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Abstract

Stochastic gradient optimization is a class of widely used algorithms for training
machine learning models. To optimize an objective, it uses the noisy gradient
computed from the random data samples instead of the true gradient computed
from the entire dataset. However, when the variance of the noisy gradient is
large, the algorithm might spend much time bouncing around, leading to slower
convergence and worse performance. In this paper, we develop a general approach
of using control variate for variance reduction in stochastic gradient. Data statistics
such as low-order moments (pre-computed or estimated online) is used to form
the control variate. We demonstrate how to construct the control variate for two
practical problems using stochastic gradient optimization. One is convex—the
MAP estimation for logistic regression, and the other is non-convex—stochastic
variational inference for latent Dirichlet allocation. On both problems, our approach
shows faster convergence and better performance than the classical approach.

1 Introduction

Stochastic gradient (SG) optimization [1, 2] is widely used for training machine learning models with
very large-scale datasets. It uses the noisy gradient (a.k.a. stochastic gradient) estimated from random
data samples rather than that from the entire data. Thus, stochastic gradient algorithms can run many
more iterations in a limited time budget. However, if the noisy gradient has a large variance, the
stochastic gradient algorithm might spend much time bouncing around, leading to slower convergence
and worse performance. Taking a mini-batch with a larger size for computing the noisy gradient could
help to reduce its variance; but if the mini-batch size is too large, it can undermine the advantage in
efficiency of stochastic gradient optimization.

In this paper, we propose a general remedy to the “noisy gradient” problem ubiquitous to all stochastic
gradient optimization algorithms for different models. Our approach builds on a variance reduction
technique, which makes use of control variates [3] to augment the noisy gradient and thereby reduce
its variance. The augmented “stochastic gradient” can be shown to remain an unbiased estimate of
the true gradient, a necessary condition that ensures the convergence. For such control variates to be
effective and sound, they must satisfy the following key requirements: 1) they have a high correlation
with the noisy gradient, and 2) their expectation (with respect to random data samples) is inexpensive
to compute. We show that such control variates can be constructed via low-order approximations
to the noisy gradient so that their expectation only depends on low-order moments of the data. The
intuition is that these low-order moments roughly characterize the empirical data distribution, and
can be used to form the control variate to correct the noisy gradient to a better direction. In other
words, the variance of the augmented “stochastic gradient” becomes smaller as it is derived with
more information about the data.

The rest of the paper is organized as follows. In §2, we describe the general formulation and the
theoretical property of variance reduction via control variates in stochastic gradient optimization.
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In §3, we present two examples to show how one can construct control variates for practical algorithms.
(More examples are provided in the supplementary material.) These include a convex problem—the
MAP estimation for logistic regression, and a non-convex problem—stochastic variational inference
for latent Dirichlet allocation [22]. Finally, we demonstrate the empirical performance of our
algorithms under these two examples in §4. We conclude with a discussion on some future work.

2 Variance reduction for general stochastic gradient optimization

We begin with a description of the general formulation of variance reduction via control variate for
stochastic gradient optimization. Consider a general optimization problem over a finite set of training
data D = {xd}Dd=1 with each xd ∈ Rp. Here D is the number of the training data. We want to
maximize the following function with respect to a p-dimensional vector w,

maximize
w

L(w) := R(w) + (1/D)
∑D
d=1 f(w;xd),

whereR(w) is a regularization function.1 Gradient-based algorithms can be used to maximize L(w)
at the expense of computing the gradient over the entire training set. Instead, stochastic gradient
(SG) methods use the noisy gradient estimated from random data samples. Suppose data index d is
selected uniformly from {1, · · · , D} at step t,

g(w;xd) = ∇wR(w) +∇wf(w;xd), (1)
wt+1 = wt + ρtg(w;xd), (2)

where g(w;xd) is the noisy gradient that only depends on xd and ρt is a proper step size. To make
notation simple, we use gd(w) , g(w;xd).

