
Appendix
High-Performance Distributed ML at Scale through Parameter Server

Consistency Models

1 Comparison with GraphLab

We compare our MF SGD implementation using Petuum-ESSPTable with with GraphLab’s synchronous engine on Netflix data set
(Fig. 1). GraphLab’s asynchronous engine performs worse than synchronous engine and is not shown. The experiments were run on
8 nodes, each with 64 cores and 128GB memory, connected via 1Gbps ethernet. We use λ = 0.05, and the step-sizes are calibrated
for both systems to be equal.

We observe that Petuum-ESSP converges significantly faster than GraphLab in real time due to Petuum-ESSP’s high throughput.
Each iteration in Petumm’s MF takes about 15.3 seconds, while GraphLab takes about 97 seconds. Therefore over 1850 seconds
experiment run time Petuum executes 120 iterations compared with GraphLab’s 19 iterations. Notice that Petuum’s first recorded
objective occurs at about iteration 16, which has objective value comparable to GraphLab’s last recorded objective (right-most
end of blue curve) at iteration 19. We believe this large difference comes from Petuum’s relaxed consistency model which allows
computation to proceed with staler parameters, resulting in much higher throughput.

Figure 1: MF Convergence curve for Petuum-ESSPTable and GraphLab.

2 Proof of Theorems

Theorem 1 (SGD under VAP, convergence in expectation) Given convex function f(x) =
∑T
t=1 ft(x) such that components ft

are also convex. We search for minimizer x∗ via gradient descent on each component ∇ft with step-size η̆t close to ηt = η√
t

such
that the update ût = −η̆t∇ft(x̆t) is computed on noisy view x̆t. The VAP bound follows the decreasing vt described above. Under
suitable conditions (ft are L-Lipschitz and bounded diameter D(x‖x′) ≤ F 2),

R[X] :=

T∑
t=1

ft(x̆t)− f(x∗) = O(
√
T )

and thus R[X]
T → 0 as T →∞.

Proof. We will use real-time sequence x̂t defined by

x̂t := x0 +

t∑
t′=1

ût′
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R[X] =

T∑
t=1

ft(x̆t)− f(x∗)

≤
T∑
t=1

〈∇ft(x̆t), x̆t − x∗〉 (ft are convex)

=

T∑
t=1

〈ğt, x̆t − x∗〉

where ğt := ∇ft(x̆t). From Lemma A.1 below we have

R[X] ≤
T∑
t=1

1

2
η̆t||ğt||2 +

D(x∗||x̂t)−D(x∗||x̂t+1)

η̆t
+ 〈x̆t − x̂t, ğt〉

We now bound each term:

T∑
t=1

1

2
η̆t||ğt||2 ≤

T∑
t=1

1

2
η̆tL

2 (Lipschitz assumption)

=

T∑
t=r+1

1

2

η√
t− r

L2 + const (r > 0 is the finite clock drift in VAP)

=
1

2
ηL2

T∑
t=r+1

1√
t− r

+ const

≤ 1

2
ηL2

∫ T

t=r+1

1√
t− r

dt+ const

≤ 1

2
ηL2(

√
T − r − 1) + const

= O(
√
T )

where the clock drift comes from the fact that η̆t is not exactly ηt = η√
t

in VAP.

T∑
t=1

D(x∗||x̂t)−D(x∗||x̂t+1)

η̆t
=
D(x∗||x̂1)

η̆1
− D(x∗||x̂T+1)

η̆T
+

T∑
t=2

[
D(x∗||x̂t)

(
1

η̆t
− 1

η̆t−1

)]

≤ F 2

η
+ 0 +

F 2

η

T∑
t=2

[√
t− k −

√
t− r

]
(clock drift)

≤ F 2

η
+
F 2

η

∫ T

t=max(k,r)

(√
t− k −

√
t− r

)
dt+ const

=
F 2

η
+
F 2

η

[
(t− k)3/2 − (t− r)3/2

]T
max(k,r)

+ const

=
F 2

η
+
F 2

η

[
(T − k)3/2 − (T − r)3/2

]
+ const

=
F 2

η
+
F 2

η

[(
T

3
2 +

3

2
kT

1
2 +O(

√
T )

)
−
(
T

3
2 +

3

2
rT

1
2 +O(

√
T )

)]
+ const (binomial expansion)

= O(
√
T )
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T∑
t=1

〈x̆t − x̂t, ğt〉 ≤
T∑
t=1

||x̆t − x̂t||2||ğt||2

≤
T∑
t=1

√
dvtL (using eq.(2) from main text)

=
√
dL

T∑
t=1

v0√
t

=
√
dLv0

√
T = O(

√
T )

Together, we have R[X] ≤ O(
√
T ) as desired.

