
step) and sampling the cluster allocations (the local

2Code obtained from https://sites.google.
com/site/kenichikurihara/academic-software/

variational-dirichlet-process-gaussian-mixture-model

3An AMD FX 8150 3.6 GHz (8 core) with 16 gig ram.

step), over 500 iterations. This explains the similar
scaleability of AVparallel and Synch: In AVparallel
the majority of time is spent on local Gibbs sampling,
which is implemented identically in both models.

5.2. HDP topic model

Next, we evaluate the performance of the HDP sampler
on a topic modeling task as described by Teh et al.
(2006). Our dataset was a corpus of NIPS papers?,
consisting of 2470 documents, containing 14300 unique
words and around 3 million total words. We split the
dataset into a training set of 2220 documents and a
test set of 250 documents, and evaluated performance
in terms of test set perplexity. We compared three
inference methods:

e Auxiliary variable parallel Gibbs sampler
(AVparallel) — the model proposed in this paper,
implemented in Java.

e Variational Bayes (VB) — the collapsed varia-
tional Bayesian algorithm described in Teh et al.
(2007). We used an existing Java implementa-
tion.?

e Synchronous approximate parallel HDP
(Synch) — the synchronous sampler for the HDP
(Asuncion et al., 2008). We implemented the sam-
pler in Java, using the settings described in the
original paper.

Again, we ran each method on one, two, four and eight
processors, and initialized each document to one of 80
clusters using K-means.

Figure 2(a) shows the perplexity obtained using our
auxiliary variable method over time, using one, two,
four and eight processors, and Figures 2(b) and 2(c)
compare the performance of the three inference meth-
ods. As with the DPMM, while the variational ap-
proach is able to obtain results very quickly, the qual-
ity is much lower than that obtained using MCMC
methods. The AVparallel method achieves much bet-
ter perplexity than the approximate Synch method —
the difference is much more striking than that seen
in the DPMM. Note that, in the synthetic data used
for the DPMM model, the true clusters are of similar
size, while in the real-world data used for the HDP
experiment there are likely to be many small clusters.
We hypothesise that while the errors introduced in the
synchronous approximate method have little effect if
the clusters are large, they become more significant if

‘http://ai.stanford.edu/~gal/data.html

®Code obtained from http://www.bradblock.com/
tm-0.1.tar.gz

https://sites.google.com/site/kenichikurihara/academic-software/variational-dirichlet-process-gaussian-mixture-model
https://sites.google.com/site/kenichikurihara/academic-software/variational-dirichlet-process-gaussian-mixture-model
https://sites.google.com/site/kenichikurihara/academic-software/variational-dirichlet-process-gaussian-mixture-model
http://ai.stanford.edu/~gal/data.html
http://www.bradblock.com/tm-0.1.tar.gz
http://www.bradblock.com/tm-0.1.tar.gz

Parallel Markov Chain Monte Carlo for Nonparametric Mixture Models

0.8
0.6
-
o
0.4
8 processors
/“ #+4 processors
0.2
5 -e-2 processors
-#Gibbs (1 processor)
0
10 80 640 5120

Time (minutes)

(a) F1 score against run time for AVparallel.

2500
AVparallel
Ta000 | M = Synch
3 SMC (100 particle)
E I = VB
~ 1500
8
[
g 1
81000
]
£ I
£ 500 |
S
I I I I
0
1 2 4 8

Number of processors

(c) Time taken to reach convergence (< 0.1% change in
F1).

0.8

0.6
-
'8

0.4 AVparallel

* -e-Synch
--VB
0.2 - -#-Gibbs (1 processor)
" -= SMC (10 particle)
0 SMC (100 particle)
4 16 64 256 1024 4096

Time (minutes)

(b) F1 score against run time for various algorithms.
Unless otherwise specified, eight processors are used.

100
90
80 1
70
60 7
50 1
40
30 ;
20 1

10
_/./o’—’i

0 2 4 6 8 10
Number of processors

T Local Gibbs Step
-=Global MH Step

Time (miniutes)

(d) Time spent in global and local steps for AVparallel,
over 500 iterations.

Figure 1. Synthetic data modeled using a DPMM.

we have small clusters. Again, we find (Figure 2(d))
that the majority of time is spent in the local Gibbs
sampler, meaning we can obtain a good rate of in-
crease of speed by increasing the number of processors
(Figures 2(a) and 2(c)).

6. Discussion and future work

We have shown how alternative formulations for the
DP and HDP can yield parallelizable Gibbs samplers
that allow scalable and accurate inference. Our exper-

iments show that the resulting algorithms offer better
performance and scalability than existing parallel in-
ference methods.

Since the assignments of clusters to processors is ran-
dom, and since clusters vary in sizes, the loads as-
signed to each processor will vary. In addition, since
each cluster must reside on a single processor, the scal-
ability of our algorithms is limited by the size of the
largest cluster. An interesting avenue for future de-
velopment is to investigate approximate methods for
splitting large clusters onto multiple processors, to en-

Parallel Markov Chain Monte Carlo for Nonparametric Mixture Models

1200
8 Processor
-\ “*4 Processor
-®-2 Processor
800 S = . i
z \ Gibbs (1 Processor)
F M e
E h,j' .
g s ""-\._'\-_.,.,._.‘._.‘._.‘._'_._.
400 ®eeteeeeteseqeacco
0
0 500 1000 1500 2000 2500

Time (minutes)

(a) Test set perplexity against run time for AVparallel.

