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Abstract

Positive definite kernels on probability measures have beenrecently applied to classification prob-
lems involving text, images, and other types of structured data. Some of these kernels are related
to classic information theoretic quantities, such as (Shannon’s) mutual information and the Jensen-
Shannon (JS) divergence. Meanwhile, there have been recentadvances in nonextensive gener-
alizations of Shannon’s information theory. This paper bridges these two trends by introducing
nonextensive information theoretic kernels on probability measures, based on new JS-type diver-
gences. These new divergences result from extending the thetwo building blocks of the classical
JS divergence: convexity and Shannon’s entropy. The notionof convexity is extended to the wider
concept ofq-convexity, for which we prove a Jensenq-inequality. Based on this inequality, we in-
troduce Jensen-Tsallis (JT)q-differences, a nonextensive generalization of the JS divergence, and
define ak-th order JTq-difference between stochastic processes. We then define a new family of
nonextensive mutual information kernels, which allow weights to be assigned to their arguments,
and which includes the Boolean, JS, and linear kernels as particular cases. Nonextensive string
kernels are also defined that generalize thep-spectrum kernel. We illustrate the performance of
these kernels on text categorization tasks, in which documents are modeled both as bags of words
and as sequences of characters.
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1. Introduction

In kernel-based machine learning (Schölkopf and Smola, 2002; Shawe-Taylor and Cristianini, 2004),
there has been recent interest in defining kernels on probability distributions to tackle several prob-
lems involving structured data (Desobry et al., 2007; Moreno et al., 2004;Jebara et al., 2004; Hein
and Bousquet, 2005; Lafferty and Lebanon, 2005; Cuturi et al., 2005). By defining a parametric
family Scontaining the distributions from which the data points (in the input spaceX) are assumed
to have been generated, and defining a map fromX from S (e.g., via maximum likelihood estima-
tion), a distribution inS may be fitted to each datum. Therefore, a kernel that is defined onS×S
automatically induces a kernel onX ×X, through map composition. In text categorization, this
framework appears as an alternative to the Euclidean geometry inherent tothe usual bag-of-words
representations. In fact, approaches that map data to statistical manifolds,equipped with well-
motivated non-Euclidean metrics (Lafferty and Lebanon, 2005), often outperform support vector
machine (SVM) classifiers with linear kernels (Joachims, 2002). Some of these kernels have a
natural information theoretic interpretation, establishing a bridge between kernel methods and in-
formation theory (Cuturi et al., 2005; Hein and Bousquet, 2005).

The main goal of this paper is to widen that bridge; we do that by introducing anew class of ker-
nels rooted innonextensiveinformation theory, which contains previous information theoretic ker-
nels as particular elements. The Shannon and Rényi entropies (Shannon, 1948; Rényi, 1961) share
theextensivityproperty: the joint entropy of a pair of independent random variables equals the sum
of the individual entropies. Abandoning this property yields the so-callednonextensive entropies
(Havrda and Charv́at, 1967; Lindhard, 1974; Lindhard and Nielsen, 1971; Tsallis, 1988), which
have raised great interest among physicists in modeling phenomena such aslong-range interactions
and multifractals, and in constructing nonextensive generalizations of Boltzmann-Gibbs statisti-
cal mechanics (Abe, 2006). Nonextensive entropies have also been recently used in signal/image
processing (Li et al., 2006) and other areas (Gell-Mann and Tsallis, 2004). The so-calledTsal-
lis entropies(Havrda and Charv́at, 1967; Tsallis, 1988) form a parametric family of nonextensive
entropies that includes the Shannon-Boltzmann-Gibbs entropy as a particular case. Nonextensive
generalizations of information theory have been proposed (Furuichi, 2006).

Convexity and Jensen’s inequality are key concepts underlying several central results of infor-
mation theory, for example, the non-negativity of theKullback-Leibler (KL) divergence(or rela-
tive entropy) (Kullback and Leibler, 1951). Jensen’s inequality (Jensen, 1906) also underlies the
Jensen-Shannon (JS) divergence, a symmetrized and smoothed version of the KL divergence (Lin
and Wong, 1990; Lin, 1991), often used in statistics, machine learning, signal/image processing,
and physics.

In this paper, we introduce new extensions of JS-type divergences bygeneralizing its two pil-
lars: convexityandShannon’s entropy. These divergences are then used to define new information-
theoretic kernels between probability distributions. More specifically, our main contributions are:

• The concept ofq-convexity, generalizing that of convexity, for which we prove aJensen q-
inequality. The related concept ofJensen q-differences, which generalize Jensen differences,
is also proposed. Based on these concepts, we introduce theJensen-Tsallis (JT) q-difference,
a nonextensive generalization of the JS divergence, which is also a “mutual information” in
the sense of Furuichi (2006).

• Characterization of the JTq-difference, with respect to convexity and extrema, extending
work by Burbea and Rao (1982) and by Lin (1991) for the JS divergence.
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• Definition of k-th order joint and conditional JTq-differences for families of stochastic pro-
cesses, and derivation of a chain rule.

• A broad family of (nonextensive information theoretic) positive definite kernels, interpretable
as nonextensive mutual information kernels, ranging from the Boolean to the linear kernels,
and including the JS kernel proposed by Hein and Bousquet (2005).

• A family of (nonextensive information theoretic) positive definite kernels between stochastic
processes, subsuming well-known string kernels (e.g., thep-spectrum kernel) (Leslie et al.,
2002).

• Extensions of results of Hein and Bousquet (2005) proving positive definiteness of kernels
based on the unbalanced JS divergence. A connection between these new kernels and those
studied by Fuglede (2005) and Hein and Bousquet (2005) is also established. In passing, we
show that the parametrix approximation of the multinomial diffusion kernel introduced by
Lafferty and Lebanon (2005) isnot positive definite in general.

The paper is organized as follows. Section 2 reviews nonextensive entropies, with empha-
sis on the Tsallis case. Section 3 discusses Jensen differences and divergences. The concepts
of q-differences andq-convexity are introduced in Section 4, where they are used to define and
characterize some new divergence-type quantities. In Section 5, we define the Jensen-Tsallisq-
difference and derive some of its properties; in that section, we also definek-th order Jensen-Tsallis
q-differences for families of stochastic processes. The new family of entropic kernels is introduced
and characterized in Section 6, which also introduces nonextensive kernels between stochastic pro-
cesses. Experiments on text categorization are reported in Section 7. Section 8 concludes the paper
and discusses future research.

2. Nonextensive Entropies and Tsallis Statistics

In this section, we start with a brief overview of nonextensive entropies.We then introduce the
family of Tsallis entropies, and extend their domain to unnormalized measures.

2.1 Nonextensivity

In what follows,R+ denotes the nonnegative reals,R++ denotes the strictly positive reals, and

∆n−1 ,

{
(x1, . . . ,xn) ∈ R

n |
n

∑
i=1

xi = 1, ∀i xi ≥ 0

}

denotes the(n−1)-dimensional simplex.
Inspired by the axiomatic formulation of Shannon’s entropy (Khinchin, 1957; Shannon and

Weaver, 1949), Suyari (2004) proposed an axiomatic framework fornonextensive entropies and
a uniqueness theorem. Letq ≥ 0 be a fixed scalar, called theentropic index. Suyari’s axioms
(Appendix A) determine a functionSq,φ : ∆n−1 → R of the form

Sq,φ(p1, . . . , pn) =

{
k

φ(q)

(
1−∑n

i=1 pq
i

)
if q 6= 1

−k∑n
i=1 pi ln pi if q = 1,

(1)
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wherek is a positive constant, andφ : R+ → R is a continuous function that satisfies the following
three conditions:(i) φ(q) has the same sign asq−1; (ii) φ(q) vanishes if and only ifq = 1; (iii) φ is
differentiable in a neighborhood of 1 andφ′(1) = 1.

Note thatS1,φ = limq→1Sq,φ, thus Sq,φ(p1, . . . , pn), seen as a function ofq, is continuous at
q = 1. For anyφ satisfying these conditions,Sq,φ has thepseudoadditivityproperty: for any two
independent random variablesA andB, with probability mass functionspA ∈ ∆nA−1 andpB ∈ ∆nB−1,
respectively, consider the new random variableA⊗B defined by the joint distributionpA⊗ pB ∈
∆nAnB−1; then,

Sq,φ(A⊗B) = Sq,φ(A)+Sq,φ(B)− φ(q)

k
Sq,φ(A)Sq,φ(B),

where we denote (as usual)Sq,φ(A) , Sq,φ(pA).
Forq = 1, Suyari’s axioms recover the Shannon-Boltzmann-Gibbs (SBG) entropy,

S1,φ(p1, . . . , pn) = H(p1, . . . , pn) = −k
n

∑
i=1

pi ln pi ,

and pseudoadditivity turns intoadditivity, that is,H(A⊗B) = H(A)+H(B) holds.
Several proposals forφ have appeared in the literature (Havrda and Charvát, 1967; Daŕoczy,

1970; Tsallis, 1988). In this article, unless stated otherwise, we setφ(q) = q−1, which yields the
Tsallis entropy:

Sq(p1, . . . , pn) =
k

q−1

(
1−

n

∑
i=1

pq
i

)
. (2)

To simplify, we letk = 1 and write the Tsallis entropy as

Sq(X) , Sq(p1, . . . , pn) = − ∑
x∈X

p(x)q lnq p(x), (3)

where lnq(x) , (x1−q−1)/(1−q) is theq-logarithm function, which satisfies lnq(xy) = lnq(x)+
x1−q lnq(y) and lnq(1/x) = −xq−1 lnq(x). This notation was introduced by Tsallis (1988).

2.2 Tsallis Entropies

Furuichi (2006) derived some information theoretic properties of Tsallis entropies. Tsallisjoint and
conditional entropiesare defined, respectively, as

Sq(X,Y) , −∑
x,y

p(x,y)q lnq p(x,y)

and
Sq(X|Y) , −∑

x,y
p(x,y)q lnq p(x|y) = ∑

y
p(y)qSq(X|y), (4)

and the chain ruleSq(X,Y) = Sq(X)+Sq(Y|X) holds.
For two probability mass functionspX, pY ∈ ∆n, theTsallis relative entropy, generalizing the

KL divergence, is defined as

Dq(pX‖pY) , −∑
x

pX(x) lnq
pY(x)
pX(x)

. (5)
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Finally, theTsallis mutual entropyis defined as

Iq(X;Y) , Sq(X)−Sq(X|Y) = Sq(Y)−Sq(Y|X), (6)

generalizing (forq > 1) Shannon’s mutual information (Furuichi, 2006). In Section 5, we establish
a relationship between Tsallis mutual entropy and a quantity calledJensen-Tsallis q-difference,
generalizing the one between mutual information and the JS divergence (shown, e.g., by Grosse
et al. 2002, and recalled below, in Section 3.2).

Furuichi (2006) also mentions an alternative generalization of Shannon’smutual information,
defined as

Ĩq(X;Y) , Dq(pX,Y‖pX⊗ pY), (7)

where pX,Y is the true joint probability mass function of(X,Y) and pX⊗ pY denotes their joint
probability if they were independent. This alternative definition of a “Tsallis mutual entropy” has
also been used by Lamberti and Majtey (2003); notice thatIq(X;Y) 6= Ĩq(X;Y) in general, the case
q = 1 being a notable exception. In Section 5, we show that this alternative definition also leads to
a nonextensive analogue of the JS divergence.

2.3 Entropies of Measures and Denormalization Formulae

Throughout this paper, we consider functionals that extend the domain ofthe Shannon-Boltzmann-
Gibbs and Tsallis entropies to include unnormalized measures. Although, as shown below, these
functionals are completely characterized by their restriction to the normalized probability distri-
butions, the denormalization expressions will play an important role in Section 6to derive novel
positive definite kernels inspired by mutual informations.