Following the standard stochastic optimization literature [1, 4], we require the expectation of the
noisy gradient gd equals to the true gradient,

Ed[gd(w)] = ∇wL(w), (3)

to ensure the convergence of the stochastic gradient algorithm. When the variance of gd(w) is large,
the algorithm could suffer from slow convergence.

The basic idea of using control variates for variance reduction is to construct a new random vector
that has the same expectation as the target expectation but with smaller variance. In previous work [5],
control variates were used to improve the estimate of the intractable integral in variational Bayesian
inference which was then used to compute the gradient of the variational lower bound. In our context,
we employ a random vector hd(w) of length p to reduce the variance of the sampled gradient,

g̃d(w) = gd(w)−AT (hd(w)− h(w)), (4)

where A is a p× p matrix and h(w) , Ed[hd(w)]. (We will show how to choose hd(w) later, but it
usually depends on the form of gd(w).) The random vector g̃d(w) has the same expectation as the
noisy gradient gd(w) in Eq. 1, and thus can be used to replace gd(w) in the SG update in Eq. 2. To
reduce the variance of the noisy gradient, the trace of the covariance matrix of g̃d(w),

Vard[g̃d(w)] , Covd[g̃d(w), g̃d(w)] = Vard[gd(w)]

− (Covd[hd(w), gd(w)] + Covd[gd(w), hd(w)])A+ATVard[hd(w)]A, (5)

must be necessarily small; therefore we set A to be the minimizer of Tr (Vard[g̃d(w)]). That is,

A∗ = argminATr (Vard[g̃d(w)])

= (Vard[hd(w)])
−1

(Covd[gd(w), hd(w)] + Covd[hd(w), gd(w)]) /2. (6)

The optimal A∗ is a function of w.

Why is g̃d(w) a better choice? Now we show that g̃d(w) is a better “stochastic gradient” under the
`2-norm. In the first-order stochastic oracle model, we normally assume that there exists a constant σ
such that for any estimate w in its domain [6, 7]:

Ed
[
‖gd(w)− Ed[gd(w)]‖22

]
= Tr(Vard[gd(w)]) ≤ σ2.

1We follow the convention of maximizing a function f : when we mention a convex problem, we actually
mean the objective function −f is convex.
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Under this assumption, the dominating term in the optimal convergence rate is O(σ/
√
t) for convex

problems and O(σ2/(µt)) for strongly convex problems, where µ is the strong convexity parameter
(see the definition of strong convexity on Page 459 in [8]).

Now suppose that we can find a random vector hd(w) and compute A∗ according to Eq. 6. By
plugging A∗ back into Eq. 5,

Ed
[
‖g̃d(w)− Ed[g̃d(w)]‖22

]
= Tr(Vard[g̃d(w)]),

where Vard[g̃d(w)] = Vard[gd(w)]− Covd[gd(w), hd(w)](Vard[hd(w)])−1Covd[hd(w), gd(w)].

For any estimate w, Covd(gd, hd) (Covd(hd, hd))
−1

Covd(hd, gd) is a semi-positive definite matrix.
Therefore, its trace, which equals to the sum of the eigenvalues, is positive (or zero when hd and gd
are uncorrelated) and hence,

Ed
[
‖g̃d(w)− Ed[g̃d(w)]‖22

]
≤ Ed

[
‖gd(w)− Ed[gd(w)]‖22

]
.

In other words, it is possible to find a constant τ ≤ σ such that Ed
[
‖g̃d(w)− Ed[g̃d(w)]‖22

]
≤ τ2

for all w. Therefore, when applying stochastic gradient methods, we could improve the optimal con-
vergence rate from O(σ/

√
t) to O(τ/

√
t) for convex problems; and from O(σ2/(µt)) to O(τ2/(µt))

for strongly convex problems.

