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Abstract

Motivation: Cellular Electron CryoTomography (CECT) enables 3D visualization of cellular organ-

ization at near-native state and in sub-molecular resolution, making it a powerful tool for analyzing

structures of macromolecular complexes and their spatial organizations inside single cells.

However, high degree of structural complexity together with practical imaging limitations makes

the systematic de novo discovery of structures within cells challenging. It would likely require aver-

aging and classifying millions of subtomograms potentially containing hundreds of highly hetero-

geneous structural classes. Although it is no longer difficult to acquire CECT data containing such

amount of subtomograms due to advances in data acquisition automation, existing computational

approaches have very limited scalability or discrimination ability, making them incapable of pro-

cessing such amount of data.

Results: To complement existing approaches, in this article we propose a new approach for subdi-

viding subtomograms into smaller but relatively homogeneous subsets. The structures in these

subsets can then be separately recovered using existing computation intensive methods. Our ap-

proach is based on supervised structural feature extraction using deep learning, in combination

with unsupervised clustering and reference-free classification. Our experiments show that, com-

pared with existing unsupervised rotation invariant feature and pose-normalization based

approaches, our new approach achieves significant improvements in both discrimination ability

and scalability. More importantly, our new approach is able to discover new structural classes and

recover structures that do not exist in training data.

Availability and Implementation: Source code freely available at http://www.cs.cmu.edu/�mxu1/

software.

Contact: mxu1@cs.cmu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Cellular processes are governed by macromolecules. Knowledge of

the native structures and spatial organizations of macromolecules

within a single cell is a prerequisite for our understanding of cellular

processes. Cellular Electron CryoTomography (CECT) (Gan and

Jensen, 2012; Grünewald et al., 2002; Lu�ci�c et al., 2013) enables the

3D visualization of structures at close-to-native state and in sub-

molecular resolution within single cells (Asano et al., 2015; Jin

et al., 2008; Murata et al., 2010; Rigort et al., 2012). Therefore, if

we knew how to systematically mine structures in cryo cellular

tomograms, we would gain the desired knowledge on macromol-

ecules’ native structures and organization in their cellular context

(Nickell et al., 2006).

However, systematic recovery of macromolecules structures

from cryo tomograms is a very difficult task for several reasons.

First, the cellular environment is very crowded (Best et al., 2007;

Frangakis et al., 2002) with macromolecules that typically adopt dif-

ferent conformations as part of their function. Moreover, one
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macromolecule interacting with several different macromolecules

can dynamically form different complexes at every time point.

Therefore, a cellular tomogram has very complex and highly hetero-

geneous structural content. Second, the sizes of macromolecular

complexes are typically smaller than 30 nm, which is only slightly

larger than the image resolution (�4 nm). Finally, there are inherent

practical limitations in data acquisition, in the form of low signal to

noise ratio (SNR) and missing wedge effects.

Given the above challenges, successful systematic analysis of the

macromolecule structures in CECT data relies on processing large

amount of structurally highly heterogeneous particles (Asano et al.,

2016), possibly at least millions of particles containing hundreds of

structural classes. Nowadays, new imaging technologies and ad-

vances in automation allow a research lab to obtain hundreds of

tomograms within several days (Morado et al., 2016), potentially

containing millions of particles represented by 3D subimages (aka

subtomograms). However, existing computational approaches have

very limited discrimination ability or scalability, making them gener-

ally incapable for systematic de novo structural discovery on these

amounts of particles.

Early works of analyzing the macromolecular complexes in

CECT data focused at locating instances of macromolecular com-

plexes in cells through template search (e.g. Beck et al., 2009; Böhm

et al., 2000; Nickell et al., 2006). However, such approaches do not

discover new structures. For the reconstruction of novel structures

repeating within cryo tomograms (Förster et al., 2005), reference-

free subtomogram averaging (Briggs, 2013), classification (e.g.

Bartesaghi et al., 2008; Bharat et al., 2015; Chen et al., 2014; Xu

et al., 2012; Scheres et al., 2009) and structural pattern mining (Xu

et al., 2015) approaches have been developed. These approaches are

essentially unsupervised clustering or constrained optimization

approaches, and they do not rely on any training data containing

subtomograms with structural class labels. However, the scalability

of such approaches is very limited, due to computationally intensive

steps such as subtomogram alignment or integration over the 6D

rigid transformation space. For example, structural pattern mining

(Xu et al., 2015) of 10 000 subtomograms containing 22 structural

classes would take at least 2 days by running 300 parallel jobs on a

computer cluster.