In order to keep generality, whenever possible we do not restrict to finiteor countable sample
spaces. Instead, we consider a measure space(X ,M ,ν) whereX is Hausdorff andν is a σ-finite
Radon measure. We denote byM+(X ) the set offinite Radonν-absolutely continuous measures
onX , and byM1

+(X ) the subset of those which are probability measures. For simplicity, we often
identify each measure inM+(X ) or M1

+(X ) with its corresponding nonnegative density; this is
legitimated by the Radon-Nikodym theorem, which guarantees the existence and uniqueness (up
to equivalence within measure zero) of a density functionf : X → R+. In the sequel, Lebesgue-
Stieltjes integrals of the form

R

A f (x)dν(x) are often written as
R

A f , or simply
R

f , if A = X .
Unless otherwise stated,ν is the Lebesgue-Borel measure, ifX ⊆ R

n and intX 6= ∅, or the counting
measure, ifX is countable. In the latter case integrals can be seen as finite sums or infinite series.

DefineR , R∪{−∞,+∞}. For some functionalG : M+(X ) → R, let the setMG
+(X ) , { f ∈

M+(X ) : |G( f )| < ∞} be its effective domain, andM1,G
+ (X ) , MG

+(X )∩M1
+(X ) be its subdomain

of probability measures.
The following functional (Cuturi and Vert, 2005), extends the Shannon-Boltzmann-Gibbs en-

tropy fromM1,H
+ (X ) to the unnormalized measures inMH

+(X ):

H( f ) = −k
Z

f ln f =
Z

ϕH ◦ f , (8)

wherek > 0 is a constant, the functionϕH : R+ → R is defined as

ϕH(y) = −k ylny,
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and, as usual, 0 ln0, 0.
The generalized form of the KL divergence, often calledgeneralized I-divergence(Csiszar,

1975), is a directed divergence between two measuresµf ,µg ∈MH
+(X ), such thatµf is µg-absolutely

continuous (denotedµf ≪ µg). Let f andg be the densities associated withµf andµg, respectively.
In terms of densities, this generalized KL divergence is

D( f ,g) = k
Z

(
g− f + f ln

f
g

)
. (9)

Let us now proceed similarly with the nonextensive entropies. Forq ≥ 0, let M
Sq
+ (X ) = { f ∈

M+(X ) : f q ∈ M+(X )} for q 6= 1, andM
Sq
+ (X ) = MH

+(X ) for q = 1. The nonextensive counterpart

of (8), defined onM
Sq
+ (X ), is

Sq( f ) =
Z

ϕq◦ f , (10)

whereϕq : R+ → R is given by

ϕq(y) =

{
ϕH(y) if q = 1,

k
φ(q) (y−yq) if q 6= 1,

(11)

andφ : R+ → R satisfies conditions(i)-(iii) stated following Equation (1). The Tsallis entropy is
obtained forφ(q) = q−1,

Sq( f ) = −k
Z

f q lnq f . (12)

Similarly, a nonextensive generalization of the generalized KL divergence (9) is

Dq( f ,g) = − k
φ(q)

Z (
q f +(1−q)g− f qg1−q) ,

for q 6= 1, andD1( f ,g) , limq→1Dq( f ,g) = D( f ,g).
Define| f | , R

f = µf (X ). For | f | = |g| = 1, several particular cases are recovered: ifφ(q) =
1−21−q, thenDq( f ,g) is the Havrda-Charv́at relative entropy (Havrda and Charvát, 1967; Daŕoczy,
1970); if φ(q) = q−1, thenDq( f ,g) is the Tsallis relative entropy (5); finally, ifφ(q) = q(q−1),
thenDq( f ,g) is the canonicalα-divergence defined by Amari and Nagaoka (2001) in the realm of
information geometry (with the reparameterizationα = 2q−1 and assumingq > 0 so thatφ(q) =
q(q−1) conforms with the axioms).

Remark 1 Both functionals Sq and Dq are completely determined by their restriction to the nor-

malized measures. Indeed, the following equalities hold for any c∈ R++ and f,g∈ M
Sq
+ (X ), with

µf ≪ µg:

Sq(c f) = cqSq( f )+ | f |ϕq(c),

Dq(c f,cg) = cDq( f ,g),

Dq(c f,g) = cqDq( f ,g)−qϕq(c)| f |+
k

φ(q)
(q−1)(1−cq)|g|. (13)
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For any f ∈ M
Sq
+ (X ) and g∈ M

Sq
+ (Y ),

Sq( f ⊗g) = |g|Sq( f )+ | f |Sq(g)− φ(q)

k
Sq( f )Sq(g).

If | f | = |g| = 1, we recover the pseudo-additivity property of nonextensive entropies:

Sq( f ⊗g) = Sq( f )+Sq(g)− φ(q)

k
Sq( f )Sq(g).

For φ(q) = q−1, Dq is the Tsallis relative entropy and(13) reduces to

Dq(c f,g) = cqDq( f ,g)−qϕq(c)| f |+k(1−cq)|g|.

By taking the limit q→ 1, we obtain the following formulae for H and D:

H(c f) = cH( f )+ | f |ϕH(c),

D(c f,cg) = cD( f ,g),

D(c f,g) = cD( f ,g)−| f |ϕH(c)+k(1−c) |g|.

Consider f∈ MH
+(X ) and g∈ MH

+(Y ), and define f⊗g∈ MH
+(X ×Y ) as( f ⊗g)(x,y) , f (x)g(y).

Then,
H( f ⊗g) = |g|H( f )+ | f |H(g).

If | f |= |g|= 1, we recover the additivity property of the Shannon-Boltzmann-Gibbs entropy, H( f ⊗
g) = H( f )+H(g).

3. Jensen Differences and Divergences

In this section, we review the concept of Jensen difference. We then discuss three particular cases:
the Jensen-Shannon, Jensen-Rényi, and Jensen-Tsallis divergences.

3.1 The Jensen Difference

Jensen’s inequality (Jensen, 1906) is at the heart of many important results in information theory.
Let E[.] denote the expectation operator. Jensen’s inequality states that ifZ is an integrable random
variable taking values in a setZ, and f is a measurable convex function defined on the convex hull
of Z, then

f (E[Z]) ≤ E[ f (Z)].

Burbea and Rao (1982) considered the scenario whereZ is finite, and tookf , −Hϕ, where
Hϕ : [a,b]n → R is a concave function, called aϕ-entropy, defined as

Hϕ(z) , −
n

∑
i=1

ϕ(zi), (14)

whereϕ : [a,b] → R is convex. They studied the Jensen difference

Jπ
ϕ(y1, . . . ,ym) , Hϕ

(
m

∑
t=1

πt yt

)
−

m

∑
t=1

πt Hϕ(yt),
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whereπ , (π1, . . . ,πm) ∈ ∆m−1, and eachy1, . . . ,ym ∈ [a,b]n.
We consider here a more general scenario, involving two measure sets(X ,M ,ν) and(T ,T ,τ),

where the second is used to index the first.

Definition 2 Let µ, (µt)t∈T ∈ [M+(X )]T be a family of finite Radon measures onX , indexed by
T , and letω ∈ M+(T ) be a finite Radon measure onT . Define:

Jω
Ψ(µ) , Ψ

(
Z

T
ω(t)µt dτ(t)

)
−

Z

T
ω(t)Ψ(µt)dτ(t) (15)

where:

(i) Ψ is a concave functional such thatdomΨ ⊆ M+(X );

(ii) ω(t)µt(x) is τ-integrable, for all x∈ X ;

(iii)
R

T ω(t)µtdτ(t) ∈ domΨ;

(iv) µt ∈ domΨ, for all t ∈ T ;

(v) ω(t)Ψ(µt) is τ-integrable.

If ω ∈ M1
+(T ), we still call (15)a Jensen difference.

In the following subsections, we consider several instances of Definition2, leading to several
Jensen-type divergences.

3.2 The Jensen-Shannon Divergence

Let p be a random probability distribution taking values in{pt}t∈T according to a distribution
π ∈ M1

+(T ). (In classification/estimation theory parlance,π is called the prior distribution and
pt , p(.|t) the likelihood function.) Then, (15) becomes

Jπ
Ψ(p) = Ψ(E[p])−E[Ψ(p)], (16)

where the expectations are with respect toπ.
Let nowΨ = H, the Shannon-Boltzmann-Gibbs entropy. Consider the random variablesT and

X, taking values respectively inT andX , with densitiesπ(t) and p(x) ,
R

T p(x|t)π(t). Using
standard notation of information theory (Cover and Thomas, 1991),

Jπ(p) , Jπ
H(p) = H

(
Z

T
π(t)pt

)
−

Z

T
π(t)H(pt)

= H(X)−
Z

T
π(t)H(X|T = t)

= H(X)−H(X|T)

= I(X;T), (17)

whereI(X;T) is the mutual information betweenX andT. (This relationship between JS divergence
and mutual information was pointed out by Grosse et al. 2002.) SinceI(X;T) is also equal to the
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KL divergence between the joint distribution and the product of the marginals (Cover and Thomas,
1991), we have

Jπ(p) = H (E[p])−E[H(p)] = E[D(p‖E[p])]. (18)

WhenX andT are finite with|T | = m, Jπ
H(p1, . . . , pm) is called theJensen-Shannon (JS) di-

vergenceof p1, . . . , pm, with weightsπ1, . . . ,πm (Burbea and Rao, 1982; Lin, 1991). Equality (18)
allows two interpretations of the JS divergence:

• the Jensen difference of the Shannon entropy ofp;

• the expected KL divergence fromp to the expectation ofp.

A remarkable fact is thatJπ(p) = minr E[D(p‖r)], that is,r∗ = E[p] is a minimizer ofE[D(p‖r)]
with respect tor. It has been shown that this property together with Equality (18) characterize the
so-calledBregman divergences: they hold not only forΨ = H, but for any concaveΨ and the
corresponding Bregman divergence, in which caseJπ

Ψ is theBregman information(Banerjee et al.,
2005).

When |T | = 2 andπ = (1/2,1/2), p may be seen as a random distribution whose value on
{p1, p2} is chosen by tossing a fair coin. In this case,J(1/2,1/2)(p) = JS(p1, p2), where

JS(p1, p2) , H

(
p1 + p2

2

)
− H(p1)+H(p2)

2

=
1
2

D

(
p1

∥∥∥
p1 + p2

2

)
+

1
2

D

(
p2

∥∥∥
p1 + p2

2

)
,

as introduced by Lin (1991). It has been shown that
√

JSsatisfies the triangle inequality (hence
being a metric) and that, moreover, it is a Hilbertian metric1 (Endres and Schindelin, 2003; Topsøe,
2000), which has motivated its use in kernel-based machine learning (Cuturi et al., 2005; Hein and
Bousquet, 2005) (see Section 6).

3.3 The Jensen-Ŕenyi Divergence

Consider again the scenario above (Section 3.2), with the Rényiq-entropy

Rq(p) =
1

1−q
ln

Z

pq

replacing the Shannon-Boltzmann-Gibbs entropy. It is worth noting that theRényi and Tsallis

q-entropies are monotonically related throughRq(p) = ln
(
[1+(1−q)Sq(p)]

1
1−q

)
, or, using theq-

logarithm function,
Sq(p) = lnqexpRq(p).

The Ŕenyiq-entropy is concave forq∈ [0,1) and has the Shannon-Boltzmann-Gibbs entropy as
the limit whenq→ 1. LettingΨ = Rq, (16) becomes

Jπ
Rq

(p) = Rq(E[p])−E[Rq(p)]. (19)

1. A metric d : X ×X → R is Hilbertian if there is some Hilbert spaceH and an isometryf : X → H such that
d2(x,y) = 〈 f (x)− f (y), f (x)− f (y)〉H holds for anyx,y∈ X (Hein and Bousquet, 2005).
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Unlike in the JS divergence case, there is no counterpart of equality (18) based on the Ŕenyi q-
divergence

DRq(p1‖p2) =
1

q−1
ln

Z

pq
1 p1−q

2 .