Lemma A.1 For x∗, x̆t ∈ X , and X = Rd,

〈ğt, x̆t − x∗〉 =
1

2
η̆t||ğt||2 +

D(x∗||x̂t)−D(x∗||x̂t+1)

η̆t
+ 〈x̆t − x̂t, ğt〉

where D(x||x′) := 1
2 ||x− x

′||2.

Proof.

D(x∗||x̂t)−D(x∗||x̂t+1) =
1

2
||x∗ − x̂t + x̂t − x̂t+1||2 −

1

2
||x∗ − x̂t||2

=
1

2
||x∗ − x̂t + η̆tğt||2 −

1

2
||x∗ − x̂t||2

=
1

2
η̆t||ğt||2 − η̆t〈x̂t − x∗, ğt〉

Divide both sides by η̆t gets the desired answer.

Lemma 4 ūt ≤ η√
t
L and γt := ||γt||2 ≤ P (2s+ 1).

Proof. ||ut||2 = || − ηt∇ft||2 ≤ η√
t
L since f is L-Lipschitz. Therefore ūt = 1

P (2s+1)

∑
t′∈Wt

||ut′ ||2 ≤ η√
t
L since |Wt| ≤

P (2s+ 1).

If ūt = 0, then γt = 0 and the lemma holds trivially. For ūt > 0. γt = 1
ūt

(x̃t − xt) = 1
ūt

∑
t′∈St ut′ . Thus ||γt||2 =

1
ūt
||
∑
t′∈St ut′ ||2 ≤ 1

ūt

∑
t′∈St ||ut′ ||2 ≤

1
ūt

∑
t′∈Wt

||ut′ ||2 = P (2s+ 1).

Theorem 5 (SGD under SSP, convergence in probability) Given convex function f(x) =
∑T
t=1 ft(x) such that components ft are

also convex. We search for minimizer x∗ via gradient descent on each component ∇ft under SSP with staleness s and P workers.
Let ut := −ηt∇tft(x̃t) with ηt = η√

t
. Under suitable conditions (ft are L-Lipschitz and bounded divergence D(x||x′) ≤ F 2), we

have

P

[
R [X]

T
− 1√

T

(
ηL2 +

F 2

η
+ 2ηL2µγ

)
≥ τ

]
≤ exp

{
−Tτ2

2η̄Tσγ + 2
3ηL

2(2s+ 1)Pτ

}

where R[X] :=
∑T
t=1 ft(x̃t)− f(x∗), and η̄T = η2L4(lnT+1)

T = o(T ).

Proof. From lemma A.1, substitute x̆t with x̃t we have
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R [X] ≤
T∑
t=1

〈g̃t, x̃t − x∗〉

=

T∑
t=1

1

2
ηt ‖g̃t‖2 +

D (x∗‖xt)−D (x∗‖xt+1)

ηt
+ 〈x̃t − xt, g̃t〉

≤ ηL2
√
T +

F 2

η

√
T +

T∑
t=1

〈ūtγt, g̃t〉

≤ ηL2
√
T +

F 2

η

√
T +

T∑
t=1

η√
t
L2γt

Where the last step uses the fact
〈ūtγt, g̃t〉 ≤ ūt||γt||2||g̃t||2

≤ γt
η√
t
L2 (Lemma 4)

Dividing T on both sides,

R [X]

T
− ηL2

√
T
− F 2

η
√
T
≤

∑T
t=1

η√
t
L2γt

T
(1)

Let at := η√
t
L2(γt − µγ). Notice that at zero-mean, and |at| ≤ ηL2 maxt(γt) ≤ ηL2(2s + 1)P . Also, 1