To complement the above approaches, rotation invariant feature

(Xu et al., 2009, 2011; Chen et al., 2012), and pose normalization

(Xu et al., 2015) methods have been developed and can be used to

subdivide highly heterogeneous subtomograms through unsuper-

vised clustering. However, these approaches do not take into ac-

count of the missing wedge effect, which introduces anisotropic

resolution and is not rotation invariant. In addition, such

approaches have limited structural discrimination ability in the pres-

ence of high level of noise in the subtomograms.

We aim to overcome the aforementioned challenges and limita-

tions of structural mining in cellular tomograms by complementing

with existing approaches. In this article, we propose to use super-

vised deep learning approach to subdivide a large number of struc-

turally highly heterogeneous subtomograms into structurally more

homogeneous smaller subsets with significantly improved accuracy

and scalability. After the subdivision, the computationally intensive

reference-free structural recovery approaches can be separately

applied to selected subsets in a divide and conquer fashion, which

would significantly reduce the overall computation cost.

The major component of our new approach is a Convolutional

Neural Network (CNN) classifier. Due to its superior scalability

and good generalization ability, CNNs have made it computation-

ally feasible to use a large number (e.g. billions) of parameters to

approximate the complex mapping inside massive training data. In

this article, we propose tailored 3D variants (Section 2.2) of two

popular CNN image classification models. These two CNN models

have achieved state-of-the-art supervised classification accuracy on

popular image classification benchmark datasets (e.g. ImageNet

Dataset; Russakovsky et al., 2015). The first model (Section 2.2.1) is

characterized by relatively low depth and relatively complex parallel

local filter structure (i.e. inception structure (Szegedy et al., 2016b).

The second model (Section 2.2.2) is characterized by relatively high

depth and very small simple convolution filters. In addition, because

the inputs of the models are 3D gray-scale images (i.e. subtomo-

grams) representing the 3D structures of particles contained in the

image, it is important for our CNN models to isotropically capture

the inherent 3D spatial structure in such 3D images. Therefore, in

our models we use single channel 3D filters for convolution and

pooling, instead of the 2D filters used in common deep learning

based computer vision applications.

The above CNN models are designed for supervised classifica-

tion. Since the native structures of most macromolecular complexes

are unknown (Han et al., 2009; Xu et al., 2011), there is a particular

need for discovering macromolecular complex structures that do not

exist in the training data. To do this, we combine CNN with un-

supervised clustering (Section 2.3). First, we adapt the output layer

of a trained CNN classifier to extract structural features that are in-

variant to both rigid transforms and missing wedge effect. Such

structural feature extraction is equivalent to performing a non-linear

projection of the testing subtomograms to the structural space

spanned by the structures in the training data, an analogy to metric

learning (e.g. Xing et al., 2002). Then, we subdivide the projected

subtomograms using unsupervised clustering, and recover the struc-

tures independently using reference-free classification and averaging

(Frazier et al., 2017; Xu et al., 2012).

Our experiments on realistically simulated subtomograms show

that the deep structural features extracted by the our CNN models

are significantly faster and more robust to imaging noise and missing

wedge effect than our previously used rotation invariant feature (Xu

et al., 2009, 2011) approach. K-means clustering in the deep struc-

tural feature space produced significantly more evenly distributed

clusters than our previous approach of k-means clustering of pose

normalized subtomograms (Xu et al., 2015). Our proof-of-principle

experiments on experimental subtomograms of purified macromol-

ecular complexes also achieved competitive classification perform-

ance. Therefore, our experiments validate that our deep learning

based approach is in practice a significantly better choice for subdi-

viding millions of subtomograms. More importantly, our experi-

ments (Section 3.3) on simulated data demonstrate that our

approach is able to recover new structures that do not exist in the

training data.

2 Materials and methods

2.1 Background
In recent years, deep learning has emerged as a powerful tool for

many computer vision tasks, such as image classification and object

detection. Deep learning has achieved state-of-the-art supervised

image classification performance on popular benchmark image data-

sets such as ImageNet (Russakovsky et al., 2015), which contains

more than 14 million images separated into at least 1000 classes.

The CNN (LeCun et al., 1998) is one of the most important tech-

niques in deep learning. It is composed of multiple layers, and every

layer comprises a number of neurons that perform certain operation,
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such as convolution and pooling, on the output of previous layer.

A typical CNN has alternating convolutional layers and pooling

layers, one or more fully connected layers, and lastly a softmax

layer. By utilizing multiple stacked processing layers to represent

features of data, it allows learning and extracting increasingly ab-

stract image features at increasing scales.