WhenX andT are finite, we callJπ
Rq

in (19) theJensen-Ŕenyi (JR) divergence. Furthermore,
when|T | = 2 andπ = (1/2,1/2), we writeJπ

Rq
(p) = JRq(p1, p2), where

JRq(p1, p2) = Rq

(
p1 + p2

2

)
− Rq(p1)+Rq(p2)

2
.

The JR divergence has been used in several signal/image processing applications, such as regis-
tration, segmentation, denoising, and classification (Ben-Hamza and Krim, 2003; He et al., 2003;
Karakos et al., 2007). In Section 6, we show that the JR divergence is (like the JS divergence) a
Hilbertian metric, which is relevant for its use in kernel-based machine learning.

3.4 The Jensen-Tsallis Divergence

Burbea and Rao (1982) have defined Jensen-type divergences ofthe form (16) based on the Tsallis
q-entropySq, defined in (12). Like the Shannon-Boltzmann-Gibbs entropy, but unlikethe Ŕenyi
entropies, the Tsallisq-entropy, for finiteT , is an instance of aϕ-entropy (see Equation 14). Letting
Ψ = Sq, (16) becomes

Jπ
Sq

(p) = Sq(E[p])−E[Sq(p)]. (20)

Again, as in Section 3.3, if we consider the Tsallisq-divergence,

Dq(p1‖p2) =
1

1−q

(
1−

Z

p1
q p2

1−q
)

,

there is no counterpart of the Equality (18).
WhenX andT are finite,Jπ

Sq
in (20) is called theJensen-Tsallis (JT) divergenceand it has also

been applied in image processing (Ben-Hamza, 2006). Unlike the JS divergence, the JT divergence
lacks an interpretation as a mutual information. Despite this, forq∈ [1,2], it exhibits joint convexity
(Burbea and Rao, 1982). In the next section, we propose an alternative to the JT divergence which,
among other features, is interpretable as a nonextensive mutual information(in the sense of Furuichi
2006) and is jointly convex, forq∈ [0,1].

4. q-Convexity andq-Differences

This section introduces a novel class of functions, termedJensen q-differences, which generalize
Jensen differences. Later (in Section 5), we will use these functions to define theJensen-Tsallis q-
difference, which we will propose as an alternative nonextensive generalization ofthe JS divergence,
instead of the JT divergence discussed in Section 3.4. We begin by recalling the concept ofq-
expectation (Tsallis, 1988).

Definition 3 The unnormalized q-expectationof a random variable X, with probability density p,
is

Eq[X] ,
Z

x p(x)q.
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Of course,q= 1 corresponds to the standard notion of expectation. Forq 6= 1, theq-expectation
does not match the intuitive meaning of average/expectation (e.g.,Eq[1] 6= 1, in general). Theq-
expectation is a convenient concept in nonextensive information theory;for example, it yields a very
compact form for the Tsallis entropy:Sq(X) = −Eq[lnq p(X)].

4.1 q-Convexity

We now introduce the novel concept ofq-convexity and use it to derive a set of results, namely the
Jensen q-inequality.

Definition 4 Let q∈ R andX be a convex set. A function f: X → R is q-convexif for any x,y∈ X

andλ ∈ [0,1],
f (λx+(1−λ)y) ≤ λq f (x)+(1−λ)q f (y). (21)

If − f is q-convex, f is said to be q-concave.

Of course, 1-convexity is the usual notion of convexity. Many properties of 1-convex functions
do not haveq-analogues. For example, forq 6= 1, anyq-convex function must be either nonnegative
(if q < 1) or nonpositive (ifq > 1); this simple fact can be shown throughreductio ad absurdum
by settingx = y in (21). However, other properties remain: the next proposition states theJensen
q-inequality.

Proposition 5 If f : X → R is q-convex, then for any n∈ N, x1, . . . ,xn ∈ X andπ = (π1, . . . ,πn) ∈
∆n−1,

f

(
n

∑
i=1

πi xi

)
≤

n

∑
i=1

πq
i f (xi).

Moreover, if f is continuous, the above still holds for countably many points(xi)i∈N.

Proof In the finite case, the proof can be carried out by induction, as in the proof of the standard
Jensen inequality (Cover and Thomas, 1991). Assuming that the inequality holds forn∈ N, then,
from the definition ofq-convexity, it will also hold forn+1:

f

(
n+1

∑
i=1

πi xi

)
= f

(
n

∑
i=1

πi xi +πn+1xn+1

)

= f

(
(1−πn+1)

n

∑
i=1

π′
i xi +πn+1xn+1

)

≤ (1−πn+1)
q f

(
n

∑
i=1

π′
i xi

)
+πq

n+1 f (xn+1)

≤
n

∑
i=1

πq
i f (xi)+πq

n+1 f (xn+1) =
n+1

∑
i=1

πq
i f (xi),

where we used the fact thatπn+1 = 1− ∑n
i=1 πi , and we definedπ′

i , πi/(1− πn+1) (note that
∑n

i=1 π′
i = 1.) Furthermore, iff is continuous, it commutes with taking limits, thus
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f

(
∞

∑
i=1

πi xi

)
= f

(
lim
n→∞

n

∑
i=1

πi xi

)
= lim

n→∞
f

(
n

∑
i=1

πi xi

)
≤ lim

n→∞

n

∑
i=1

πq
i f (xi) =

∞

∑
i=1

πq
i f (xi).

Proposition 6 Let f ≥ 0 and q≥ r ≥ 0; then,

f is q-convex ⇒ f is r-convex (22)

f is r-concave ⇒ f is q-concave. (23)

Proof Implication (22) results from

f (λx+(1−λ)y) ≤ λq f (x)+(1−λ)q f (y) ≤ λr f (x)+(1−λ)r f (y),

where the first inequality states theq-convexity of f and the second one is valid becausef (x), f (y)≥
0 andtr ≥ tq ≥ 0, for anyt ∈ [0,1] andq≥ r. The proof of (23) is similar.

4.2 Jensenq-Differences

We now generalize Jensen differences, formalized in Definition 2, by introducing the concept of
Jensenq-differences.

Definition 7 Let µ, (µt)t∈T ∈ [M+(X )]T be a family of finite Radon measures onX , indexed by
T , and letω ∈ M+(T ) be a finite Radon measure onT . For q≥ 0, define

Tω
q,Ψ(µ) , Ψ

(
Z

T
ω(t) µt dτ(t)

)
−

Z

T
ω(t)q Ψ(µt)dτ(t), (24)

where:

(i) Ψ is a concave functional such thatdomΨ ⊆ M+(X );

(ii) ω(t)µt(x) is τ-integrable for all x∈ X ;

(iii)
R

T ω(t)µt dτ(t) ∈ domΨ;

(iv) µt ∈ domΨ, for all t ∈ T ;

(v) ω(t)q Ψ(µt) is τ-integrable.

If ω ∈ M1
+(T ), we call the function defined in(24)a Jensenq-difference.

Burbea and Rao (1982) established necessary and sufficient conditions onϕ for the Jensen
difference of aϕ-entropy (see Equation 14) to be convex. The following proposition generalizes
that result, extending it to Jensenq-differences.

Proposition 8 Let T and X be finite sets, with|T | = m and|X | = n, and letπ ∈ M1
+(T ). Let

ϕ : [0,1]→R be a function of class C2 and consider the (ϕ-entropy, Burbea and Rao, 1982) function
Ψ : [0,1]n → R defined asΨ(z) , −∑n

i=1 ϕ(zi). Then, the q-difference Tπq,Ψ : [0,1]nm→ R is convex
if and only ifϕ is convex and−1/ϕ′′ is (2−q)-convex.

The proof is rather long, thus it is relegated to Appendix B.
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5. The Jensen-Tsallisq-Difference

This section introduces the Jensen-Tsallisq-difference, a nonextensive generalization of the Jensen-
Shannon divergence. After deriving some properties concerning theconvexity and extrema of these
functionals, we introduce the notion of joint and conditional Jensen-Tsallisq-difference, a contrast
measure between stochastic processes. We end the section with a brief asymptotic analysis for the
extensive case.

5.1 Definition

As in Section 3.2, letp be a random probability distribution taking values in{pt}t∈T according to a
distributionπ ∈ M1

+(T ). Then, we may write

Tπ
q,Ψ(p) = Ψ(E[p])−Eq[Ψ(p)],

where the expectations are with respect toπ. Hence Jensenq-differences may be seen as defor-
mations of the standard Jensen differences (16), in which the second expectation is replaced by a
q-expectation.

Let Ψ = Sq, the nonextensive Tsallisq-entropy. Introducing the random variablesT andX, with
values respectively inT andX , with densitiesπ(t) andp(x) ,

R

T p(x|t)π(t), we have (writingTπ
q,Sq

simply asTπ
q )

Tπ
q (p) = Sq(E[p])−Eq[Sq(p)]

= Sq(X)−
Z

T
π(t)qSq(X|T = t)

= Sq(X)−Sq(X|T)

= Iq(X;T), (25)

whereSq(X|T) is the Tsallis conditional entropy (4), andIq(X;T) is the Tsallis mutual information
(6), as defined by Furuichi (2006). Observe that (25) is a nonextensive analogue of (17). Since, in
general,Iq 6= Ĩq (see Equation 7), unlessq = 1 (in that case,I1 = Ĩ1 = I ), there is no counterpart
of (18) in terms ofq-differences. Nevertheless, Lamberti and Majtey (2003) have proposed a non-
logarithmic version of the JS divergence, which corresponds to usingĨq for the Tsallis mutualq-
entropy (although this interpretation is not explicitly mentioned).

WhenX andT are finite with|T | = m, we call the quantityTπ
q (p1, . . . , pm) theJensen-Tsallis

(JT) q-differenceof p1, . . . , pm with weightsπ1, . . . ,πm. Although the JTq-difference is a gener-
alization of the JS divergence, forq 6= 1, the term “divergence” would be misleading in this case,
sinceTπ

q may take negative values (ifq < 1) and does not vanish in general ifp is deterministic.

When|T | = 2 andπ = (1/2,1/2), defineTq , T1/2,1/2
q ,

Tq(p1, p2) = Sq

(
p1 + p2

2

)
− Sq(p1)+Sq(p2)

2q .

Notable cases arise for particular values ofq:

• For q = 0, S0(p) = −1+ ν(supp(p)), whereν(supp(p)) denotes the measure of the support
of p (recall thatp is defined on the measure space(X ,M ,ν)). For example, ifX is finite and
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ν is the counting measure,ν(supp(p)) = ‖p‖0 is the so-called0-norm(although it is not a
norm) of vectorp, that is, its number of nonzero components. The Jensen-Tsallis 0-difference
is thus

T0(p1, p2) = −1+ν
(

supp

(
p1 + p2

2

))
+1−ν(supp(p1))+1−ν(supp(p2))

= 1+ν(supp(p1)∪supp(p2))−ν(supp(p1))−ν(supp(p2))

= 1−ν(supp(p1)∩supp(p2)) ; (26)

if X is finite andν is the counting measure, this becomes

T0(p1, p2) = 1−‖p1⊙ p2‖0,

where⊙ denotes the Hadamard-Schur (i.e., elementwise) product. We callT0 the Boolean
difference.

• For q = 1, sinceS1(p) = H(p), T1 is the JS divergence,

T1(p1, p2) = JS(p1, p2).

• For q = 2, S2(p) = 1−〈p, p〉, where〈a,b〉 =
R

X a(x)b(x)dν(x) is the inner product between
a andb (which reduces to〈a,b〉 = ∑i ai bi if X is finite andν is the counting measure). Con-
sequently, the Tsallis 2-difference is

T2(p1, p2) =
1
2
− 1

2
〈p1, p2〉,

which we call thelinear difference.