Estimating optimal A∗. When estimating A∗ according to Eq. 6, one needs to compute the inverse
of Vard[hd(w)], which could be computationally expensive. In practice, we could constrain A to be
a diagonal matrix. According to Eq. 5, when A = Diag(a11, . . . , app), its optimal value is:

a∗ii = [Covd(gd(w),hd(w))]ii
[Vard(hd(w))]ii

. (7)

This formulation avoids the computation of the matrix inverse, and leads to significant reduction
of computational cost since only the diagonal elements of Covd(gd(w), hd(w)) and Vard(hd(w)),
instead of the full matrices, need to be evaluated. It can be shown that, this simpler surrogate to the
A∗ due to Eq. 6 still leads to a better convergence rate. Specifically:

Ed

[
‖g̃d(w)− Ed[g̃d(w)]‖22

]
= Tr(Vard(g̃d(w))) = Tr (Vard(gd(w)))−

∑p
i=1

([Covd(gd(w),hd(w))]ii)
2

[Vard(hd(w))]ii
,

=
∑p

i=1(1− ρ2ii)Var(gd(w))ii ≤ Tr (Vard(gd(w))) = Ed

[
‖gd(w)− Ed[gd(w)]‖22

]
, (8)

where ρii is the Pearson’s correlation coefficient between [gd(w)]i and [hd(w)]i.

Indeed, an even simpler surrogate to the A∗, by reducing A to a single real number a, can also
improve convergence rate of SG. In this case, according to Eq. 5, the optimal a∗ is simply:

a∗ = Tr (Covd(gd(w), hd(w)))/Tr (Vard(hd(w))). (9)

To estimate the optimal A∗ or its surrogates, we need to evaluate Covd(gd(w), hd(w)) and
Vard(hd(w)) (or their diagonal elements), which can be approximated by the sample covariance and
variance from mini-batch samples while running the stochastic gradient algorithm. If we can not
always obtain mini-batch samples, we may use strategies like moving average across iterations, as
those used in [9, 10].

From Eq. 8, we observe that when the Pearson’s correlation coefficient between gd(w) and hd(w)
is higher, the control variate hd(w) will lead to a more significant level of variance reduction and
hence faster convergence. In the maximal correlation case, one could set hd(w) = gd(w) to obtain
zero variance. But obviously, we cannot compute Ed[hd(w)] efficiently in this case. In practice, one
should construct hd(w) such that it is highly correlated with gd(w). In next section, we will show
how to construct control variates for both convex and non-convex problems.

3 Practicing variance reduction on convex and non-convex problems

In this section, we apply the variance reduction technique presented above to two exemplary but
practical problems: MAP estimation for logistic regression—a convex problem; and stochastic varia-
tional inference for latent Dirichlet allocation [11, 22]—a non-convex problem. In the supplement,
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(a) entire data (b) sampled subset (c) sampled subset with data statistics

exact gradient direction exact gradient direction
but unreachable

noisy gradient direction
exact gradient direction

but unreachable

noisy gradient direction

improved noisy 
gradient direction

Figure 1: The illustration of how data statistics help reduce variance for the noisy gradient in stochastic
optimization. The solid (red) line is the final gradient direction the algorithm will follow. (a) The exact gradient
direction computed using the entire dataset. (b) The noisy gradient direction computed from the sampled subset,
which can have high variance. (c) The improved noisy gradient direction with data statistics, such as low-order
moments of the entire data. These low-order moments roughly characterize the data distribution, and are used to
form the control variate to aid the noisy gradient.

we show that the same principle can be applied to more problems, such as hierarchical Dirichlet
process [12, 13] and nonnegative matrix factorization [14].

As we discussed in §2, the higher the correlation between gd(w) and hd(w), the lower the variance
is. Therefore, to apply the variance reduction technique in practice, the key is to construct a random
vector hd(w) such that it has high correlations with gd(w), but its expectation h(w) = Ed[hd(w)] is
inexpensive to compute. The principle behind our choice of h(w) is that we construct h(w) based on
some data statistics, such as low-order moments. These low-order moments roughly characterize
the data distribution which does not depend on parameter w. Thus they can be pre-computed when
processing the data or estimated online while running the stochastic gradient algorithm. Figure 1
illustrates this idea. We will use this principle throughout the paper to construct control variates for
variance reduction under different scenarios.