In particular, each convolutional layer consists of a set of learnable

filters in the form of neurons with shared weights. Each neuron in this

layer is connected to a region of neighboring neurons in the previous

layer, called receptive field. Intuitively, it captures the spatial informa-

tion in the receptive field. For example, the 1D convolution of input x

and a filter of size 2mþ 1 is defined as yi ¼
Pm

j¼�m wjxi�j, where xi�j

is the i–jth input, wj is the jth weight of the convolutional filter. After

the convolution, a nonlinear activation function is applied, such as sig-

moid, tanh or a rectified linear unit (ReLU) (Goodfellow et al., 2016).

For example, the ReLU activation is defined as oReLuðxÞ ¼ maxf0; xg.
The pooling layer is a form of down sampling used to reduce computa-

tion cost and introduce a small amount of rotation and translation in-

variance. Calculating the local maximum (max pooling) or

average (average pooling) values are common forms of such pooling.

For example, the 1D max pooling operation is defined as

yi ¼ maxði�1Þm< j� imxj, where m is the size of the pooling windows.

For another example, the 1D average pooling operation is defined as

yi ¼ 1
m

P
ði�1Þm< j� imxj. After stacking several convolutional and pool-

ing layers, one or more fully connected layers are usually added to ex-

tract more global features. As the name suggests, each unit in these

layers connects to all units from the previous layer, defined as yi

¼
Pn�1

j¼0 wijxj where wij is the weight between ith output yi and jth in-

put xj, and n is the number of inputs. For multi-class classification tasks,

the last output layer is usually a softmax activation layer (Equation 1),

calculating a probability of a sample being assigned to each class.

Given training data in form of input-output pairs, the training of

a CNN model optimizes weights through back-propagation so that

the CNN best fits the training data. The optimization is often per-

formed through variants of gradient descent approaches

(Goodfellow et al., 2016) due to their superior scalability and sim-

plicity for implementation.

In 2012, the CNN architecture AlexNet proposed by Krizhevsky

et al. (2012), first showed significant performance improvements on

the supervised image classification tasks compared with the trad-

itional methods. Since then, CNN has become the dominant approach

for large scale supervised 2D image classification tasks, and more

advanced architectures have been developed, such as GoogleNet (aka

inception network) (Szegedy et al., 2016a), VGG network (VGGNet)

(Simonyan and Zisserman, 2014), and ResNet (He et al., 2016).

2.2 CNN-based supervised subtomogram classification
When using CNN for subtomogram classification, the input of the

CNN is a 3D subtomogram f, which is a 3D cubic image defined as a

function f : R3 ! R. The output of the CNN is a vector

o :¼ ðo1; . . . ;oLÞ, indicating the probability that f is predicted to be

each of the L classes defined in the training data. Each class correspond

to one macromolecular complex. Given o, the predicted class is

arg maxi oi.

In this article, we propose two 3D CNN models based on

GoogleNet and VGGNet for supervised subtomogram classification

and adapt them for structural feature extraction.

(a) (b)

Fig. 1. Architectures of our CNN models. These networks both stack multiple layers. Each box represents a layer in the network. The type and configuration of

layer are listed in each box. For example, ‘32-5 � 5 � 5-1 Conv’ denotes a 3D convolutional layer with 32 5 � 5 � 5 filters and stride 1. ‘2 � 2 � 2-2 MaxPool’ de-

notes a 3D max pooling layer implementing max operation over 2 � 2 � 2 regions with stride 2. ‘FC-512’ and ‘FC-L’ denote a fully connected linear layer with 512

and L neurons respectively, where every neuron is connected to every output of the previous layer. L is the number of classes in the training dataset. ‘ReLU’ and

‘Softmax’ denote different types of activation layers

Deep subtomogram subdivision i15
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2.2.1 Inception3D network

In this section, we propose a 3D variant of tailored inception network

(Szegedy et al., 2016a), denoted as Inception3D. Inception network is

a recent successful CNN architecture that has the ability to achieve

competitive performance with relatively low computational cost

(Szegedy et al., 2016a). The architecture of our model is shown in

Figure 1a. It contains one inception module (Szegedy et al., 2016a),

where 1 � 1 � 1, 3 � 3 � 3, and 5 � 5 � 5 3D filters are combined

with 2 � 2 � 2 3D max pooling layer. The filters are implemented in

parallel and concatenated, so that the features extracted at multiple

scales using filters of different sizes are simultaneously presented to

the following layer. The 1 � 1 � 1 filters before the 3 � 3 � 3 and 5

� 5 � 5 convolutions are designed for dimension reduction. The in-

ception module is followed by a 2� 2� 2 average pooling layer, then

by a fully connected output layer with the number of units equal to

the structure class number. All hidden layers are equipped with the

rectified linear (ReLU) activation. The output is a fully connected

layer followed by a softmax activation layer.