5.2 Properties of the JTq-Difference

This subsection presents results regarding convexity and extrema of the JT q-difference, for certain
values ofq, extending known properties of the JS divergence (q = 1). Some properties of the JS
divergence are lost in the transition to nonextensivity; for example, while the former is nonnegative
and vanishes if and only if all the distributions are identical, this is not true in general with the JT
q-difference. Nonnegativity of the JTq-difference is only guaranteed ifq≥ 1, which explains why
some authors (e.g., Furuichi 2006) only consider values ofq ≥ 1, when looking for nonextensive
analogues of Shannon’s information theory. Moreover, unlessq = 1, it is not generally true that
Tπ

q (p, . . . , p) = 0 or even thatTπ
q (p, . . . , p, p′) ≥ Tπ

q (p, . . . , p, p). For example, the solution of the
optimization problem

min
p1∈∆n

Tq(p1, p2), (27)

is, in general, different fromp2, unlessq = 1. Instead, this minimizer is closer to the uniform
distribution ifq∈ [0,1), and closer to a degenerate distribution forq∈ (1,2] (see Fig. 1). This is not
so surprising: recall thatT2(p1, p2) = 1

2 − 1
2〈p1, p2〉; in this case, (27) becomes a linear program,

and the solution is notp∗1 = p2, but p∗1 = δ j , where j = argmaxi p2i .
At this point, we should also remark that, whenX is a finite set, the uniform distribution max-

imizes the Tsallis entropy for anyq≥ 0, which is in fact one of the Suyari axioms underlying the
Tsallis entropy (see Axiom A2 in Appendix A).
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Figure 1: Jensen-Tsallisq-difference between two Bernoulli distributions,p1 = (0.3,0.7) and
p2 = (p,1− p), for several values of the entropic indexq. Observe that, forq ∈ [0,1),
the minimizer of the JTq-difference approaches the uniform distribution(0.5,0.5) asq
approaches 0; forq ∈ (1,2], this minimizer approaches the degenerate distribution, as
q→ 2.

We start with the following corollary of Proposition 8, which establishes the joint convexity of
the JTq-difference, forq∈ [0,1]. (Interestingly, this “complements” the joint convexity of the JT
divergence (20), forq∈ [1,2], proved by Burbea and Rao 1982.)

Corollary 9 LetT andX be finite sets with cardinalities m and n, respectively. For q∈ [0,1], the

JT q-difference is a jointly convex function on M
1,Sq
+ (X ). Formally, let{p(i)

t }t∈T , and i= 1, . . . , l, be
a collection of l sets of probability distributions onX ; then, for any(λ1, . . . ,λl ) ∈ ∆l−1,

Tπ
q

(
l

∑
i=1

λi p(i)
1 , . . . ,

l

∑
i=1

λi p(i)
m

)
≤

l

∑
i=1

λi Tπ
q (p(i)

1 , . . . , p(i)
m ).

Proof Observe that the Tsallis entropy (3) of a probability distributionpt = {pt1, ..., ptn} can be
written as

Sq(pt) = −
n

∑
i=1

ϕ(pti), where ϕq(x) =
x−xq

1−q
;

thus, from Proposition 8,Tπ
q is convex if and only ifϕq is convex and−1/ϕ′′

q is (2−q)-convex.
Sinceϕ′′

q(x)= qxq−2, ϕq is convex forx≥0 andq≥0. To show the(2−q)-convexity of−1/ϕ′′
q(x)=

−(1/q)x2−q, for xt ≥ 0, andq∈ [0,1], we use a version of the power mean inequality (Steele, 2006),

−
(

l

∑
i=1

λi xi

)2−q

≤−
l

∑
i=1

(λi xi)
2−q = −

l

∑
i=1

λ2−q
i x2−q

i ,
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thus concluding that−1/ϕ′′
q is in fact(2−q)-convex.

A consequence of Corollary 9 is that, for finiteX and anyq ∈ [0,1], the JTq-difference is
upper bounded, namelyTπ

q (p1, . . . , pm) ≤ Sq(π). Indeed, sinceTπ
q is convex and its domain is the

Cartesian product ofm simplices (a convex polytope), its maximum must occur on a vertex, that is,
when each argumentpt is a degenerate distribution atxt , denotedδxt . In particular, if |X | ≥ |T |,
this maximum occurs at a vertex corresponding to disjoint degenerate distributions, that is, such that
xi 6= x j if i 6= j. At this maximum,

Tπ
q (δx1, . . . ,δxm) = Sq

(
m

∑
t=1

πtδxt

)
−

m

∑
t=1

πtSq(δxt )

= Sq

(
m

∑
t=1

πtδxt

)
(28)

= Sq(π)

where the equality in (28) results fromSq(δxt ) = 0. (Notice that this maximum may not be achieved
if |X |< |T |.) The next proposition provides a stronger result: it establishes upper and lower bounds
for the JTq-difference to any non-negativeq and to countableX andT .

Proposition 10 LetT andX be countable sets. For q≥ 0,

Tπ
q ((pt)t∈T ) ≤ Sq(π), (29)

and, if |X | ≥ |T |, the maximum of Tπq is reached for a set of disjoint degenerate distributions. This
maximum may not be attained if|X | < |T |.

For q≥ 1,

Tπ
q ((pt)t∈T ) ≥ 0,

and the minimum of Tπq is attained in the purely deterministic case, that is, when all distributions
are equal to the same degenerate distribution.

For q∈ [0,1] andX a finite set with|X | = n,

Tπ
q ((pt)t∈T ) ≥ Sq(π)[1−n1−q]. (30)

This lower bound (which is zero or negative) is attained when all distributionsare uniform.

Proof The proof is given in Appendix C.

Finally, the next proposition characterizes the convexity/concavity of the JT q-difference on
each argument.

Proposition 11 Let T andX be countable sets. The JT q-difference is convex in each argument,
for q∈ [0,2], and concave in each argument, for q≥ 2.
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Proof Notice that the JTq-difference can be written asTπ
q (p1, . . . , pm) =

∑ j ψ(p1 j , . . . , pm j), with

ψ(y1, . . . ,ym) =
1

q−1

[

∑
i

(πi −πq
i )yi +∑

i

πq
i yq

i −
(

∑
i

πiyi

)q ]
.

It suffices to consider the second derivative ofψ with respect toy1. Introducingz= ∑m
i=2 πi yi ,

∂2ψ
∂y2

1

= q
[
πq

1yq−2
1 −π2

1(π1y1 +z)q−2
]

= qπ2
1

[
(π1y1)

q−2− (π1y1 +z)q−2 ] . (31)

Sinceπ1y1 ≤ (π1y1 +z) ≤ 1, the quantity in (31) is nonnegative forq∈ [0,2] and non-positive for
q≥ 2.

5.3 Joint and Conditional JT q-Differences and a Chain Rule

This subsection introduces joint and conditional JTq-differences, which will later be used as a
contrast measure between stochastic processes. A chain rule is derived that relates conditional and
joint JTq-differences.

Definition 12 Let X , Y andT be measure spaces. Let(pt)t∈T ∈ [M1
+(X ×Y )]T be a family of

measures in M1+(X ×Y ) indexed byT , and let p be a random probability distribution taking values
in {pt}t∈T according to a distributionπ ∈ M1

+(T ). Consider also:

• for each t∈ T , the marginals pt(Y) ∈ M1
+(Y ),

• for each t∈ T and y∈ Y , the conditionals pt(X|Y = y) ∈ M1
+(X ),

• the mixture r(X,Y) ,
R

T π(t) pt(X,Y) ∈ M1
+(X ×Y ),

• the marginal r(Y) ∈ M1
+(Y ),

• for each y∈ Y , the conditionals r(X|Y = y) ∈ M1
+(X ).

For notational convenience, we also append a subscript to p to emphasize its joint or conditional de-
pendency of the random variables X and Y, that is, pXY , p, and pX|Y denotes a random conditional
probability distribution taking values in{pt(.|Y)}t∈T according to the distributionπ.

For q≥ 0, we refer to thejoint JTq-differenceof pXY by

Tπ
q (pXY) , Tπ

q (p) = Sq(r)−Eq,T∼π(T)[Sq(pt)]

and to theconditional JTq-differenceof pX|Y by

Tπ
q (pX|Y) , Eq,Y∼r(Y) [Sq(r(.|Y = y))]−Eq,T∼π(T)

[
Eq,Y∼pt(Y) [Sq(pt(.|Y = y))]

]
, (32)

where we appended the random variables being used in each q-expectation, for the sake of clarity.
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Note that the joint JTq-difference is just the usual JTq-difference of the joint random variable
X×Y, which equals (cf. 25)

Tπ
q (pXY) = Sq(X,Y)−Sq(X,Y|T) = Iq(X×Y;T), (33)

and the conditional JTq-difference is simply the usual JTq-difference with all entropies replaced
by conditional entropies (conditioned onY). Indeed, expression (32) can be rewritten as:

Tπ
q (pX|Y) = Sq(X|Y)−Sq(X|T,Y) = Iq(X;T |Y), (34)

that is, the conditional JTq-difference may also interpreted as a Tsallis mutual information, as in
(25), but nowconditionedon the random variableY.

Note also that, for the extensive caseq= 1, (32) may also be rewritten in terms of the conditional
KL divergences,

Jπ(pX|Y) , Tπ
1 (pX|Y) = EY∼r(Y) [H(r(.|Y = y))]−ET∼π(T)

[
EY∼pt(Y) [H(pt(.|Y = y))]

]

= ET∼π(T)

[
EY∼r(Y) [D(pt(.|Y = y)‖r(.|Y = y))]

]
.

Proposition 13 The following chain rule holds:

Tπ
q (pXY) = Tπ

q (pX|Y)+Tπ
q (pY)

Proof Writing the joint/conditional JTq-differences as joint/conditional mutual informations (33–
34) and invoking the chain rule provided by (4), we have that

Iq(X;T|Y)+ Iq(Y;T) = Sq(X|T,Y)−Sq(X|Y)+Sq(Y|T)−Sq(Y)

= Sq(X,Y|T)−Sq(X,Y),

which is the joint JTq-difference associated with the random variableX×Y.

Let us now turn our attention to the case whereY = Xk for somek ∈ N. In the following, the
notation(An)n∈N denotes a stationary ergodic process with values on some finite alphabetA .

Definition 14 LetX andT be measure spaces, withX finite, and letF = [(Xn)n∈N]T be a family of
stochastic processes (taking values on the alphabetX ) indexed byT . The k-th order JTq-difference
of F is defined, for k= 1, . . . ,n, as

T joint,π
q,k (F ) , Tπ

q (pXk)

and the k-th order conditional JTq-differenceof F is defined, for k= 1, . . . ,n, as

Tcond,π
q,k (F ) , Tπ

q (pX|Xk),

and, for k= 0, as Tcond,π
q,0 (F ) , T joint,π

q,1 (F ) = Tπ
q (pX).

Proposition 15 The joint and conditional k-th order JT q-differences are related through:

T joint,π
q,k (F ) =

k−1

∑
i=0

Tcond,π
q,i (F ) (35)

Proof Use Proposition 13 and induction.
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5.4 Asymptotic Analysis in the Extensive Case

We now focus on the extensive case (q= 1) for a brief asymptotic analysis of thek-th order joint and
conditional JT 1-differences (orconditional Jensen-Shannon divergences) whenk goes to infinity.