3.1 SG with variance reduction for logistic regression

Logistic regression is widely used for classification [15]. Given a set of training examples (xd, yd),
d = 1, ..., D, where yd = 1 or yd = −1 indicates class labels, the probability of yd is

p(yd |xd, w) = σ(ydw
>xd),

where σ(z) = 1/(1 + exp(−z)) is the logistic function. The averaged log likelihood of the training
data is

`(w) = 1
D

∑D
d=1

{
ydw

>xd − log
(
1 + exp(ydw

>xd)
)}
. (10)

An SG algorithm employs the following noisy gradient:

gd(w) = ydxdσ(−ydw>xd). (11)

Now we show how to construct our control variate for logistic regression. We begin with the first-order
Taylor expansion around ẑ for the sigmoid function,

σ(z) ≈ σ(ẑ) (1 + σ(−ẑ)(z − ẑ)) .
We then apply this approximation to σ(−ydw>xd) in Eq. 11 to obtain our control variate.2 For
logistic regression, we consider two classes separately, since data samples within each class are more
likely to be similar. We consider positive data samples first. Let z = −w>xd, and we define our
control variate hd(w) for yd = 1 as

h
(1)
d (w) , xdσ(ẑ) (1 + σ(−ẑ)(z − ẑ)) = xdσ(ẑ)

(
1 + σ(−ẑ)(−w>xd − ẑ)

)
.

Its expectation given yd = 1 can be computed in closed-form as

Ed[h(1)
d (w) | yd = 1] = σ(ẑ)

(
x̄(1) (1− σ(−ẑ)ẑ)− σ(−ẑ)

(
Var(1)[xd] + x̄(1)(x̄(1))>

)
w
)
,

2Taylor expansion is not the only way to obtain control variates. Lower bounds or upper bounds of the
objective function [16] can also provide alternatives. But we will not explore those solutions in this paper.
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where x̄(1) and Var(1)[xd] are the mean and variance of the input features for the positive examples.
In our experiments, we choose ẑ = −w>x̄(1), which is the center of the positive examples. We can
similarly derive the control variate h(−1)

d (w) for negative examples and we omit the details. Given
the random sample regardless its label, the expectation of the control variate is computed as

Ed[hd(w)] = (D(1)/D)Ed[h(1)
d (w) | yd = 1] + (D(−1)/D)Ed[h(−1)

d (w) | yd = −1],

whereD(1) andD(−1) are the number of positive and negative examples andD(1)/D is the probability
of choosing a positive example from the training set. With Taylor approximation, we would expect
our control variate is highly correlated with the noisy gradient. See our experiments in §4 for details.

3.2 SVI with variance reduction for latent Dirichlet allocation

The stochastic variational inference (SVI) algorithm used for latent Dirichlet allocation (LDA) [22] is
also a form of stochastic gradient optimization, therefore it can also benefit from variance reduction.
The basic idea is to stochastically optimize the variational objective for LDA, using stochastic mean
field updates augmented by control variates derived from low-order moments on the data.

Latent Dirichlet allocation (LDA). LDA is the simplest topic model for discrete data such as text
collections [17, 18]. Assume there are K topics. The generative process of LDA is as follows.

1. Draw topics βk ∼ DirV (η) for k ∈ {1, . . . ,K}.
2. For each document d ∈ {1, . . . , D}:

(a) Draw topic proportions θd ∼ DirK(α).
(b) For each word wdn ∈ {1, . . . , N}:

i. Draw topic assignment zdn ∼ Mult(θd).
ii. Draw word wdn ∼ Mult(βzdn).

Given the observed words w , w1:D, we want to estimate the posterior distribution of the latent
variables, including topics β , β1:K , topic proportions θ , θ1:D and topic assignments z , z1:D,

p(β, θ, z |w) ∝
∏K
k=1 p(βk | η)

∏D
d=1 p(θd |α)

∏N
n=1 p(zdn | θd)p(wdn |βzdn). (12)

However, this posterior is intractable. We must resort to approximation methods. Mean-field
variational inference is a popular approach for the approximation [19].