2.2.2 DSRF3D network

In this section, we propose a 3D variant of tailored VGGNet

(Simonyan and Zisserman, 2014), which is another CNN architec-

ture that achieved top classification accuracy on popular image

benchmark datasets. Our model is denoted as Deep Small Receptive

Field (aka DSRF3D). The architecture of our model is shown in

Figure 1b. When compared with the Inception3D model, DSRF3D

is featured with deeper layers and very small 3D convolution filters

of size 3 � 3 � 3. The stacking of multiple small filters has the same

effect of one large filter, with the advantages of less parameters to

train, and more non-linearity (Simonyan and Zisserman, 2014). The

architecture consists of four 3 � 3 � 3 3D convolutional layers and

two 2 � 2 � 2 3D max pooling layers, followed by two fully con-

nected layers, then followed by a fully connected output layer with

the number of units equal to the structure class number. All hidden

layers are equipped with the ReLU activation layers. The output is a

fully connected layer with a softmax activation layer.

2.3 Combination of supervised structural feature

extraction and unsupervised clustering for structural

discovery
2.3.1 Structural feature extraction

For the multi-class classification tasks in Section 2.2, the last fully

connected layerst activation functions used in Sections 2.2.1 and

2.2.2 are softmax functions:

osoftmax
j ðxÞ ¼ PðjjxÞ ¼ efjðxÞ

PL
l¼1 eflðxÞ

; (1)

where

fjðxÞ ¼ xTwj; (2)

x are the inputs of the last fully connected layer, wj are the weights

associated with the jth class, fjðxÞ is the output of the last fully con-

nected layer associated with the jth class, and PðjjxÞ is the probabil-

ity of the subtomogram is assigned to class j.

Designed for multi-class classification, the softmax activation

osoftmax
j re-scales fj exponentially. Therefore, it encourages output to-

wards binary values, which reduces the extracted structural feature

information that are useful for precisely subdividing input subtomo-

grams. Once a CNN is trained for the classification task, we remove

the softmax activation layer to obtain the linear activation of the

last fully connected layer:

olinear
j ðxÞ ¼ fjðxÞ (3)

Using linear activation, we obtain a more continuous representation

of the tendency that a subtomogram is predicted to belong to a class.

Such continuous outputs produce structural features that are invari-

ant to rigid transformation and missing wedge effect, representing a

nonlinear projection of a subtomogram to a low dimension space

spanned by structural classes in the training data. In principle, such

features can also be extracted from hidden layers, providing richer

structural descriptions, as long as they are invariant to rigid trans-

formation of the particle, and invariant to missing wedge effect.

2.3.2 Clustering and structure recovery

The main goal of subdivision is for separating a collection of struc-

turally highly heterogeneous subtomograms into subgroups of sub-

tomograms containing similar structures. Structural recovery (e.g.

Xu et al., 2012, 2015) often requires searching in the Cartesian

product of the space of class membership and the space of rigid

transformations of subtomograms. The subdivision significantly re-

duces the space of structural class membership. Therefore an accur-

ate subdivision would significantly simplify the complexity of

structural recovery of a subgroup of subtomograms. The subdivision

is usually performed through clustering. Successful subdividing mil-

lions of subtomograms require the clustering to be both accurate

and efficient.

We improve the quality of clustering through supervised dimen-

sion reduction. Specifically, after projecting the subtomograms to

the structural feature space using supervised feature extraction

(Section 2.3.1), we over-partition the projected subtomograms using

k-means clustering to obtain a finer subdivision of subtomograms.

The unsupervised reference free classification (e.g. Bartesaghi et al.,

2008; Scheres et al., 2009; Xu et al., 2012) (or structural pattern

mining; Xu et al., 2015) is then independently applied to each clus-

ter of subtomograms to recover the representative structures in the

cluster.

2.4 Implementation details
The CNN models and training and testing are implemented using

Keras (Chollet, 2015) and Tensorflow (Abadi et al., 2016). The

Keras_extras library (https://github.com/kuza55/keras-extras) is

used for multiple GPU parallelization. A variant of our Tomominer

library (Frazier et al., 2017; Xu et al., 2015) is used for reference-

free subtomogram classification and other processing. The experi-

ments are performed on a computer equipped with two Nvidia GTX

1080 GPUs, one Intel Core i7-6800K CPU, and 128GB memory.

For the baseline methods, the calculation of rotation invariant

features is based on SHTools (Wieczorek et al., 2016). K-means

clustering and support vector machine (SVM) based supervised

multi-class classification are performed using the Sklearn toolbox

(Pedregosa et al., 2011).