The conditional Jensen-Shannon divergence was introduced by El-Yaniv et al. (1998) to address
the two-sample problemfor strings emitted by Markovian sources. Given two stringss andt, the
goal is to decide whether they were emitted by the same source or by different sources. Under
some fair assumptions, the most likelyk-th order Markovian joint source ofs andt is governed by
a distribution ˆr given by

r̂ = argmin
r

λD(p̂s‖r)+(1−λ)D(p̂t‖r). (36)

whereD(.‖.) are conditional KL divergences, ˆps and p̂t are the empirical(k−1)-th order condi-
tionals associated withs andt, respectively, andλ = |s|/(|s|+ |t|) is the length ratio. The solution
of the optimization problem is

r̂(a|c) =
λ p̂s(c)

λ p̂s(c)+(1−λ) p̂t(c)
p̂s(a|c)+

(1−λ) p̂t(c)
λ p̂s(c)+(1−λ) p̂t(c)

p̂t(a|c),

wherea ∈ A is a symbol andc ∈ Ak−1 is a context; this can be rewritten as ˆr(a,c) = λp̂s(a,c)+
(1−λ)p̂t(a,c); that is, the optimum in (36) is a mixture of ˆps and p̂t weighted by the string lengths.
Notice that, at the minimum, we have

λD(p̂s‖r̂)+(1−λ)D(p̂t‖r̂) = JScond,(λ,1−λ)
k (p̂s, p̂t).

It is tempting to investigate the asymptotic behavior of the conditional and joint JS divergences
whenk → ∞; however, unlike other asymptotic information theoretic quantities, like the entropy
or cross entropy rates, this behavior fails to characterize the sourcess and t. Intuitively, this is
justified by the fact that observing more and more symbols drawn from the mixture of the two
sources rapidly decreases the uncertainty about which source generated the sample. Indeed, from
the asymptotic equipartition property of stationary ergodic sources (Coverand Thomas, 1991), we
have that limk→∞

1
kH(pXk) = limk→∞ H(pX|Xk

), which implies

lim
k→∞

JScond,π
k = lim

k→∞

1
k

JSjoint,π
k ≤ lim

k→∞

1
k

H(π) = 0,

where we used the fact that the JS divergence is upper-bounded by the entropy of the mixture
H(π) (see Proposition 10). Since the conditional JS divergence must be non-negative, we therefore
conclude that limk→∞ JScond,π

k = 0, pointwise.

6. Nonextensive Mutual Information Kernels

In this section we consider the application of extensive and nonextensiveentropies to define kernels
on measures; since kernels involve pairs of measures, throughout this section |T | = 2. Based on
the denormalization formulae presented in Section 2.3, we devise novel kernels related to the JS
divergence and the JTq-difference; these kernels allow setting a weight for each argument, thuswill
be calledweighted Jensen-Tsallis kernels. We also introduce kernels related to the JR divergence
(Section 3.3) and the JT divergence (Section 3.4), and establish a connection between the Tsallis
kernels and a family of kernels investigated by Hein et al. (2004) and Fuglede (2005), placing
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those kernels under a new information-theoretic light. After that, we give a brief overview of string
kernels, and using the results of Section 5.3, we devisek-th order Jensen-Tsallis kernels between
stochastic processes that subsume the well-knownp-spectrum kernel of Leslie et al. (2002).

6.1 Positive and Negative Definite Kernels

We start by recalling basic concepts from kernel theory (Schölkopf and Smola, 2002); in the fol-
lowing,X denotes a nonempty set.

Definition 16 Let ϕ : X ×X → R be a symmetric function, that is, a function satisfyingϕ(y,x) =
ϕ(x,y), for all x,y∈ X . ϕ is called apositive definite(pd) kernel if and only if

n

∑
i=1

n

∑
j=1

ci c j ϕ(xi ,x j) ≥ 0

for all n ∈ N, x1, . . . ,xn ∈ X and c1, . . . ,cn ∈ R.

Definition 17 Let ψ : X ×X → R be symmetric.ψ is called anegative definite(nd) kernel if and
only if

n

∑
i=1

n

∑
j=1

ci c j ψ(xi ,x j) ≤ 0

for all n ∈N, x1, . . . ,xn ∈ X and c1, . . . ,cn ∈R, satisfying the additional constraint c1+ . . .+cn = 0.
In this case,−ψ is called conditionally pd; obviously, positive definiteness implies conditional
positive definiteness.

The sets of pd and nd kernels are both closed under pointwise sums/integrations, the former
being also closed under pointwise products; moreover, both sets are closed under pointwise con-
vergence. While pd kernels “correspond” to inner products via embedding in a Hilbert space, nd
kernels that vanish on the diagonal and are positive anywhere else, “correspond” to squared Hilber-
tian distances. These facts, and the following propositions and lemmas, are shown in Berg et al.
(1984).

Proposition 18 Let ψ : X ×X → R be a symmetric function, and x0 ∈ X . Let ϕ : X ×X → R be
given by

ϕ(x,y) = ψ(x,x0)+ψ(y,x0)−ψ(x,y)−ψ(x0,x0).

Then,ϕ is pd if and only ifψ is nd.

Proposition 19 The functionψ : X ×X → R is a nd kernel if and only ifexp(−tψ) is pd for all
t > 0.

Proposition 20 The functionψ : X ×X → R+ is a nd kernel if and only if(t + ψ)−1 is pd for all
t > 0.

Lemma 21 If ψ is nd and nonnegative on the diagonal, that is,ψ(x,x) ≥ 0 for all x ∈ X , thenψα,
for α ∈ [0,1], andln(1+ψ), are also nd.
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Lemma 22 If f :X →R satisfies f≥ 0, then, forα∈ [1,2], the functionψα(x,y) =−( f (x)+ f (y))α

is a nd kernel.

The following definition (Berg et al., 1984) has been used in a machine learning context by
Cuturi and Vert (2005).

Definition 23 Let (X ,⊕) be a semigroup.2 A functionϕ : X → R is called pd (in the semigroup
sense) if k: X ×X → R, defined as k(x,y) = ϕ(x⊕y), is a pd kernel. Likewise,ϕ is called nd if k is
a nd kernel. Accordingly, these are calledsemigroup kernels.

6.2 Jensen-Shannon and Tsallis Kernels

The basic result that allows deriving pd kernels based on the JS divergence and, more generally, on
the JTq-difference, is the fact that the denormalized Tsallisq-entropies (10) are nd functions on
(M

Sq
+ (X ),+), for q ∈ [0,2]. Of course, this includes the denormalized Shannon-Boltzmann-Gibbs

entropy (8) as a particular case, corresponding toq = 1. Although part of the proof was given by
Berg et al. (1984) (and by Topsøe 2000 and Cuturi and Vert 2005 for the Shannon entropy case), we
present a complete proof here.

Proposition 24 For q∈ [0,2], the denormalized Tsallis q-entropy Sq is a nd function on(M
Sq
+ (X ),+).

Proof Since nd kernels are closed under pointwise integration, it suffices to prove thatϕq (see
Equation 11) is nd on(R+,+). For q 6= 1, ϕq(y) = (q−1)−1(y− yq). Let us consider two cases
separately: ifq∈ [0,1), ϕq(y) equals a positive constant times−ι+ ιq, whereι(y) = y is the identity
map defined onR+. Since the set of nd functions is closed under sums, we only need to show that
both−ι and ιq are nd. Bothι and−ι are nd, as can easily be seen from the definition; besides,
sinceι is nd and nonnegative, Lemma 21 guarantees thatιq is also nd. For the second case, where
q∈ (1,2], ϕq(y) equals a positive constant timesι− ιq. It only remains to show that−ιq is nd for
q ∈ (1,2]: Lemma 22 guarantees that the kernelk(x,y) = −(x+ y)q is nd; therefore−ιq is a nd
function.

Forq = 1, we use the fact that,

ϕ1(x) = ϕH(x) = −xlnx = lim
q→1

x−xq

q−1
= lim

q→1
ϕq(x),

where the limit is obtained by L’Ĥopital’s rule; since the set of nd functions is closed under limits,
ϕ1(x) is nd.

The following lemma, proved in Berg et al. (1984), will also be needed below.

Lemma 25 The functionζq : R++ → R, defined asζq(y) = y−q is pd, for q∈ [0,1].

We are now in a position to present the main contribution of this section, which is afamily of
weighted Jensen-Tsallis kernels, generalizing the JS-based (and other) kernels in two ways: (i) they
allow using unnormalized measures; equivalently, they allow using different weights for each of the
two arguments; (ii) they extend the mutual information feature of the JS kernelto the nonextensive
scenario.

2. Recall that(X ,⊕) is asemigroupif ⊕ is a binary operation inX that is associative and has an identity element.
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Definition 26 (weighted Jensen-Tsallis kernels)The kernel̃kq : M
Sq
+ (X )×M

Sq
+ (X )→R is defined

as

k̃q(µ1,µ2) , k̃q(ω1p1,ω2p2)

=
(
Sq(π)−Tπ

q (p1, p2)
)
(ω1 +ω2)

q,

where p1 = µ1/ω1 and p2 = µ2/ω2 are the normalized counterparts of µ1 and µ2, with corresponding
massesω1,ω2 ∈ R+, andπ = (ω1/(ω1 +ω2),ω2/(ω1 +ω2)).

The kernel kq :
(

M
Sq
+ (X )\{0}

)2
→ R is defined as

kq(µ1,µ2) , kq(ω1p1,ω2p2) = Sq(π)−Tπ
q (p1, p2).

Recalling (25), notice thatSq(π)−Tπ
q (p1, p2) = Sq(T)− Iq(X;T) = Sq(T|X) can be interpreted

as theTsallis posterior conditional entropy. Hence,kq can be seen (in Bayesian classification terms)
as a nonextensive expected measure of uncertainty in correctly identifying the class, given the prior
π = (π1,π2), and a sample from the mixtureπ1p1 + π2p2. The more similar the two distributions
are, the greater this uncertainty.

Proposition 27 The kernel̃kq is pd, for q∈ [0,2]. The kernel kq is pd, for q∈ [0,1].

Proof With µ1 = ω1p1 andµ2 = ω2p2 and using the denormalization formula of Remark 1, we ob-
tain k̃q(µ1,µ2) =−Sq(µ1+µ2)+Sq(µ1)+Sq(µ2). Now invoke Proposition 18 withψ = Sq (which is
nd by Proposition 24),x = µ1, y = µ2, andx0 = 0 (the null measure). Observe now thatkq(µ1,µ2) =

k̃q(µ1,µ2)(ω1 + ω2)
−q. Since the product of two pd kernels is a pd kernel and (Proposition 25)

(ω1 +ω2)
−q is a pd kernel, forq∈ [0,1], we conclude thatkq is pd.

As we can see, the weighted Jensen-Tsallis kernels have two inherent properties: they are pa-
rameterized by the entropic indexq and they allow their arguments to be unbalanced, that is, to have
different weightsωi . We now mention some instances of kernels where each of these degrees of
freedom is suppressed. We start with the following subfamily of kernels, obtained by settingq = 1.

Definition 28 (weighted Jensen-Shannon kernels)The kernel̃kWJS: (MH
+(X ))2 → R is defined

ask̃WJS, k̃1, that is,

k̃WJS(µ1,µ2) = k̃WJS(ω1p1,ω2p2)

= (H(π)−Jπ(p1, p2))(ω1 +ω2),

where p1 = µ1/ω1 and p2 = µ2/ω2 are the normalized counterpart of µ1 and µ2, and π =
(ω1/(ω1 +ω2),ω2/(ω1 +ω2)).

Analogously, the kernel kWJS:
(
MH

+(X )\{0}
)2 → R is simply kWJS, k1, that is,

kWJS(µ1,µ2) = kWJS(ω1p1,ω2p2) = H(π)−Jπ(p1, p2).

Corollary 29 The weighted Jensen-Shannon kernelsk̃WJSand kWJSare pd.
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Proof Invoke Proposition 27 withq = 1.

The following family ofweighted exponentiated JS kernels, generalize the so-calledexponenti-
ated JSkernel, that has been used, and shown to be pd, by Cuturi and Vert (2005).

Definition 30 (Exponentiated JS kernel) The kernel kEJS: M1
+(X )×M1

+(X ) → R is defined, for
t > 0, as

kEJS(p1, p2) = exp[−t JS(p1, p2)] .