Mean-field variational inference for LDA. Mean-field variational inference posits a family of dis-
tributions (called variational distributions) indexed by free variational parameters and then optimizes
these parameters to minimize the KL divergence between the variational distribution and the true
posterior. For LDA, the variational distribution is

q(β, θ, z) =
∏K
k=1 q(βk |λk)

∏D
d=1 q(θd | γd)

∏N
n=1 q(zdn |φdn), (13)

where the variational parameters are λk (Dirichlet), θd (Dirichlet), and φdn (multinomial). We seek
the variational distribution (Eq. 13) that minimizes the KL divergence to the true posterior (Eq. 12).
This is equivalent to maximizing the lower bound of the log marginal likelihood of the data,

log p(w) ≥ Eq [log p(β, θ, z, w)]− Eq [log q(β, θ, z)] , L(q), (14)

where Eq [·] denotes the expectation with respect to the variational distribution q(β, θ, z). Setting
the gradient of the lower bound L(q) with respect to the variational parameters to zero gives the
following coordinate ascent algorithm [17]. For each document d ∈ {1, . . . , D}, we run local
variational inference using the following updates until convergence,

φkdv ∝ exp {Ψ(γdk) + Ψ(λk,v)−Ψ (
∑
v λkv)} for v ∈ {1, . . . , V } (15)

γd = α+
∑V
v=1 ndvφdv. (16)

where Ψ(·) is the digamma function and ndv is the number of term v in document d. Note that here
we use φdv instead of φdn in Eq. 13 since the same term v have the same φdn. After finding the
variational parameters for each document, we update the variational Dirichlet for each topic,

λkv = η +
∑D
d=1 ndvφ

k
dv. (17)
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The whole coordinate ascent variational algorithm iterates over Eq. 15, 16 and 17 until convergence.
However, this also reveals the drawback of this algorithm—updating the topic parameter λ in Eq. 17
depends on the variational parameters φ from every document. This is especially inefficient for large-
scale datasets. Stochastic variational inference solves this problem using stochastic optimization.

Stochastic variational inference (SVI). Instead of using the coordinate ascent algorithm, SVI
optimizes the variational lower bound L(q) using stochastic optimization [22]. It draws random
samples from the corpus and use these samples to form the noisy estimate of the natural gradient [20].
Then the algorithm follows that noisy natural gradient with a decreasing step size until convergence.
The noisy gradient only depends on the sampled data and it is inexpensive to compute. This leads to
a much faster algorithm than the traditional coordinate ascent variational inference algorithm.

Let d be a random document index, d ∼ Unif(1, ..., D) and Ld(q) be the sampled lower bound. The
sampled lower bound Ld(q) has the same form as the L(q) in Eq. 14 except that the sampled lower
bound uses a virtual corpus that only contains document d replicated D times. According to [22], for
LDA the noisy natural gradient with respect to the topic variational parameters is

gd(λkv) , −λkv + η +Dndvφ
k
dv, (18)

where the φkdv are obtained from the local variational inference by iterating over Eq. 15 and 16 until
convergence.3 With a step size ρt, SVI uses the following update λkv ← λkv + ρtgd(λkv). However,
the sampled natural gradient gd(λkv) in Eq. 18 might have a large variance when the number of
documents is large. This could lead to slow convergence or a poor local mode.

Control variate. Now we show how to construct control variates for the noisy gradient to reduce
its variance. According to Eq. 18, the noisy gradient gd(λkv) is a function of topic assignment
parameters φdv , which in turn depends on wd, the words in document d, through the iterative updates
in Eq. 15 and 16. This is different from the case in Eq. 11. In logistic regression, the gradient is an
analytical function of the training data (Eq. 11), while in LDA, the natural gradient directly depends
on the optimal local variational parameters (Eq. 18), which then depends on the training data through
the local variational inference (Eq. 15). However, by carefully exploring the structure of the iterations,
we can create effective control variates.