3 Results

In this section, we demonstrate two major advantages of our deep

learning subdivision approach through empirical study. First,

efficient and accurate structural separation of millions of highly het-

erogeneous particles is key for the systematic detection of the near-

native structures and spatial organizations of large macromolecular

complexes in cells captured by CECT data. In Section 3.2, we
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demonstrate that our deep learning based subtomogram subdivision

approaches significantly outperform our previously used approaches

in terms of scalability and discrimination ability, which would sig-

nificantly facilitate such structural separation. Second, currently the

native structures of most of macromolecular complexes are un-

known. Therefore it is necessary for a subtomogram subdivision

method to be useful for discovery of unknown structures. In Section

3.3, we demonstrate that, although our deep learning approach is

based on supervised training, when combined with unsupervised

clustering and reference free subtomogram classification and averag-

ing, our approach can be used to recover structures that do not exist

in the training data, therefore our approach can be used to discover

new structures in a systematic fashion.

3.1 Datasets generation
3.1.1 Simulated subtomograms from known structures

For a reliable assessment of the approach, we generated subtomo-

grams by simulating the actual tomographic image reconstruction

process in a similar way as previous works (Beck et al., 2009;

Förster et al., 2008; Nickell et al., 2005; Xu and Alber, 2013), with

the proper inclusion of noise, and missing wedge effect, and electron

optical factors, such as the contrast transfer function (CTF) and

modulation transfer function (MTF). Specifically, macromolecular

complexes have an electron optical density proportional to the elec-

trostatic potential. We used the PDB2VOL program from the Situs

(Wriggers et al., 1999) package to generate volumes of 403 voxels

with a resolution and voxel spacing of 0.92 nm. The density maps

are used to simulate electron micrograph images through a set of

tilt-angles. For this article, we set typical tilt-angle ranges of 660�,

650� and 640�. We added noise to electron micrograph images

(Förster et al., 2008) to achieve the desired SNR levels, whose range

cover the SNRs estimated from experimental data (Section 3.1.2).

Next we convoluted the electron micrograph images the CTF and

MTF to simulate optical effects (Frank, 2006; Nickell et al., 2005).

The acquisition parameters used are typical of those found in experi-

mental tomograms (Zeev-Ben-Mordehai et al., 2016) (Section

3.1.2), with spherical aberration of 2 mm, defocus of -5 lm, and

voltage of 300 kV. The MTF is defined as sincðpx=2Þ where x is the

fraction of the Nyquist frequency, corresponding to a realistic de-

tector (McMullan et al., 2009). Finally a direct Fourier inversion re-

construction algorithm (implemented in the EMAN2 library; Galaz-

Montoya et al., 2015) is used to produce the simulated subtomo-

gram from the tilt series. Figure 3 shows examples of such simulated

subtomograms with different SNRs and tilt angle ranges.

We collected 22 macromolecular complexes from the Protein

Databank (PDB) (Berman et al., 2000) (Supplementary Table S1).

We constructed a simulated dataset for each pair of SNR and tilt

angle range parameters. Inside a dataset, for each complex, we gen-

erated 1000 simulated subtomograms that contain randomly rotated

and translated particle of that complex. Furthermore, we also simu-

lated 1000 subtomograms that contain no particle. As an outcome,

dataset contains 23 000 simulated subtomograms of 23 structural

classes.

3.1.2 CryoEM data collection, tomogram reconstruction and

preparation of ground truth

We captured tomograms of purified Escherichia coli Ribosome and

human 20S Proteasome through similar procedure as (Zeev-Ben-

Mordehai et al., 2016). The imaging parameters have been opti-

mized and successfully applied for structure separation of trimeric

conformations of natively membrane-anchored full-length herpes

simplex virus 1 glycoprotein B (Zeev-Ben-Mordehai et al., 2016).

Specifically, Cryo-Electron Microscopy was performed at 300 keV

using a TF30 ‘Polara’ electron microscope Field Electron and Ion

Company (FEI) equipped with a Quantum postcolumn energy filter

(Gatan) operated in zero-loss imaging mode with a 20-eV energy-

selecting slit. Images were recorded on a postfilter �4000 � 4000

K2-summit direct electron detector (Gatan) operated in counting

mode with dose fractionation, with a calibrated pixel size of

0.23 nm at the specimen level. Tilt series were collected using

SerialEM (Mastronarde, 2005) at defocus ranges of �6 to �5 lm.

During data collection, the autofocusing routine was iterated to

achieve a very stable defocus through the tilt series with 100 nm ac-

curacy. Tomographic reconstructions were performed using

weighted back-projection in IMOD program (Sandberg et al.,

2003). The reconstructed tomograms were then four times binned to

a voxel spacing of 0.92 nm.