Definition 31 (Weighted exponentiated JS kernels)The kernel kWEJS: MH
+(X )×MH

+(X )→ R is
defined, for t> 0, as

kWEJS(µ1,µ2) = exp[t kWJS(µ1,µ2)]

= exp(t H(π))exp[−tJπ(p1, p2)] . (37)

Corollary 32 The kernels kWEJSare pd. In particular, kEJS is pd.

Proof Results from Proposition 19 and Corollary 29. Notice that althoughkWEJS is pd, none of its
two exponential factors in (37) is pd.

We now keepq ∈ [0,2] but consider the weighted JT kernel family restricted to normalized
measures,kq|(M1

+(X ))2. This corresponds to setting uniform weights (ω1 = ω2 = 1/2); note that in

this casẽkq andkq collapse into the same kernel,

k̃q(p1, p2) = kq(p1, p2) = lnq(2)−Tq(p1, p2).

Proposition 27 guarantees that these kernels are pd forq ∈ [0,2]. Remarkably, we recover three
well-known particular cases forq∈ {0,1,2}. We start with the Jensen-Shannon kernel, introduced
and shown to be pd by Hein et al. (2004); it is a particular case of a weighted Jensen-Shannon kernel
in Definition 28.

Definition 33 (Jensen-Shannon kernel)The kernel kJS : M1
+(X )×M1

+(X ) → R is defined as

kJS(p1, p2) = ln2−JS(p1, p2).

Corollary 34 The kernel kJS is pd.

Proof kJS is the restriction ofkWJS to M1
+(X )×M1

+(X ).

Finally, we study two other particular cases of the family of Tsallis kernels: theBoolean and
linear kernels.

Definition 35 (Boolean kernel) Let the kernel kBool : MS0,1
+ (X )×MS0,1

+ (X )→R be defined as kBool =
k0, that is,

kBool(p1, p2) = ν(supp(p1)∩supp(p2)) ,

that is, kBool(p1, p2) equals the measure of the intersection of the supports (cf. Equation 26).In
particular, if X is finite andν is the counting measure, the above may be written as

kBool(p1, p2) = ‖p1⊙ p2‖0.
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Definition 36 (Linear kernel) Let the kernel klin : MS2,1
+ (X )×MS2,1

+ (X ) → R be defined as

klin(p1, p2) =
1
2
〈p1, p2〉.

Corollary 37 The kernels kBool and klin are pd.

Proof Invoke Proposition 27 withq = 0 andq = 2. Notice that, forq = 2, we just recover the
well-known property of the inner product kernel (Schölkopf and Smola, 2002), which is equal to
klin up to a scalar.

In conclusion, the Boolean kernel, the Jensen-Shannon kernel, and the linear kernel are simply
particular elements of the much wider family of Jensen-Tsallis kernels, continuously parameterized
by q∈ [0,2]. Furthermore, the Jensen-Tsallis kernels are a particular subfamily of theeven wider
set of weighted Jensen-Tsallis kernels.

One of the key features of our generalization is that the kernels are defined on unnormalized
measures, with arbitrary mass. This is relevant, for example, in applications of kernels on empirical
measures (e.g., word counts, pixel intensity histograms); instead of the usual step of normalization
Hein et al. 2004, we may leave these empirical measures unnormalized, thus allowing objects of dif-
ferent size (e.g., total number of words in a document, total number of image pixels) to be weighted
differently. Another possibility opened by our generalization is the explicit inclusion of weights:
given two normalized measures, they can be multiplied by arbitrary (positive)weights before being
fed to the kernel function.

6.3 Other Kernels Based on Jensen Differences andq-Differences

It is worthwhile to note that the Jensen-Rényi and the Jensen-Tsallis divergences also yield positive
definite kernels, albeit there are not any obvious “weighted generalizations” like the ones presented
above for the Tsallis kernels.

Proposition 38 (Jensen-Ŕenyi and Jensen-Tsallis kernels)For any q∈ [0,2], the kernel

(p1, p2) 7→ Sq

(
p1 + p2

2

)

and the (unweighted) Jensen-Tsallis divergence JSq (20)are nd kernels on M1+(X )×M1
+(X ).

Also, for any q∈ [0,1], the kernel

(p1, p2) 7→ Rq

(
p1 + p2

2

)

and the (unweighted) Jensen-Rényi divergence JRq (19)are nd kernels on M1+(X )×M1
+(X ).

Proof The fact that(p1, p2) 7→ Sq(
p1+p2

2 ) is nd results from the embeddingx 7→ x/2 and Propo-

sition 24. Since(p1, p2) 7→ Sq(p1)+Sq(p2)
2 is trivially nd, we have thatJSq is a sum of nd func-

tions, which turns it nd. To prove the negative definiteness of the kernel(p1, p2) 7→ Rq
( p1+p2

2

)
,

notice first that the kernel(x,y) 7→ (x+ y)/2 is clearly nd. From Lemma 21 and integrating,
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we have that(p1, p2) 7→ R

( p1+p2
2

)q
is nd for q ∈ [0,1]. From the same lemma we have that

(p1, p2) 7→ ln
(

t +
R

( p1+p2
2

)q
)

is nd for anyt > 0. Since
R

( p1+p2
2

)q
> 0, the nonnegativity of

(p1, p2) 7→ Rq
( p1+p2

2

)
follows by taking the limitt → 0. By the same argument as above, we con-

clude thatJRq is nd.

As a consequence, we have from Lemma 19 that the following kernels are pd for anyq∈ [0,1]
andt > 0:

k̃EJR(p1, p2) = exp

(
−tRq

(
p1 + p2

2

))
=

(
Z

(
p1 + p2

2

)q)− t
1−q

,

and its “normalized” counterpart,

kEJR(p1, p2) = exp(−tJRq(p1, p2)) =




R

( p1+p2
2

)q

√
R

pq
1

R

pq
2




− t
1−q

.

Although we could have derived its positive definiteness without ever referring to the Ŕenyi entropy,
the latter has in fact a suggestive interpretation: it corresponds to an exponentiation of the Jensen-
Rényi divergence; it generalizes the caseq = 1 which corresponds to the exponentiated Jensen-
Shannon kernel.

Finally, we point out a relationship between the Jensen-Tsallis divergences (Section 3.4) and a
family of difference kernels introduced by Fuglede (2005),

ψα,β(x,y) =

(
xα +yα

2

)1/α
−
(

xβ +yβ

2

)1/β

.

Fuglede (2005) derived the negative definiteness of the above family ofkernels provided 1≤ α ≤ ∞
and 1/2≤ β ≤ α; he went further by providing representations for these kernels. Heinet al. (2004)
used the fact that the integral

R

ψα,β(x(t),y(t))dτ(t) is also nd to derive a family of pd kernels for
probability measures that included the Jensen-Shannon kernel (see Def. 33).

We start by noting the following property of the extended Tsallis entropy, which is very easy to
establish:

Sq(µ) = q−1S1/q(µ
q)

As a consequence, by making the substitutionsr , q−1, x1 , yq
1 andx2 , yq

2, we have that

JSq(y1,y2) = Sq

(
y1 +y2

2

)
−
(

Sq(y1)+Sq(y2)

2

)

= r

[
Sr

((
xr

1 +xr
2

2

)1/r
)
− Sr(x1)+Sr(x2)

2

]

, rJ̃Sr (x1,x2)
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where we introduced

J̃Sr (x1,x2) = Sr

((
xr

1 +xr
2

2

)1/r
)
− Sr(x1)+Sr(x2)

2

= (r −1)−1
Z

[(
xr

1 +xr
2

2

)1/r

− x1 +x2

2

]
. (38)

SinceJSq is nd forq∈ [0,2], we have that̃JSr is nd forr ∈ [1/2,∞].
Notice that whileJSq may be interpreted as “the difference between the Tsallisq-entropy of the

mean and the mean of the Tsallisq-entropies,”J̃Sq may be interpreted as “the difference between
the Tsallisq-entropy of theq-power mean and the mean of the Tsallisq-entropies.”

From (38) we have that
Z

ψα,β(x,y) = (α−1)J̃Sα(x,y)− (β−1)J̃Sβ(x,y),

so the family of probabilistic kernels studied in Hein et al. (2004) can be writtenin terms of Jensen-
Tsallis divergences.

6.4 k-th Order Jensen-Tsallis String Kernels

This subsection introduces a new class of string kernels inspired by thek-th order JTq-difference
introduced in Section 5.3. Although we refer to them as “string kernels,” they are more generally
kernels between stochastic processes.

Several string kernels (i.e., kernels operating on the space of strings) have been proposed in the
literature (Haussler, 1999; Lodhi et al., 2002; Leslie et al., 2002; Vishwanathan and Smola, 2003;
Shawe-Taylor and Cristianini, 2004; Cortes et al., 2004). These are kernels defined onA∗×A∗,
whereA∗ is the Kleene closure of a finite alphabetA (i.e., the set of all finite strings formed by
characters inA together with the empty stringε). Thep-spectrum kernel(Leslie et al., 2002) is as-
sociated with a feature space indexed byA p (the set of length-p strings). The feature representation
of a strings, Φp(s) , (φp

u(s))u∈A p, counts the number of times eachu∈ A p occurs as a substring of
s,

φp
u(s) = |{(v1,v2) : s= v1uv2}|.

The p-spectrum kernel is then defined as the standard inner product inR
|A |p

kp
SK(s, t) = 〈Φp(s),Φp(t)〉 . (39)

A more general kernel is theweighted all-substrings kernel(Vishwanathan and Smola, 2003), which
takes into account the contribution of all the substrings weighted by their length. This kernel can be
viewed as a conic combination ofp-spectrum kernels and can be written as

kWASK(s, t) =
∞

∑
p=1

αpkp
SK(s, t), (40)

whereαp is often chosen to decay exponentially withp and truncated; for example,αp = λp, if
pmin ≤ p≤ pmax, andαp = 0, otherwise, where 0< λ < 1 is the decaying factor.
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Both kp
SK and kWASK are trivially positive definite, the former by construction and the latter

because it is a conic combination of positive definite kernels. A remarkable fact is that both kernels
may be computed inO(|s|+ |t|) time (i.e., with cost that is linear in the length of the strings), as
shown by Vishwanathan and Smola (2003), by using data structures suchas suffix trees or suffix
arrays (Gusfield, 1997). Moreover, withs fixed, any kernelk(s, t) may be computed in timeO(|t|),
which is particularly useful for classification applications.

We will now see how Jensen-Tsallis kernels may be used as string kernels.In Section 5.3, we
have introduced the concept ofjoint andconditionalJT q-differences. We have seen that joint JT
q-differences are just JTq-differences in a product space of the formX = X1×X2; for k-th order
joint JT q-differences this product space is of the formAk = A ×Ak−1. Therefore, they still yield
positive definite kernels as those introduced in Definition 26, whereX = Ak. The next definition
and proposition summarize these statements.

Definition 39 (k-th order weighted JT kernels) Let S (A) be the set of stationary and ergodic
stochastic processes that take values on the alphabetA . For k ∈ N and q∈ [0,2], let the kernel
k̃q,k : (R+×S (A))2 → R be defined as

k̃q,k((ω1,s1),(ω2,s2)) , k̃q(ω1ps1,k,ω2ps2,k) (41)

=
(

Sq(π)−T joint,π
q,k (s1,s2)

)
(ω1 +ω2)

q,

where ps1,k and ps2,k are the k-th order joint probability functions associated with the stochastic
sources s1 and s2, andπ = (ω1/(ω1 +ω2),ω2/(ω1 +ω2)).

Let the kernel kq,k : (R++×S (A))2 → R be defined as

kq,k((ω1,s1),(ω2,s2)) , kq(ω1ps1,k,ω2ps2,k) (42)

=
(

Sq(π)−T joint,π
q,k (s1,s2)

)
,

Proposition 40 The kernel̃kq,k is pd, for q∈ [0,2]. The kernel kq,k is pd, for q∈ [0,1].

