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Abstract

In this paper, we address a challenging image segmen-
tation problem called multiple foreground cosegmentation
(MFC), which concerns a realistic scenario in general Web-
user photo sets where a finite number of K foregrounds of
interest repeatedly occur over the entire photo set, but only
an unknown subset of them is presented in each image. This
contrasts the classical cosegmentation problem dealt with
by most existing algorithms, which assume a much sim-
pler but less realistic setting where the same set of fore-
grounds recurs in every image. We propose a novel op-
timization method for MFC, which makes no assumption
on foreground configurations and does not suffer from the
aforementioned limitation, while still leverages all the bene-
fits of having co-occurring or (partially) recurring contents
across images. Our method builds on an iterative scheme
that alternates between a foreground modeling module and
a region assignment module, both highly efficient and scal-
able. In particular, our approach is flexible enough to inte-
grate any advanced region classifiers for foreground mod-
eling, and our region assignment employs a combinato-
rial auction framework that enjoys several intuitively good
properties such as optimality guarantee and linear com-
plexity. We show the superior performance of our method
in both segmentation quality and scalability in comparison
with other state-of-the-art techniques on a newly introduced
FlickrMFC dataset and the standard ImageNet dataset.

1. Introduction
With the availability of large amount of online images,

often with overlapping contents, it is intuitively more de-
sirable to segment multiple images jointly instead of seg-
menting each image independently to leverage the enhanced
foreground signals due to the co-occurrence of objects in
these images. This new approach is known as cosegmenta-
tion, and has been actively studied in the recent computer
vision literature [1, 8, 9, 11, 16, 22, 23] 1.

1As to be formalized shortly, the goal of cosegmentation is to divide
each of multiple images into non-overlapping regions of foreground and

Figure 1. Motivation for multiple foreground cosegmentation. (a)
Input images are 20 photos of an apple+picking photostream of
Flickr. Two girls, one baby, and an apple bucket repeatedly occur
in the images, but only a subset of them is shown in each image.
(b) The first row shows the color-coded cosegmentation output in
which the same colored regions are identified as the same fore-
ground. The second row shows the segmented foregrounds.

However, existing cosegmentation methods still suffer
from some limitations in order to be applied to the photo
sets of general users. The arguably most limiting one is that
every input image would need to contain all the foregrounds
for the cosegmentation algorithms to be applicable. Fig.1
shows a typical example that violates this condition. This
is an apple+picking photostream downloaded from Flickr,
and it follows an ordinary photo-taking pattern of a general
photographer: a series of pictures about a specific event are
taken; the number of objects in a photostream is finite, but
they do not appear in every single image. For example, in
Fig.1, two girls, one baby, and an apple bucket repeatedly
appear in the photostream, but each image includes only an
unknown subset of them. Such a content-misaligned set of

background. Empirically, the foreground is defined as the common re-
gions that repeatedly occur across the input images [16]. In an interac-
tive or supervised setting [1], the foregrounds are explicitly assigned by a
user as the regions of interest, often corresponding to well-defined objects;
whereas the background refers to the compliment of foregrounds.
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images would not be correctly addressed by existing coseg-
mentation algorithms. The objective functions in most ex-
isting methods were built on the assumption that all input
images contain the same objects, without explicitly consid-
ering the cases where foregrounds irregularly occur across
the images. In order to apply a traditional cosegmentation
method to such a photo set, a user is required to first di-
vide her photostream into several groups so that each group
contains only photos that have the same foregrounds. This
manual preprocessing can be cumbersome, especially when
the number of photos is very large (e.g. hundreds or more).

In this paper, we propose a combinatorial optimization
method, MFC, for cosegmentation that does not suffer from
the aforementioned restriction. It allows irregularly oc-
curring multiple foregrounds with varying contents to be
present in the image collection, and directly cosegment
them. More precisely, we consider the following task:

Definition 1 (Multiple Foreground Cosegmentation).
The multiple foreground cosegmentation (MFC) refers
to the task of jointly segmenting K different foregrounds
F={F1, · · · ,FK} from M input images, each of which
contains a different unknown subset of K foregrounds.

Given the number of foregroundsK and an input image set,
our approach automatically finds the most frequently occur-
ring K foregrounds across the image set. Optionally, a user
may select the example foregrounds of interest in a couple
of images in the form of bounding boxes or pixel-wise an-
notations. Subsequently, our algorithm segments out every
instance of K foregrounds in the input image set.