To prepare for ground truth, we performed template-free par-

ticle picking similar to (Pei et al., 2016) through convoluting the

tomograms with 3D Difference of Gaussian function with scaling

factor of r ¼ 7nm and scaling factor ratio K ¼ 1.1 to extract an ini-

tial set of 3646 subtomograms of size 403 voxels. The extracted sub-

tomograms were smoothed by convoluting with a Gaussian kernel

of r ¼ 1 nm. We then aligned the subtomograms against Proteasome

and Ribosome templates. These templates were obtained from first

generating 4 nm resolution density maps from the PDB structures

using PDB2VOL program (Wriggers et al., 1999), then convoluting

the density maps with proper CTF according to experimental data

(Section 3.1.2). The subtomograms with high alignment scores were

selected. Finally, a set of 401 subtomograms were obtained, 201 and

200 were labeled as Proteasome and Ribosome, respectively.

To estimate SNR, for each structural class, we randomly selected

100 pairs of subtomograms that were aligned with the correspond-

ing template, and estimated the SNR given each subtomogram pair

according to [Frank and Al-Ali, 1975]. The mean SNRs are 0.06

and 0.08 for Proteasome and Ribosome, respectively.

3.2 Classification performance
3.2.1 On simulated data

To assess the classification performance, for each dataset generated

in Section 3.1.1, we randomly separated the subtomograms into two

equal sized sets. We used one set for training, and the other set for

testing.

The CNN models were trained using stochastic gradient descent

(SGD) with Nesterov momentum of 0.9 to minimize the categorical

cross-entropy cost function. The initial learning rate was set to 0.01,

with a decay factor of 1e-6. A 70% dropout (Srivastava et al., 2014)

was implemented in Inception3D network to prevent over-fitting,

i.e. a unit in network was retained with probability 70% during the

training. SGD training was performed with a batch size of 64 for 20

epochs.

For the baseline method, we used spherical harmonics rotation

invariant feature (e.g. Xu et al., 2009, 2011) in combination with

SVM with Radial Basis function kernel, denoted as RIF-SVM.

The classification accuracy is summarized in the Table 1. It can

be seen that, at realistic SNR and tilt angle range levels, all CNN

models achieved significantly higher classification accuracy than the

rotation invariant feature based method.

We further measured the computation speed. On average, the

training time took 0.0034 and 0.0055 s per subtomogram per epoch

for Inception3D and DSRF3D networks respectively. Given trained

models, the feature extraction and classification take 0.0015 and
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0.0017 s per subtomogram for Inception3D and DSRF3D networks

respectively. Thus, after training, CNN based structural feature ex-

traction and classification of one million subtomograms would take

<1 h on a single affordable desktop computer with two affordable

GPUs. In contrast, the unsupervised rotation invariant feature ex-

traction took 0.1 second per subtomogram. With fixed subtomo-

gram size and class number, the training of CNN models scales

linearly respect to the number of subtomograms. By contrast, the

training of SVM scales quadratically respect to the number of

subtomograms.

3.2.2 On experimental data

We randomly split the subtomograms into two equal sized sets and

used one set as training and the other set as testing. In the training

set, 105 and 95 subtomograms are labeled as Proteasome and

Ribosome, respectively. In the testing set, 96 and 105 subtomograms

are labeled as Proteasome and Ribosome respectively.

Although the number of samples was significantly smaller than

the typical sample size in for deep learning tasks, the Inception3D

network still achieved a classification accuracy of 0.905, which is

higher than the classification accuracy of 0.890 of the baseline

method of rotation invariant feature in combination with SVM.

DSRF3D network fail to converge during training due to small sam-

ple size.

3.3 Detection of new structures
In this section, we test if our approach in Section 2.3 can be used to

facilitate the recovery of structures that do not exist in the training

data. The experiments were performed using subtomograms simu-

lated at SNR 0.05 and tilt angle range 660� (Section 3.1.1).

We prepared a training set Strain with all 23 structural classes ex-

cept Proteasome (PDB ID: 3DY4), and a test set Stest with all 23

structural classes. There are 500 subtomograms in each class in each

set. We trained an Inception3D network using Strain, then used the

trained network to extract the structural features by projecting the

subtomograms of Stest into a 22D deep structural feature space R
22

corresponding to the 22 classes in the training data. In such case,

each subtomogram in Stest correspond to one point in R
22. For visual

inspection, we further embedded the points in R
22 into a 2D space

R
2 using the T-SNE algorithm (Maaten and Hinton, 2008), which is

particularly well-suited for embedding high-dimensional data into a

space of two or three dimensions for visualization. Figure 2 shows

the embedded points. It is evident that samples are generally concen-

trated in subregions according to their structural classes. Most im-

portantly, although Proteasome subtomograms do not exist in the

Strain, the Proteasome subtomograms in Stest are still concentrated at

certain subregion in R
2 (Fig. 2), indicating the supervised structural

feature extraction can potentially be used to characterize new

structures.