Proof Define the mapg : R+ ×S (A) → R+ ×M
1,Sq
+ (Ak) as(ω,s) 7→ g(ω,s) = (ω, ps,k). From

Proposition 27, the kernel̃kq(g(ω1,s1),g(ω2,s2)) is pd and therefore so is̃kq,k((ω1,s1),(ω2,s2));
proceed analogously forkq,k.

At this point, one might wonder whether the “k-th order conditional JT kernel”̃kcond
q,k that would

be obtained by replacingT joint,π
q,k with Tcond,π

q,k in (41–42) is also pd. Formula (35) shows that such
“conditional JT kernel” is a difference between two joint JT kernels, which is inconclusive. The
following proposition shows that̃kcond

q,k and kcond
q,k are not pd in general. The proof, which is in

Appendix D, proceeds by building a counterexample.

Proposition 41 Let k̃cond
q,k be defined as̃kcond

q,k (s1,s2) ,

(
Sq(π)−Tcond,π

q,k (s1,s2)
)

(ω1 + ω2)
q; and

kcond
q,k be defined as kcond

q,k (s1,s2) ,

(
Sq(π)−Tcond,π

q,k (s1,s2)
)

. It holds that̃kcond
q,k and kcond

q,k are not pd

in general.
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Despite the negative result in Proposition 41, the chain rule in Proposition 15still allows us to
define pd kernels by combining conditional JTq-differences.

Proposition 42 Let (βk)k∈N be a non-increasing infinitesimal sequence, that is, satisfying

β0 ≥ β1 ≥ . . . ≥ βn → 0

Any kernel of the form
∞

∑
k=0

βk k̃cond
q,k (43)

is pd for q∈ [0,2]; and any kernel of the form
∞

∑
k=0

βk kcond
q,k

is pd for q∈ [0,1], provided both series above converge pointwise.

Proof From the chain rule, we have that (defining the 0-th order joint JTq-difference as̃kq,0 , 0)

∞

∑
k=0

βk k̃cond
q,k =

∞

∑
k=0

βk (k̃q,k+1− k̃q,k) = lim
n→∞

n

∑
k=1

αk k̃q,k +βn k̃q,n+1 =
∞

∑
k=1

αk k̃q,k (44)

with αk = βk−1− βk (the term limβnk̃q,n+1 was dropped becauseβn → 0 andk̃q,n+1 is bounded).
Since(βk)k∈N is non-increasing, we have that(αk)k∈N\{0} is non-negative, which makes (44) the
pointwise limit of a conic combination of pd kernels, and therefore a pd kernel. The proof for
∑∞

k=0 βkkcond
q,k is analogous.

Notice that if we setβ0 = . . . = βk−1 = 1 andβ j = 0, ∀ j ≥ k, in the above proposition, we
recover thek-th order joint JTq-difference.

Finally, notice that, in the same way that the linear kernel is a special case of aJT kernel when
q = 2 (see Cor. 37), thep-spectrum kernel (39) is a particular case of ap-th order joint JT kernel,
and the weighted all substrings kernel (40) is a particular case of a combination of joint JT kernels
in the form (43), both obtained when we setq = 2 and the weightsω1 andω2 equal to the length
of the strings. Therefore, we conclude that the JT string kernels introduced in this section subsume
these two well-known string kernels.

7. Experiments

We illustrate the performance of the proposed nonextensive information theoretic kernels, in com-
parison with common kernels, for SVM-based text classification. We performed experiments with
two standard data sets:Reuters-215783 andWebKB.4 Since our objective was to evaluate the ker-
nels, we considered a simple binary classification task that tries to discriminate among the two
largest categories of each data set; this led us to theearn-vs-acqclassification task for the first data
set, andstud-vs-fac(students’vs. faculty webpages) in the second data set. Two different frame-
works were considered: modeling documents as bags of words, and modeling them as strings of
characters. Therefore, both bags of words kernels and string kernels were employed for each task.

3. Available atwww.daviddlewis.com/resources/testcollections.
4. Available atwww.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data.
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7.1 Documents as Bags of Words

For the bags of words framework, after the usual preprocessing steps of stemming and stop-word re-
moval, we mapped text documents into probability distributions over words usingthe bag-of-words
model and maximum likelihood estimation; this corresponds to normalizing theterm frequencies
(tf) using theℓ1-norm, and is referred to astf (Joachims, 2002; Baeza-Yates and Ribeiro-Neto,
1999). We also used thetf-idf (term frequency-inverse document frequency) representation, which
penalizes terms that occur in many documents (Joachims, 2002; Baeza-Yates and Ribeiro-Neto,
1999). To weight the documents for the Tsallis kernels, we tried four strategies: uniform weighting,
word counts, square root of the word counts, and one plus the logarithmof the word counts; how-
ever, for both tasks, uniform weighting revealed the best strategy, which may be due to the fact that
documents in both collections are usually short and do not differ much in size.

As baselines, we used the linear kernel withℓ2 normalization, commonly used for this task
(Joachims, 2002), and the heat kernel approximation introduced by Lafferty and Lebanon (2005):

kheat(p1, p2) = (4πt)−
n
2 exp

(
− 1

4t
d2

g(p1, p2)

)
,

wheret > 0 anddg(p1, p2) = 2arccos
(
∑i

√
p1i p2i

)
. Although Lafferty and Lebanon (2005) provide

empirical evidence that the heat kernel outperforms the linear kernel, it isnot guaranteed to be pd
for an arbitrary choice oft, as we show in Appendix E. This parameter and the SVMC parameter
were tuned by cross-validation over the training set. The SVM-Light package (available athttp:
//svmlight.joachims.org/) was used to solve the SVM quadratic optimization problem.

Figures 2–3 summarize the results. We report the performance of the Tsalliskernels as a func-
tion of the entropic indexq. For comparison, we also plot the performance of an instance of a Tsallis
kernel withq tuned by cross-validation. For the first task, this kernel and the two baselines exhibit
similar performance for both thetf and thetf-idf representations; differences are not statistically
significant. In the second task, the Tsallis kernel outperformed theℓ2-normalized linear kernel for
both representations, and the heat kernel fortf-idf ; the differences are statistically significant (using
the unpairedt test at the 0.05 level). Regarding the influence of the entropic index, we observe that
in both tasks, the optimal value ofq is usually higher fortf-idf than fortf.

The results on these two problems are representative of the typical relative performance of the
kernels considered: in almost all tested cases, both the heat kernel andthe Tsallis kernels (for a
suitable value ofq) outperform theℓ2-normalized linear kernel; the Tsallis kernels are competitive
with the heat kernel.

7.2 Documents as Strings

In the second set of experiments, each document is mapped into a probabilitydistribution over
characterp-grams, using maximum likelihood estimation; we did experiments forp = 3,4,5. To
weight the documents for thep-th order joint Jensen-Tsallis kernels, four strategies were attempted:
uniform weighting, document lengths (in characters), square root of the document lengths, and
one plus the logarithm of the document lengths. For theearn-vs-acqtask, all strategies performed
similarly, with a slight advantage for the square root and logarithm of the document lengths; for
the stud-vs-factask, uniform weighting revealed the best strategy. For simplicity, all experiments
reported here use uniform weighting.
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Figure 2: Results forearn-vs-acqusingtf andtf-idf representations. The error bars represent±1
standard deviation on 30 runs. Training (resp. testing) with 200 (resp. 250) samples per
class.
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Figure 3: Results forstud-vs-facusing tf and tf-idf representations. The error bars represent±1
standard deviation on 30 runs. Training (resp. testing) with 200 (resp. 250) samples per
class.

As baselines, we used thep-spectrum kernel (PSK, see 39) for the values ofp referred above,
and the weighted all substrings kernel (WASK, see 40) with decaying factor tuned toλ = 0.75
(which yielded the best results), withpmin = p set to the values above, andpmax = ∞. The SVMC
parameter was tuned by cross-validation over the training set.

Figures 4–5 summarize the results.
For the first task, the JT string kernel and the WASK outperformed the PSK(with statistical

significance forp = 3), all kernels performed similarly forp = 4, and the JT string kernel outper-
formed the WASK forp = 5; all other differences are not statiscally significant. In the second task,
the JT string kernel outperformed both the WASK and the PSK (and the WASKoutperformed the
PSK), with statistical significance forp = 3,4,5. Furthermore, by comparing Figures 3 and 5, we
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Figure 4: Results forearn-vs-acqusing string kernels andp = 3,4,5. The error bars represent±1
standard deviation on 15 runs. Training (resp. testing) with 200 (resp. 250) samples per
class.

also observe that the 5-th order JT string kernel remarkably outperforms all bags of words kernels
for thestud-vs-factask, even though it does not use or build any sort of language model atthe word
level.

8. Conclusions

In this paper we have introduced a new family of positive definite kernels between measures, which
includes previous information-theoretic kernels on probability measures asparticular cases. One of
the key features of the new kernels is that they are defined on unnormalized measures (not necessar-
ily normalized probabilities). This is relevant, for example, for kernels on empirical measures (such
as word counts, pixel intensity histograms); instead of the usual step of normalization (Hein et al.,
2004), we may leave these empirical measures unnormalized, thus allowing objects of different
sizes (e.g., documents of different lengths, images with different sizes) tobe weighted differently.
Another possibility is the explicit inclusion of weights: given two normalized measures, they can
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Figure 5: Results forstud-vs-facusing string kernels andp = 3,4,5. The error bars represent±1
standard deviation on 15 runs. Training (resp. testing) with 200 (resp. 250) samples per
class.

be multiplied by arbitrary (positive) weights before being fed to the kernel function. In addition,
we define positive definite kernels between stochastic processes that subsume well-known string
kernels.

The new kernels and the proofs of positive definiteness rely on other maincontributions of this
paper: the new concept ofq-convexity, for which we proved aJensen q-inequality; the concept
of Jensen-Tsallis q-difference, a nonextensive generalization of the Jensen-Shannon divergence;
denormalization formulae for several entropies and divergences.

We have reported experiments in which these new kernels were used in support vector machines
for text classification tasks. Although the reported experiments do not leadto strong conclusions,
they show that the new kernels are competitive with the state-of-the-art, in some cases yielding a
significant performance improvement.

Future research will concern applying Jensen-Tsallisq-differences to other learning problems,
like clustering, possibly exploiting the fact that they accept more than two arguments.
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Appendix A. Suyari’s Axioms for Nonextensive Entropies

Suyari (2004) proposed the following set of axioms (above referredas Suyari’s axioms) that deter-
mine nonextensive entropies of the form stated in (1). Below,q≥ 0 is any fixed scalar andfq is a
function defined on∪∞

n=1∆n−1.

(A1) Continuity: fq|∆n−1 is continuous, for anyn∈ N;

(A2) Maximality: For anyn∈ N and(p1, . . . , pn) ∈ ∆n−1,

fq(p1, . . . , pn) ≤ Sq(1/n, . . . ,1/n);

(A3) Generalized additivity: For i = 1, . . . ,n, j = 1, . . . ,mi , pi j ≥ 0, andpi = ∑mi
j=1 pi j ,

fq(p11, . . . , pnmn) = fq(p1, . . . , pn)+
n

∑
i=1

pq
i fq

(
pi1

pi
, . . . ,

pimi

pi

)
;

(A4) Expandability: fq(p1, . . . , pn,0) = fq(p1, . . . , pn).