4000 I
AVparallel

B Synch
mVB =

w
(=]
(=]
o

N
o
o
o

Time to converge (minutes)
S
o
o

Number of processors

¢) Time taken to reach convergence (< 0.1% change in
g g
perplexity).

4000
AVparallel
#-Synch

3000 A +VB H
o “*Gibbs (1 Processor)
AN
5 2000 \ \
[
a

1000 —_

——
'.r |
0

0.25 1 4 16 64 256 1024 4096

Time (minutes)

(b) Test set perplexity against run time for various al-
gorithms. Unless otherwise specified, eight processors
are used.

o
o

Local Gibbs Step/||
#Global MH Step

o)
o

~
o

o

v
o

N
o

Time (miniutes)

w
o
—

N
o
-

=
o
Ha— —

o
L
oo

0 2 4 6 10

Number of processors

(d) Time spent in global and local steps for AVparallel,
over 20 iterations.

Figure 2. NIPS corpus, modeled using an HDP.

able better allocation of resources.

We note that a related parallel MCMC method for
the Dirichlet process has been developed concurrently
and independently by Lovell et al. (2012). This work
uses the same auxiliary variable representation of the
Dirichlet process, and describes a MapReduce algo-
rithm; the hierarchical Dirichlet process is not con-
sidered. Their preliminary results using the MapRe-
duce framework suggest that the speed-ups obtained
in this paper in a multi-core environment will carry

over to multi-machine architectures. Our next goal
is to develop and publish code appropriate for multi-
machine architectures, and to extend our approach to
other nonparametric models.

Acknowledgements

This research was supported by AFOSR
FA9550010247, NIH RO1GMO087694 and DARPA
XDATA FA87501220324. We would like to thank Iain
Murray for helpful comments on a draft.

Parallel Markov Chain Monte Carlo for Nonparametric Mixture Models

References

Ahmed, A., Ho, Q., Teo, C. H., Eisenstein, J., Smola,
A. J., and Xing, E. P. Online inference for the infi-

nite topic-cluster model: Storylines from streaming
text. In AISTATS, 2011.

Aldous/, D. J. Exchangeability and related topics.
In Ecole d’Eté de probabilités de Saint-Flour XIII.
1985.

Antoniak, C. E. Mixtures of Dirichlet processes with
applications to Bayesian nonparametric problems.
Ann. Statist., 2(6):1152-1174, 1974.

Asuncion, A., Smyth, P., and Welling, M. Asyn-
chronous distributed learning of topic models. In
NIPS, 2008.

Blei, D. M. and Jordan, M. I. Variational methods for
the Dirichlet process. In ICML, 2004.

Fearnhead, P. Particle filters for mixture models with
an unknown number of components. Statistics and
Computing, 14:11-21, 2004.

Ferguson, T. S. A Bayesian analysis of some nonpara-
metric problems. Ann. Statist., 1(2):209-230, 1973.

Fox, E. B., Sudderth, E. B., Jordan, M. I., and Will-
sky, A. S. An HDP-HMM for systems with state
persistence. In ICML, 2008.

Ghosh, J. K. and Ramamoorthi, R. V. Bayesian Non-
parametrics. Springer, 2003.

Ishwaran, H. and James, L. F. Gibbs sampling meth-
ods for stick-breaking priors. JASA, 96(453):161—
173, 2001.

Kingman, J. F. C. Completely random measures. Pa-
cific Journal of Mathematics, 21(1):59-78, 1967.

Kurihara, K., Welling, M., and Teh, Y.-W. Collapsed
variational Dirichlet process mixture models. In IJ-
CAI 2007.

Lovell, D., Adams, R. P., and Mansingka, V. K. Par-
allel Markov chain Monte Carlo for Dirichlet pro-

cess mixtures. In Workshop on Big Learning, NIPS,
2012.

Neal, R. M. Markov chain sampling methods for
Dirichlet process mixture models. Technical Re-
port 9815, Dept. of Statistics, University of Toronto,
1998.

Rodriguez, A. On-line learning for the infinite hid-
den Markov model. Communications in Statistics -
Simulation and Computation, 40(6):879-893, 2011.

Sohn, K.-A. and Xing, E. P. A hierarchical Dirichlet
process mixture model for haplotype reconstruction
from multi-population data. Ann. Appl. Stat., 3(2):
791-821, 20009.

Sudderth, E. B., Torralba, A., Freeman, W. T., and
Willsky, A. S. Describing visual scenes using trans-
formed Dirichlet processes. In NIPS, 2005.

Teh, Y.-W., Jordan, M. I., Beal, M. J., and Blei,
D. M. Hierarchical Dirichlet processes. Journal
of the American Statistical Association, 101(476):
1566-1581, 2006.

Teh, Y.-W., Kurihara, K., and Welling, M. Collapsed
variational inference for HDP. In NIPS, 2007.

Ulker, Y., Gunsel, B., and Cemgil, A. T. Sequen-
tial Monte Carlo samplers for Dirichlet process mix-
tures. In AISTATS, 2010.

Wang, C., Paisley, J., and Blei, D. M. Online vari-
ational inference for the hierarchical Dirichlet pro-
cess. In AISTATS, 2011.

Xing, E. P., Ng, A. Y., Jordan, M. L., and Russell, S.
Distance metric learning, with application to clus-
tering with side-information. In NIPS, 2002.