Inspired by the above observations, we systematically examined

the possibility of recovering new structures using our approach

(Section 2.3) by conducting leave-one-out test to all 22 macromol-

ecular complex structure classes. For each test, we removed subto-

mograms of a class Ctrue from training data, then trained an

Inception3D model, we then used the trained model to project the

subtomograms of Stest into the deep structural feature space R
22 ac-

cording to Section 2.3. Then we performed k-means clustering in

Fig. 2. Subtomograms in the test set projected to the structural feature space of R22 through structural feature extraction (Section 2.3). The projected subtomo-

grams were further embedded to R
2 using T-SNE (Maaten and Hinton, 2008) only for visual inspection. The points were shaped and colored according to their

true class labels. The region enriched with Proteasome subtomograms (PDB ID: 3DY4) was highlighted using red circle
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R
22, where k was chosen to be 100, significantly larger than the true

number of classes. We then identified the cluster Lpred in which par-

ticles of Ctrue were most enriched. Finally we applied unsupervised

reference-free subtomogram classification and averaging (Frazier

et al., 2017; Xu et al., 2012) (with three classes, five iterations) to

the subtomograms of Lpred. Among the classes predicted by unsuper-

vised subtomogram classification, we identified the class Cpred that

was mostly enriched with particles of Ctrue. We then calculated the

structural discrepancy between the subtomogram average of Cpred

and the true structure of Ctrue. Such structural discrepancy is meas-

ured using Fourier Shell Correlation (Liao and Frank, 2010) with

0.5 cutoff, representing the maximal size of the structural factors

that are discrepant between two structures. When using a structural

discrepancy of 7 nm to determine whether the structure recovery is

successful, we found 16 out of the 22 leave one out tests correctly re-

covered structures of Ctrue, even Ctrue does not exist in Strain (Fig. 4).

We further performed the same test using DSRF3D network, and

we were able to get similar results. Specifically, 18 out of 22 struc-

tures were successfully recovered (Supplementary Table S2).

We further inspected the cluster size distribution of the result of

k-means clustering of subtomograms of Stest projected to the feature

space R
22 used for Figure 2. The cluster sizes did not vary too much

(Supplementary Fig. S1a). In contrast, when applying our previous

pose-normalization method (Xu et al., 2015) to subtomograms in

Stest, then perform k-means clustering on the pose normalized subto-

mograms to subdivide the 11 500 subtomograms in the Stest into 100

clusters, we found that most clusters are very small (Supplementary

Fig. S1b). Specifically, there were 84 clusters whose size � 10. On the

other hand, there were 4 large clusters with size >1000, covering

6089 subtomograms, with mixed particles of similar structural sizes.

The largest cluster had a size of 2470. The highly uneven cluster size

distribution was likely due to the reduced discrimination ability of

distance matrics in high-dimensional space (curse of dimensionality)

(Aggarwal et al., 2001). Because the true classes in Stest are also equal

sized. In addition, when the data samples are uniformly distributed,

the k-means algorithm, by definition, tends to produce an even div-

ision of data samples. Therefore, compared with our previously used

pose-normalization approach, our supervised deep structural feature

extraction approach produced subdivisions that are significantly more

consistent with the algorithmic property of k-means clustering.

REMARK: In our experiments, we used an arbitrary number of 100

clusters for the clustering step. In principle, to efficiently over-

partition the data, the cluster number should be chosen to be larger

than the number of expected representative structural classes among

the collection of subtomograms to be subdivided, and be constrained

by the amount of computation affordable. Proper approaches for esti-

mating real cluster number remain to be explored.

