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1 Materials and Methods

1.1 The Molecular and Functional Substitution Model

We use the Felsenstein 1984 model (F84) (1), which is similar to the Hasegawa - Kishino - Yano’s 1985 model
(HKY85) (2) and widely used in the phylogenetic inference and footprinting literature (1; 4), for nucleotide
substitution in our motif and background phylogeny. Formally, F84 is a five-parameter model, based on
a stationary distribution π ≡ [πA, πT , πG, πC ]′ (which constitutes three free parameters as the equilibrium
frequencies sum to 1) and the additional parameters κ and ι which impose the transition/transversion bias.
Using concise notation for the purine frequency πR = πA + πG and pyrimidine frequency πY = πT + πC , the
instantaneous rate matrix can be written as:

QN =


∗ (1 + κ/πY )ιπC ιπA ιπG

(1 + κ/πY )ιπT ∗ ιπA ιπG
ιπT ιπC ∗ (1 + κ/πR)ιπG
ιπT ιπC (1 + κ/πR)ιπA ∗

 (1)

Since rows of the instantaneous rate matrix must sum to zero, the starred elements of the matrix are
determined from the other 3 elements of the row, and not shown for clarity. According to the continuous-
time Markov process theory, the corresponding nucleotide-substitution probability matrix over a period of
time t is given by PN (t) = eQN t. To apply this model to a motif or a background phylogeny, we set the
stationary distribution π to be the empirical nucleotide-frequency in the corresponding sequence entity that
the phylogeny is defined on (e.g., for phylogeny T (l)

m defined on site l of a motif, we let π ≡ θl, the l-th
column of the PWM of the motif), and the nucleotide-substitution probability from an internal node c to
its descendant c′ along a tree branch of length b can be expressed as follows:

PN (Vc′ = j|Vc = i, β) = e−(κ+ι)βδij + e−ιβ(1− e−κβ)
( πj∑

h(πhεjh)
)
εij + (1− e−ιβ)πj , (2)
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where i and j denote nucleotides, δij represents the Kronecker delta function, and εij is a function similar
to the Kronecker delta function which is 1 if i and j are both pyrimidines or both purines, but 0 otherwise.
The summation in the denominator concisely computes πR or πY .

A less concise, but more intuitive parameterization involves the overall substitution rate per site µ and the
transition/transversion ratio ρ, which can be easily estimated or specified. We can compute the transition
matrix PN from µ and ρ using Eq. (2) based on the following relationship between (κ, ι) and (µ, ρ):

κ =
2πRπT ρ− (2πAπG + 2πCπT )

(2πAπG/πR + 2πCπT /πY )
µ

1 + ρ
, ι =

1
2πRπY

µ

1 + ρ
.

To model functional turnover of aligned substrings along functional phylogeny Tf , we additionally define
a substitution process over two characters (0 and 1) corresponding to presence or absence of functionality.
Now we use the Jukes-Cantor 1969 model (JC69) (3) for functional turnover due to its simplicity and
straightforward adaptability to an alphabet of size 2. The JC69 model is a single parameter model, using
an instantaneous substitution rate µ which is confounded with the time variable. The instantaneous rate
matrix under JC 69 is:

QF =
(
−µ µ
µ −µ

)
. (3)

And the transition probability along a tree branch of length β (which now represents the product of substi-
tution rate µ and evolution time t, which are not identifiable independently,) is defined by:

PF =
(

1
2 + 1

2e
−2β 1

2 −
1
2e
−2β

1
2 −

1
2e
−2β 1

2 + 1
2e
−2β

)
. (4)

From Eqs. (2) and (4), we can see that the likelihood of aligned nucleotides and functional states can be
expressed as a function of the evolutionary parameters, based on which a maximum likelihood estimation of
these parameters can be obtained from training data. Figure 1 outlines the procedure of maximum likelihood
training of CSMET.