T

∑T
t=1 var(at) =

1
T

∑T
t=1

η2

t L
4σγ <

η2L4σγ
T (lnT + 1) = η̄Tσγ where η̄T = η2L4(lnT+1)

T . Bernstein’s inequality gives, for τ > 0,

P

(∑T
t=1

η√
t
L2γt − η√

t
L2µγ

T
≥ τ

)
≤ exp

{
−Tτ2

2η̄Tσγ + 2
3ηL

2(2s+ 1)Pτ

}
(2)

Note the following identity:
b∑
i=a

1√
i
≤ 2
√
b− a+ 1 (3)

Thus
1

T

T∑
t=1

η√
t
L2µγ ≤

2ηL2µγ√
T

(4)

Plugging eq. 1 and 4 to eq. 2, we have

P

[
R [X]

T
− 1√

T

(
ηL2 +

F 2

η
+ 2ηL2µγ

)
≥ τ

]
≤ exp

{
−Tτ2

2η̄Tσγ + 2
3ηL

2(2s+ 1)Pτ

}

We need the following Lemma to prove Theorem 2 and 6.

Lemma A.2 Let Ω∗ be the hessian of the loss at optimum x∗, then
gt := ∇f(x̃t) = (x̃t − x∗)Ω∗ +O(ρ2

t )

for x̃t close to the optimum such that O(ρt) = O(||x̃t − x∗||) is small. Here Ω∗ = ∇2f(x)
∣∣
x=x∗ is the Hessian at the optimum

Proof. Using Taylor’s theorem and expanding around x∗,
f(x̃t) = f(x∗) + (x̃t − x∗)T ∇f(x)|x=x∗

+
1

2
(x̃t − x∗)TΩ∗(x̃t − x∗) +O(||x̃t − x∗||3)

= f(x∗) +
1

2
(x̃t − x∗)TΩ∗(x̃t − x∗) +O(||x̃t − x∗||3)

where the last step uses∇f(x) = 0 at x∗. Taking gradient w.r.t. x̃t,
∇f(x̃t) = (x̃t − x∗)TΩ∗ +O(||x̃t − x∗||2)

= (x̃t − x∗)TΩ∗ +O(ρ2
t )
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Theorem 6 (SGD under SSP, decreasing variance) Given the setup in Theorem 5 and assumption 1-3. Further assume that f(x)

has bounded and invertible Hessian Ω∗ at optimum x∗ and γt is bounded. Let Var t := E[x̃2
t ] − E[x̃t]2, gt = ∇ft(x̃t) then for x̃t

near the optima x∗ such that ρt = ||x̃t − x∗|| and ξt = ||gt|| − ||gt+1|| are small:

Var t+1 = Var t − 2ηtcov(xt,E∆t [gt]) +O(ηtξt)

+O(η2
t ρ

2
t ) +O∗γt

where the covariance cov(v1,v2) := E[vT1 v2]− E[vT1 ]E[v2] uses inner product. O∗γt represents high order (≥ 5th) terms involving
γt = ||γt||∞. ∆t is a random variable capturing the randomness of update ut conditioned on xt.

Proof. We write eq. 3 from the main text as x̃t = xt + δt with δt = ūtγt. Conditioned on xt, we have

p(x̃t|xt)dx̃t = p(Vt(δt, xt))dVt (5)

where Vt is a random variable representing the state of δt conditioned on xt. We can express Ex̃t [f(x̃t)] in terms of Ext for any
function f() of x̃t:

Ex̃t [f(x̃t)] =

∫
x̃t
f(x̃t)p(x̃t)dx̃t

=

∫
x̃t

∫
xt
f(x̃t)p(x̃t|xt)p(xt)dxtdx̃t (using eq. 5)

=

∫
xt

∫
Vt

f(x̃t)p(Vt(δt, xt))dVtdxt

= Ext
[
EVt [f(x̃t)]

]
(6)

Similarly, we have
Ex̃t+1 [f(x̃t+1)] = Ext+1

[
EVt+1 [f(x̃t+1)]

]
(7)