4 Discussion

Macromolecular complexes are nano-machines that participate in a

wide range of cellular processes. To fully understand these proc-

esses, it is necessary to know both native structures and spatial or-

ganizations of these complexes inside individual cells. CECT is

currently the preferred experimental tool to visualize macromolecu-

lar complexes in near native conditions at sub-molecular resolution,

when coupled with deep data mining it emerges as a very promising

tool for systematic detection of structures and spatial organizations

inside single cells. However, due to high level of structural complex-

ity and practical imaging limitations, systematic de novo structural

discovery of macromolecules from such tomograms requires the

computational analysis of large amount of subtomograms. Existing

structural recovery approaches are through reference-free subtomo-

gram averaging (Briggs, 2013), classification (e.g. Xu et al., 2012),

or structural pattern mining (Xu et al., 2015), and they have very

limited scalability. Therefore, efficient and accurate subdivision of

large amount of highly heterogeneous subtomograms is a key step

for scaling up such computational intensive structural recovery

approaches. On the other hand, our previously used rotation invari-

ant feature (Xu et al., 2009, 2011) and pose normalization (Xu

et al., 2015) subdivision approaches have limited discrimination

ability and scalability. To complement existing approaches, as a

proof-of-principle, in this work we propose to use deep learning

based supervised approach to significantly improve both scalability

and discrimination ability of subtomogram subdivision. Our prelim-

inary results demonstrated superior performance over our previously

used subdivision approaches (Xu et al., 2009, 2011, 2015). An add-

itional advantage of our deep learning approach over our previously

used approaches (Xu et al., 2009, 2011, 2015) lies in its potential

for handling the molecular crowding: even if a subtomogram con-

tains not only a particle of interest but also neighbor structures due

to high molecular crowding (Xu and Alber, 2013), our deep learning

Fig. 3. Left: Isosurface of density map of yeast 20S proteasome (PDB ID:

3DY4). Right: Center slices (in parallel with x–z plane) in the simulated subto-

mograms with different degree of SNRs and tilt angle ranges

Table 1. The classification accuracy of simulated datasets of subtomograms at different levels of SNR and tilt angle range

SNR/Tilt angle range 660� 650� 640�

Inception3D DSRF3D RIF-SVM Inception3D DSRF3D RIF-SVM Inception3D DSRF3D RIF-SVM

1000 0.993 0.990 0.992 0.994 0.978 0.983 0.983 0.991 0.967

0.5 0.975 0.972 0.929 0.964 0.967 0.885 0.931 0.951 0.857

0.1 0.851 0.891 0.762 0.807 0.873 0.633 0.809 0.866 0.649

0.05 0.757 0.767 0.592 0.682 0.728 0.455 0.637 0.684 0.468

0.03 0.608 0.658 0.446 0.516 0.604 0.319 0.473 0.556 0.341
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based approach by design is likely to be able to automatically focus

on the particle of interest and extract structural features only from

the particle of interest instead of from the neighbor structures, as

shown by many deep learning based image classification tests. Since

little is known about the native structures of most macromolecular

complexes in cells, it is therefore important for a subtomogram sub-

division method to be able to be used for discovering new structures.

We demonstrate that, by combining our supervised structural fea-

ture extraction with unsupervised clustering and reference-free sub-

tomogram classification and averaging, we are able to detect new

structures that do not exist in the training data.

To our knowledge, this work is the first application of deep learn-

ing for systematic structural discovery of macromolecular complexes

among large amount (millions) of structurally highly heterogeneous

particles captured by CECT. It represents an important step towards

large scale systematic detection of native structures and spatial organ-

izations of large macromolecular complexes inside single cells. From

application perspective, potential uses of our approach are to quickly

subdivide the highly heterogeneous particles into subsets, and separ-

ately recover the representative structures in each selected subset using

computation intensive unsupervised subtomogram classification or

pattern mining approaches. Given a recovered structure, one can fur-

ther verify whether it already exist in training data. The particles of

the new structures can be further included into training data to train a

new CNN model for more comprehensive disentangling of structural

features with enhanced discrimination ability. Besides CECT data

analysis, our approach can also be applied to similar analysis tasks

arisen in cryo tomograms of cell lysate or purified complexes. Our

CNN based classification approach can also be used for template

search or particle picking. In addition, our deep learning approach

can also be used in analyzing image patches in CECT images, which

are small 3D sub-images that are not necessarily cubic.

Our approach is based on supervised learning. Therefore, as a

main limiting factor, our method relies on the availability and quality

of training data. In practice, the training data can come from diverse

sources. They can be from cryo tomograms of purified complexes cap-

tured in the same imaging condition as test samples. They can also be

from particles in CECT images located through different approaches,

such as correlated super-resolution imaging (Chang et al., 2014;

Johnson et al., 2015), template search (Beck et al., 2009; Kunz et al.,

2015), unsupervised reference-free subtomogram classification (e.g.

Xu et al., 2012), or structural pattern mining (Xu et al., 2015). On

the other hand, the proper strategies of constructing and processing

training data remain to be explored. In addition, the proposed CNN

architectures remain to be further optimized for improved perform-

ance. Furthermore, the size of the experimental data used in this

proof-of-principle study is much smaller than a typical setting

required for deep learning. Extensive studies remain to be done

through capturing large number of particles of multiple purified

macromolecular complexes and performing comprehensive analysis

of the accuracy, robustness respect to sample size.
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