Appendix B. Proof of Proposition 8

Proof The caseq = 1 corresponds to the Jensen difference and was proved by Burbea and Rao
(1982) (Theorem 1). Our proof extends that toq 6= 1. Lety = (y1, . . . ,ym), whereyt = (yt1, . . . ,ytn).
Thus

Tπ
q,Ψ(y) = Ψ

(
m

∑
t=1

πtyt

)
−

m

∑
t=1

πq
t Ψ(yt)

=
n

∑
i=1

[
m

∑
t=1

πq
t ϕ(yti)−ϕ

(
m

∑
t=1

πtyti

)]
,

showing that it suffices to considern = 1, where eachyt ∈ [0,1], that is,

Tπ
q,Ψ(y1, . . . ,ym) =

m

∑
t=1

πq
t ϕ(yt)−ϕ

(
m

∑
t=1

πtyt

)
;
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this function is convex on[0,1]m if and only if, for every fixeda1, . . . ,am∈ [0,1], andb1, . . . ,bm∈R,
the function

f (x) = Tπ
q,Ψ(a1 +b1x, . . . ,am+bmx)

is convex in{x∈R : at +btx∈ [0,1], t = 1, . . . ,m}. Sincef isC2, it is convex if and only iff ′′(t)≥ 0.
We first show that convexity off (equivalently ofTπ

q,Ψ) implies convexity ofϕ. Letting ct =
at +btx,

f ′′(x) =
m

∑
t=1

πq
t b2

t ϕ′′(ct)−
(

m

∑
t=1

πt bt

)2

ϕ′′
(

m

∑
t=1

πt ct

)
. (45)

By choosingx = 0, at = a∈ [0,1], for t = 1, ...,m, andb1, . . . ,bm satisfying∑t πtbt = 0 in (45), we
get

f ′′(0) = ϕ′′(a)
m

∑
t=1

πq
t b2

t ,

hence, if f is convex,ϕ′′(a) ≥ 0 thusϕ is convex.
Next, we show that convexity off also implies(2−q)-convexity of−1/ϕ′′. By choosingx = 0

(thusct = at) andbt = π1−q
t (ϕ′′(at))

−1, we get

f ′′(0) =
m

∑
t=1

π2−q
t

ϕ′′(at)
−
(

m

∑
t=1

π2−q
t

ϕ′′(at)

)2

ϕ′′
(

m

∑
t=1

πtat

)

=

[
1

ϕ′′ (∑m
t=1 πtat)

−
m

∑
t=1

π2−q
t

ϕ′′(at)

](
m

∑
t=1

π2−q
t

ϕ′′(at)

)
ϕ′′
(

m

∑
t=1

πtat

)
,

where the expression inside the square brackets is the Jensen(2−q)-difference of 1/ϕ′′ (see Def-
inition 7). Sinceϕ′′(x) ≥ 0, the factor outside the square brackets is non-negative, thus the Jensen
(2−q)-difference of 1/ϕ′′ is also nonnegative and−1/ϕ′′ is (2−q)-convex.

Finally, we show that ifϕ is convex and−1/ϕ′′ is (2− q)-convex, thenf ′′ ≥ 0, thusTπ
q,Ψ is

convex. Letrt = (qπ2−q
t /ϕ′′(ct))

1/2 andst = bt(π
q
t ϕ′′(ct)/q)1/2; then, non-negativity off ′′ results

from the following chain of inequalities/equalities:

0 ≤
(

m

∑
t=1

r2
t

)(
m

∑
t=1

s2
t

)
−
(

m

∑
t=1

rt st

)2

(46)

=
m

∑
t=1

π2−q
t

ϕ′′(ct)

m

∑
t=1

b2
t πq

i ϕ′′(ct)−
(

m

∑
t=1

btπt

)2

(47)

≤ 1
ϕ′′ (∑m

t=1 πtct)

m

∑
t=1

b2
t πq

t ϕ′′(ct)−
(

m

∑
t=1

btπt

)2

(48)

=
1

ϕ′′ (∑m
t=1 πtct)

· f ′′(t), (49)

where: (46) is the Cauchy-Schwarz inequality; Equality (47) results from the definitions ofrt and
st and from the fact thatrtst = btπt ; Inequality (48) states the(2−q)-convexity of−1/ϕ′′; equality
(49) results from (45).
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Appendix C. Proof of Proposition 10

Proof The proof of (29), forq≥ 0, results from

Tπ
q (p1, . . . , pm) =

1
q−1

[
1−

n

∑
j=1

(
m

∑
t=1

πt pt j

)q

−
m

∑
t=1

πq
t

(
1−

n

∑
j=1

pq
t j

)]

= Sq(π)+
1

q−1

n

∑
j=1

[
m

∑
t=1

(πt pt j)
q−
(

m

∑
t=1

πt pt j

)q]

≤ Sq(π),

where the inequality holds since, foryi ≥ 0: if q≥ 1, then∑i y
q
i ≤ (∑i yi)

q; if q∈ [0,1], then∑i y
q
i ≥

(∑i yi)
q.

The proof thatTπ
q ≥ 0 for q≥ 1, uses the notion ofq-convexity. SinceX is countable, the Tsallis

entropy is as in (2), thusSq ≥ 0. Since−Sq is 1-convex, then, by Proposition 6, it is alsoq-convex
for q≥ 1. Consequently, from theq-Jensen inequality (Proposition 5), for finiteT , with |T | = m,

Tπ
q (p1, . . . , pm) = Sq

(
m

∑
t=1

πt pt

)
−

m

∑
t=1

πq
t Sq(pt) ≥ 0.

SinceSq is continuous, so isTπ
q , thus the inequality is valid in the limit asm→ ∞, which proves the

assertion forT countable. Finally,Tπ
q (δ1, . . . ,δ1, . . .) = 0, whereδ1 is some degenerate distribution.

Finally, to prove (30), forq∈ [0,1] andX finite,

Tπ
q (p1, . . . , pm) = Sq

(
m

∑
t=1

πt pt

)
−

m

∑
t=1

πq
t Sq(pt)

≥
m

∑
t=1

πtSq(pt)−
m

∑
t=1

πq
t Sq(pt) (50)

=
m

∑
t=1

(πt −πq
t )Sq(pt)

≥ Sq(U)
m

∑
t=1

(πt −πq
t ) (51)

= Sq(π)[1−n1−q].

where the Inequality (50) results fromSq being concave, and the Inequality (51) holds sinceπt −
πq

t ≤ 0, forq∈ [0,1], and the uniform distributionU maximizesSq, with Sq(U) = (1−n1−q)/(q−1).

Appendix D. Proof of Proposition 41

Proof We show a counterexample withq = 1 (the extensive case),π = (1/2,1/2) and k = 1,

that discards both cases. It suffices to show that
√

JScond
1 ,

√
Tcond,(1/2,1/2)

1,1 violates the triangle
inequality for some choice of stochastic processess1,s2,s3 and therefore is a not a squared distance;
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this in turn implies that
√

JScond
1 is not nd and, from Proposition 18, that the above two kernels

are not pd. We defines1,s2,s3 to be stationary first order Markov processes in a binary alphabet
A = {0,1} defined by the following transition matrices, respectively:

S1 = lim
ε→0

[
1− ε ε
1/4 3/4

]
=

[
1 0

1/4 3/4

]
,

S2 = lim
ε→0

[
3/4 1/4

ε 1− ε

]
=

[
3/4 1/4
0 1

]
,

and

S3 = lim
ε→0

[
ε 1− ε

1/4 3/4

]
=

[
0 1

1/4 3/4

]
,

whose stationary distributions are

σ1 = lim
ε→0

1
1+4ε

[
1
4ε

]
=

[
1
0

]
,

σ2 = lim
ε→0

1
1+4ε

[
4ε
1

]
=

[
0
1

]
,

and

σ3 = lim
ε→0

1
5−4ε

[
1

4−4ε

]
=

[
1/5
4/5

]
.

The matrix of first order conditional JT 1-differences (or first orderconditional Jensen-Shannon
divergences) is 


0 0 3

5H(5
6)

∗ 0 9
10H(8

9)− 2
5H(1

4)
∗ ∗ 0


≈




0 0 0.390
∗ 0 0.128
∗ ∗ 0


 , (52)

which fails to be negative definite, since

√
JScond

1 (s1,s2)+
√

JScond
1 (s2,s3) <

√
JScond

1 (s1,s3),

which violates the triangle inequality required for
√

JScond
1 to be a metric.

Interestingly, the 0-th order conditional Jensen-Shannon divergence matrix (this one ensured to
be negative definite because it equals a standard Jensen-Shannon divergence matrix) is




0 1 H(2
5)− 1

2H(1
5)

∗ 0 H( 1
10)− 1

2H(1
5)

∗ ∗ 0


≈




0 1 0.610
∗ 0 0.108
∗ ∗ 0


 . (53)

From the chain rule (35), we have that the sum of the matrices (52) and (53) is the second order
joint Jensen-Shannon divergence, and therefore is also guaranteed to be negative definite.
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Appendix E. The Heat Kernel Approximation

The diffusion kernel for statistical manifolds, recently proposed by Lafferty and Lebanon (2005), is
grounded in information geometry (Amari and Nagaoka, 2001). It models the diffusion of “informa-
tion” over a statistical manifold according to the heat equation. Since in the case of the multinomial
manifold (the relative interior of∆n), the diffusion kernel has no closed form, the authors adopt
the so-called “first-order parametrix expansion,” which resembles the Gaussian kernel replacing the
Euclidean distance by the geodesic distance that is induced when the manifoldis endowed with a
Riemannian structure given by the Fisher information (we refer to Laffertyand Lebanon 2005 for
further details). The resulting heat kernel approximation is

kheat(p1, p2) = (4πt)−
n
2 exp

(
− 1

4t
d2

g(p1, p2)

)
,

wheret > 0 anddg(p1, p2) = 2arccos
(
∑i

√
p1i p2i

)
. Whetherkheat is pd has been an open problem

(Hein et al., 2004; Zhang et al., 2005). LetS
n
+ be the positive orthant of then-dimensional sphere,

that is,

S
n
+ =

{
(x1, . . . ,xn+1) ∈ R

n+1 |
n+1

∑
i=1

x2
i = 1, ∀i xi ≥ 0

}
.

The problem can be restated as follows: is there an isometric embedding fromS
n
+ to some Hilbert

space? In this section we answer that question in the negative.

Proposition 43 Let n≥ 2. For sufficiently large t, the kernel kheat is notpd.

Proof From Proposition 19,kheat is pd, for all t > 0, if and only if d2
g is nd. We provide a coun-

terexample, using the following four points in∆2: p1 = (1,0,0), p2 = (0,1,0), p3 = (0,0,1) and
p4 = (1/2,1/2,0). The squared distance matrix[Di j ] = [d2

g(pi , p j)] is

D =
π2

4
·




0 4 4 1
4 0 4 1
4 4 0 4
1 1 4 0


 .

Takingc= (−4,−4,1,7) we havecTDc= 2π2 > 0, showing thatD is not nd. Althoughp1, p2, p3, p4

lie on the boundary of∆2, continuity ofd2
g implies that it is not nd on the relative interior of∆2. The

casen > 2 follows easily, by appending zeros to the four vectors above.
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B. Scḧolkopf and A. J. Smola.Learning with Kernels. The MIT Press, Cambridge, MA, 2002.

C. Shannon and W. Weaver.The Mathematical Theory of Communication. University of Illinois
Press, Urbana, Ill., 1949.

C. E. Shannon. A mathematical theory of communication.The Bell System Technical Journal, 27
(3):379–423, 1948.

J. Shawe-Taylor and N. Cristianini.Kernel Methods for Pattern Analysis. Cambridge University
Press, 2004.

J. Steele.The Cauchy-Schwarz Master Class. Cambridge University Press, Cambridge, 2006.

H. Suyari. Generalization of Shannon-Khinchin axioms to nonextensive systems and the uniqueness
theorem for the nonextensive entropy.IEEE Trans. on Information Theory, 50(8):1783–1787,
2004.

F. Topsøe. Some inequalities for information divergence and related measures of discrimination.
IEEE Trans. on Information Theory, 46(4):1602–1609, 2000.

C. Tsallis. Possible generalization of Boltzmann-Gibbs statistics.J. of Statistical Physics, 52:
479–487, 1988.

974



NONEXTENSIVE INFORMATION THEORETICKERNELS ONMEASURES

S. Vishwanathan and A. Smola. Fast kernels for string and tree matching. In K. Tsuda, B. Scḧolkopf,
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