In the same vein, we introduce random variable ∆, conditioned on xt:

p(xt+1|xt)dxt+1 = p(∆t(ut, xt))d∆t (8)

since xt+1 = xt + ut (eq. 2 in the main text). Here ∆ is a random variable representing the state of ut conditioned on xt. Analogous
to eq. 6, we have

Ext+1 [f(xt+1)] = Ext [E∆t [f(xt+1)]] (9)

for some function f() of xt+1. There are a few facts we will use throughout:

Ext
[
h(xt, ūt)EVt [γt]

]
= Ext [h(xt, ūt)]EVt [γt] (since γt⊥xt, ūt) (10)

Ext
[
E∆t [xTt g(ut)]

]
= Ext

[
xTt E∆t [g(ut)]

]
(∆t conditioned on xt) (11)

E∆t [ūt+1] = ūt+1 (12)

where h(xt, ūt) is some function of xt and ūt, and similarly for g(). Eq. 12 follows from ūt+1 being an average over the randomness
represented by ∆t. We can now expand Var t:

Var t = Ex̃t [x̃2
t ]− (Ex̃t [x̃t])2

= Ext [EVt [x̃2
t ]]− (Ext [EVt [x̃t]])2 (using eq. 6)

= Ext [EVt [x2
t + δ2

t + 2xTt δt]]− (Ext [EVt [xt + δt]])
2 (13)

We expand each term:

Ext [EVt [x2
t + δ2

t + 2xTt δt]]
= Ext [x2

t + EVt [δ2
t ] + 2xTt EVt [δt]]

= Ext [x2
t ] + Ext [ū2

tEVt [γ2
t ]] + 2Ext [xTt ūtEVt [γt]]

= Ext [x2
t ] + Ext [ū2

t ]EVt [γ2
t ] + 2Ext [xTt ūt]EVt [γt]

(Ext [EVt [xt + δt]])
2

= (Ext [xt + EVt [δt]])2

= (Ext [xt + ūtEVt [γt]])2

= (Ext [xt] + Ext [ūt]EVt [γt]])2

= Ext [xt]2 + Ext [ūt]
2EVt [γt]2 + 2Ext [xTt ]Ext [ūt]EVt [γt]
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Therefore
Var t = Ext [x2

t ] + Ext [ū2
t ]EVt [γ2

t ] + 2Ext [xTt ūt]EVt [γt]
− Ext [xt]2 − Ext [ūt]

2EVt [γt]2 − 2Ext [xTt ]Ext [ūt]EVt [γt]
(14)

Following similar procedures, we can write Var t+1 as

Var t+1 = Ext+1 [x2
t+1] + Ext+1 [ū2

t+1]EVt+1 [γ2
t+1]

+ 2Ext+1 [xTt+1ūt+1]EVt+1 [γt+1]

− Ext+1 [xt+1]2 − Ext+1 [ūt+1]2EVt+1 [γt+1]2

− 2Ext+1 [xTt+1]Ext+1 [ūt+1]EVt+1 [γt+1]

(15)

We tackle each term separately:

Ext+1 [x2
t+1] = Ext

[
E∆t [(xt + ut)2]

]
(using eq. 9, 2 main text)

= Ext [x2
t ] + Ext

[
E∆t [u2

t ]
]

+ 2Ext
[
xTt E∆t [ut]

]
(using eq. 11)

2Ext+1 [xTt+1ūt+1]EVt+1 [γt+1]

= 2Ext
[
E∆t [(xt + ut)T ūt+1]

]
EVt+1 [γt+1] (using eq. 9, 2 main text)

= 2Ext
[
E∆t [xTt ūt+1]

]
EVt+1 [γt+1]

+ 2Ext
[
E∆t [uTt ūt+1]

]
EVt+1 [γt+1]

= 2Ext
[
xTt ūt+1

]
EVt+1 [γt+1] (using eq. 11 and 12)

+ 2Ext
[
E∆t [uTt ūt+1]

]
EVt+1 [γt+1]

−Ext+1 [xt+1]2 = −Ext
[
E∆t [xt + ut]

]2
= −Ext [xt]2 − Ext

[
E∆t [ut]