The key idea is to run Eq. 15 and 16 only up to a fixed number of iterations, together with some
additional approximations to maintain analytical tractability. Starting the iteration with γdk having
the same value, we have φk(0)

v ∝ exp {Ψ(λkv)−Ψ (
∑
v λkv)}.4 Note that φk(0)

v does not depend
on document d. Intuitively, φk(0)

v is the probability of term v belonging to topic k out of K topics.

Next we use γdk − α to approximate exp(Ψ(γdk)) in Eq. 15.5 Plugging this approximation into
Eq. 15 and 16 leads to the update,

φ
k(1)
dv =

(
∑V

u=1 fduφ
k(0)
u )φk(0)

v∑K
k=1

(∑V
u=1 fduφ

k(0)
u

)
φ
k(0)
v

≈ (
∑V

u=1 fduφ
k(0)
u )φk(0)

v∑K
k=1

(∑V
u=1 f̄uφ

k(0)
u

)
φ
k(0)
v

, (19)

where fdv = ndv/nd is the empirical frequency of term v in document d. In addition, we replace fdu
with f̄u , (1/D)

∑
d fdu, the averaged frequency of term u in the corpus, making the denominator

of Eq. 19, m(1)
v ,

∑K
k=1

(∑V
u=1 f̄uφ

k(0)
u

)
φ
k(0)
v , independent of documents. This approximation

does not change the relative importance for the topics from term v. We define our control variate as

hd(λkv) , Dndvφ
k(1)
dv ,

whose expectation is Ed[hd(λkv)] =
(
D/m

(1)
v

){(∑V
u=1 nvfuφ

k(0)
u

)
φ
k(0)
v

}
, where nvfu ,

(1/D)
∑
d ndufdv = (1/D)

∑
d ndundv/nd. This depends on up to the second-order moments

of data, which is usually sparse. We can continue to compute φk(2)
dv (or higher) given φk(1)

dv , which
turns out using the third-order (or higher) moments. We omit the details here. Similar ideas can be
used in deriving control variates for hierarchical Dirichlet process [12, 13] and nonnegative matrix
factorization [14]. We outline these in the supplementary material.

3Running to convergence is essential to ensure the natural gradient is valid in Eq. 18 [22].
4In our experiments, we set φk(0)

v = 0 if φk(0)
v is less than 0.02. This leaves φ(0) very sparse, since a term

usually belongs to a small set of topics. For example, in Nature data, only 6% entries are non-zero.
5The scale of the approximation does not matter—C(γdk − α), where C is a constant, has the same effect as

γdk − α. Other approximations to exp(Ψ(γdk)) can also be used as long as it is linear in term of γdk.
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Figure 2: Comparison of our approach with standard SG algorithms using different constant learning rates. The
figure was created using geom smooth function in ggplot2 using local polynomial regression fitting (loess). A
wider stripe indicates the result fluctuates more. This figure is best viewed in color. (Decayed learning rates we
tested did not perform as well as constant ones and are not shown.) Legend “Variance Reduction-1” indicates the
algorithm with variance reduction using learning rate ρt = 1.0. (a) Optimum minus the objective on the training
data. The lower the better. (b) Test accuracy on testing data. The higher the better. From these results, we see
that variance reduction with ρt = 1.0 performs the best, while the standard SG algorithm with ρt = 1.0 learns
faster but bounces more (a wider stripe) and performs worse at the end. With ρt = 0.05, variance reduction
performs about the same as the standard algorithm and both converge slowly. These indicate that with the
variance reduction, a larger learning rate is possible to allow faster convergence without sacrificing performance.
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Figure 3: Pearson’s correlation coefficient for ρt = 1.0 as we run the our algorithm. It is usually high, indicating
the control variate is highly correlated with the noisy gradient, leading to a large variance reduction. Other
settings are similar.