1.2 Multi-specific CRM simulation and experimental setup

The synthetic CRMs where true TFBS annotations are known for evaluating CSMET are generated as fol-
lows. First, the simulator stochastically samples the evolutionary trees of motif, background, and functional-
annotation, Tm, Tb and Tf , from the prior distributions (recall that each tree is a three-tuple including the
stationary distribution, the tree topology, and the branch lengths). The Felsenstein transition/transversion
coefficient can in principle be also sampled, but for simplicity and biological validity we pre-specify it to
be 2. Then it simulates motif instances, background sequences, and functionality states (that determine
motif turnover) in different taxa from their respective evolutionary trees under certain substitution rates.
It can also simulate motifs with changing substitution rates according to a scheduling along a sequence,
or in random order. Then it uses the global HMM to generate positional organization of the motifs and
backgrounds in the CRM. Finally these building blocks are put together to synthesize an artificial CRM.
This simulator can be used to simulate realistic multi-specific CRMs resulting from various nontrivial evolu-
tionary dynamics. It is useful in its own right for consistency/robustness analysis of motif evolution models
and performance evaluation of comparative genomic motif-finding programs.

We performed three sets of simulation experiments based on simulated datasets. In each case, we generate
a data set of CRM alignments from the simulator that is simulating a pre-specified coupled functional and
molecular evolution processes unknown to the programs used in the test phase. Each data set contains 50
simulated alignments, each of which is 1500 basepairs in length and includes 10 taxa whose divergence is
controlled by the topologies and the branch lengths of the functional and molecular phylogenies being used.
Each alignment contains instances of a single type of motif, whose length is set to be 8-bp. The parameters
of the generative model used for the simulations are chosen to be representative of such parameters estimated
from real biological data.

The density of motif instances is subject to a systematic adjustment for each data set over a wide range
to generate problems of different degrees of difficulty.

The experiment for evaluating performance of CSMET under varying TFBS turnover rates was performed
by using a different annotation tree for each experimental point. An initial benchmark evolutionary tree
was chosen with branch lengths and topology based on estimation from actual nucleotide alignments on 11
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Figure 1: A schematic diagram of CSMET training. For the functional phylogeny, motif-instance alignments were generated by
concatenating columns of indicators of motif presence/loss along the sequence alignment; and the scaling factor was fitted using
the common topology. For the motif phylogeny, the nt-alignment of only each attendant site was generated by concatenating all
columns of aligned nucleotides from that site and the corresponding multinomial estimated from them; the common topology
was used for all sites. The motif specific mutation rate and scaling factor were estimated using the common topology from
aligned nucleotides corresponding to all motif sites. For the background phylogeny, all segments of inter-motif sequences and
flanking regions of CRMs were used.
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aligned fly species. All parameters of the Jukes Cantor model based evolutionary tree were kept fixed across
experimental data points, except for the fact that the branch lengths were scaled by a constant factor at each
data point with respect to the initially chosen tree. The scaling factors correspondingly used for the data
points were respectively: 1.50, 2.00, 2.50, 3.00, and 3.50. With increasing branch lengths, the amount of
turnover per site in the simulated data increases - for a scaling factor tending to infinity the turnover model
becomes random and approximates 50% For our data points, the estimated turnover rates corresponding to
the chosen scaling factors were : 25%, 30%, 32%, 34% and 36%.

The simulated sequences with non-uniform TFBS turnover rates were generated by allowing the anno-
tation tree scaling factor to vary for each motif block inside every simulated sequence. The scaling factor
for each instance of a generated motif was equiprobably picked from the values of 1.00, 1.50, 2.00 and 2.50 .
The corresponding turnover rates were 20%, 25%, 30% and 32%.

Given each 1500bp multiple alignment, we use 1000 bp for training, and the remaining 500 for testing
the performance of the trained models. We base our evaluation of every program on three commonly used
evaluation metrics - precision, recall and the F1 score (i.e., the harmonic mean) based on precision and
recall (5).
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