]2 − 2Ext [xTt ]Ext
[
E∆t [ut]

]
− 2Ext+1 [xTt+1]Ext+1 [ūt+1]EVt+1 [γt+1]

= −2Ext
[
E∆t [(xt + ut)T ]

]
Ext
[
E∆t [ūt+1]

]
EVt+1 [γt+1]

= −2Ext
[
E∆t [uTt ]

]
Ext [ūt+1]EVt+1 [γt+1]− 2Ext [xTt ]Ext [ūt+1]EVt+1 [γt+1]

Assuming stationarity for γt, and thus γ̄ := EVt [γt] = EVt+1 [γt+1], we have

Var t+1 −Var t = 2
{
Ext
[
xTt E∆t [ut]

]
− Ext [xTt ]Ext

[
E∆t [ut]

]}
− 2

{
Ext [xTt (ūt − ūt+1)γ̄]− Ext [xTt ]Ext [(ūt − ūt+1)γ̄]

}
+
{
Ext
[
E∆t [u2

t ]
]

+ Ext+1 [ū2
t+1]EVt+1 [γ2

t+1]− Ext
[
E∆t [ut]

]2
− Ext [ūt+1]2γ̄2 − Ext [ū2

t ]EVt [γ2
t ] + Ext [ūt]

2EVt [γ2
t ]

+2Ext
[
E∆t [uTt ūt+1]

]
γ̄ − 2Ext

[
E∆t [uTt ]

]
Ext [ūt+1]γ̄

}
= 2cov(xt,E∆t [ut]) +O(ηtξt) +O(η2

t ρ
2
t ) +O∗

where ξt = ||gt|| − ||gt+1|| and O∗ are higher order terms. In the last step we use the fact that ||gt|| = O(ρt) (lemma A.2) and thus
||ut|| = ηt||∇f(xt)|| and ūt are both O(ηtρt). Notice that cov(v1,v2) := E[vT1 v2]− E[vT1 ]E[v2] uses inner product. Thus,

Var t+1 = Var t − 2ηtcov(xt,E∆t [gt]) +O(ηtξt) +O(η2
t ρ

2
t ) +O∗ (16)

Theorem 2 (SGD under VAP, bounded variance) Assuming f(x), η̆t, and vt similar to theorem 1, and f(x) has bounded and
invertible Hessian, Ω∗ defined at optimal point x∗. Let Var t := E[x̆2

t ]− E[x̆t]2 (Var t is the sum of component-wise variance1), and
ğt = ∇ft(x̆t) is the gradient, then:

Var t+1 = Var t − 2cov(x̂t,E∆t [ğt]) +O(δt) +O(η̆2
t ρ

2
t ) +O∗δt

near the optima x∗. The covariance cov(v1,v2) := E[vT1 v2] − E[vT1 ]E[v2] uses inner product. δt = ||δt||∞ and δt = x̆t − x̂t.
ρt = ||x̆t − x∗||. ∆t is a random variable capturing the randomness of update ût = −ηtğt conditioned on x̂t.

1Var t =
∑d

i=1 E[x̆2
ti] − E[x̆ti]

2

6



Proof. The proof is similar to the proof of Theorem 6. Starting off with x̆t = x̂t + δt, we define Vt, ∆t analogously. We have

Var t = Ex̂t [x̂2
t ] + Ex̂t [EVt [δ2

t ]] + 2Ex̂t [x̂Tt EVt [δt]]

− Ex̂t [x̂t]2 − Ex̂t [EVt [δ2
t ]]− 2Ex̂t [x̂t]Ex̂Tt [EVt [δt]]

Similar algebra as in Theorem 6 leads to

Var t+1 −Var t = 2cov(x̂t,E∆t [ût]) + 2cov(x̂t,EVt [δt]− E∆t [EVt+1 [δt+1]])

+O(δ2
t ) +O(η̆2

t ρ
2
t ) +O(η̆tδt) +O∗

= −2cov(x̂t,E∆t [ğt]) +O(δt) +O(η̆2
t ρ

2
t ) +O∗δt

where δt = ||δt||∞. This is the desired result in the theorem statement.

7