4 Experiments

In this section, we conducted experiments on the MAP estimation for logistic regression and stochastic
variational inference for LDA.6 In our experiments, we chose to estimate the optimal a∗ as a scalar
shown in Eq. 9 for simplicity.

4.1 Logistic regression

We evaluate our algorithm on stochastic gradient (SG) for logistic regression. For the standard SG
algorithm, we also evaluated the version with averaged output (ASG), although we did not find it
outperforms the standard SG algorithm much. Our regularization added to Eq. 10 for the MAP
estimation is − 1

2Dw
>w. Our dataset contains covtype (D = 581, 012, p = 54), obtained from the

LIBSVM data website.7 We separate 5K examples as the test set. We test two types of learning rates,
constant and decayed. For constant rates, we explore ρt ∈ {0.01, 0.05, 0.1, 0.2, 0.5, 1}. For decayed
rates, we explore ρt ∈ {t−1/2, t−0.75, t−1}. We use a mini-batch size of 100.

Results. We found that the decayed learning rates we tested did not work well compared with the
constant ones on this data. So we focus on the results using the constant rates. We plot three cases
in Figure 2 for ρt ∈ {0.05, 0.2, 1} to show the trend by comparing the objective function on the
training data and the test accuracy on the testing data. (The best result for variance reduction is
obtained when ρt = 1.0 and for standard SGD is when ρt = 0.2.) These contain the best results of

6Code will be available on authors’ websites.
7http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets
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each. With variance reduction, a large learning rate is possible to allow faster convergence without
sacrificing performance. Figure 3 shows the mean of Pearson’s correlation coefficient between the
control variate and noisy gradient8, which is quite high—the control variate is highly correlated with
the noisy gradient, leading to a large variance reduction.

4.2 Stochastic variational inference for LDA

We evaluate our algorithm on stochastic variational inference for LDA. [10] has shown that the
adaptive learning rate algorithm for SVI performed better than the manually tuned ones. So we use
their algorithm to estimate adaptive learning rate. For LDA, we set the number of topics K = 100,
hyperparameters α = 0.1 and η = 0.01. We tested mini-batch sizes as 100 and 500.

Data sets. We analyzed three large corpora: Nature, New York Times, and Wikipedia. The Nature
corpus contains 340K documents and a vocabulary of 4,500 terms; the New York Times corpus
contains 1.8M documents and a vocabulary vocabulary of 8,000 terms; the Wikipedia corpus contains
3.6M documents and a vocabulary of 7,700 terms.

Evaluation metric and results. To evaluate our models, we held out 10K documents from each
corpus and calculated its predictive likelihood. We follow the metric used in recent topic modeling
literature [21, 22]. For a document wd in Dtest, we split it in into halves, wd = (wd1, wd2), and
computed the predictive log likelihood of the words in wd2 conditioned on wd1 and Dtrain. The
per-word predictive log likelihood is defined as

likelihoodpw ,
∑
d∈Dtest

log p(wd2|wd1,Dtrain)/
∑
d∈Dtest

|wd2|.

Here | · | is the number of words. A better predictive distribution given the first half gives higher
likelihood to the second half. We used the same strategy as in [22] to approximate its computation.
Figure 4 shows the results. On all three corpora, our algorithm gives better predictive distributions.

5 Discussions and future work

In this paper, we show that variance reduction with control variates can be used to improve stochastic
gradient optimization. We further demonstrate its usage on convex and non-convex problems,
showing improved performance on both. In future work, we would like to explore how to use
second-order methods (such as Newton’s method) or better line search algorithms to further improve
the performance of stochastic optimization. This is because, for example, with variance reduction,
second-order methods are able to capture the local curvature much better.
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Dani Yogatama for helping with some experiments on LDA. Chong Wang and Eric P. Xing are
supported by NSF DBI-0546594 and NIH 1R01GM093156.

8Since the control variate and noisy gradient are vectors, we use the mean of the Pearson’s coefficients
computed for each dimension between these two vectors.
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