More specifically, our approach is based on an iterative
optimization procedure that alternates between two sub-
tasks: foreground modeling, and region assignment. Given
an initialization for the regions of K foregrounds, the fore-
ground modeling step learns the appearance models of K
foregrounds and the background, which can be accom-
plished by using any existing advanced region classifiers
or their combinations. During the region assignment step,
we allocate the regions of each image to one of K fore-
grounds or the background. This is done via a combinato-
rial auction style optimization algorithm; every foreground
and the background bid the regions along with their values
of how much the regions are relevant to them. These values
are computed by the learned foreground models. Finally,
an optimal solution (i.e. the allocation of the regions that
maximizes the overall value) is achieved in O(MK) time,
by leveraging the fact that the candidate regions bidden by
foregrounds and the final region assignment can be repre-
sented by subtrees of a connectivity graph of regions in the
image space. Iteratively, after the region assignment, each
foreground model is updated by learning from the newly
assigned segments (i.e., regions) to the foreground.

The concept of such an iterative segmentation scheme

Methods M K+1 MFC Hetero-FG
Ours (MFC) ≥ 103 Any O O

SO [11] ≥ 103 Any X X
UGC [16, 22] 2 2 X O
SGC [1, 14, 8] ≤ 30 2 X O

DC [9] ≤ 30 2 X O

Table 1. Comparison of our algorithm with previous cosegmenta-
tion methods. M and K denote the number of images and fore-
grounds, respectively. MFC indicates whether an algorithm is
designed to solve the MFC problem in Definition 1. Hetero-FG
means whether an algorithm can identify a heterogeneous object
(e.g. a person) as a single foreground. (SO: submodular optimization,
UGC: Graph-cuts (unsupervised), SGC: Graph-cuts (supervised), DC: Dis-
criminative clustering).

has been used in some previous work such as [10] and [15].
But the allowance of arbitrary classifiers and their combina-
tions to be plugged in during foreground modeling, and the
use of a linear-time algorithm motivated by combinatorial
auction for region assignment make our method unique and
far more efficient and flexible than earlier ones.

We test our method on a newly created benchmark
dataset, FlickrMFC, with pixel-level ground truth. Each
group consists of photos from a Flickr photostream taken by
a single user, and contains a finite number of subjects that ir-
regularly appear across the images. Our experiments in Sec-
tion 4 show that our approach successfully solves the mul-
tiple foreground cosegmentation in a scalable way. More-
over, the cosegmentation accuracies are compelling over the
state-of-the-art techniques [9, 11, 18] on our novel Flick-
rMFC dataset and the standard ImageNet dataset [6].

1.1. Relations to Previous work

Cosegmentation: Table 1 summarizes the comparison
of our work with previous cosegmentation methods. Our
approach has several important features that are beneficial
for the cosegmentation of general users’ photo sets. Our
algorithm is able to handle a large M for scalability and
an arbitrary K for highly variable contents of user images.
This advantage is also shared with CoSand [11], but our
key differences to [11] are as follows. First, the CoSand is a
bottom-up approach that relies on only low-level color and
texture features, whereas our technique can be merged with
any region classification algorithms. Second, the CoSand
cannot model a heterogeneous object that consists of multi-
ple distinctive regions (e.g. a person) as a single foreground.
It can be a limitation to be used for consumer photos be-
cause they are likely to contain persons as subjects, which
are often required to be segmented as a single foreground.
However, our approach does not suffer from these issues.

Our approach can correctly account for multiple fore-
ground cosegmentation in Definition 1, which has not been
explicitly addressed by the optimization methods of most
previous work [1, 8, 9, 11, 14, 16, 22], as shown in Table 1.



Combinatorial Optimization in Object Detection: Re-
cently, combinatorial optimization techniques have been
popularly used in object detection research. Some notable
examples include branch-and-bound schemes for efficient
subwindow search [12], a Steiner tree based selection of ob-
ject candidate regions [17], and the maximum-weight con-
nected subgraph for the detection of non-boxy objects [24].

The main purpose of these methods is to efficiently enu-
merate candidate regions to which object classifiers are ap-
plied, which is substantially different from our goal. Con-
sequently, our MFC has a different objective function to be
optimized by a different technique, which is based on wel-
fare maximization in combinatorial auction [5].

2. Problem Formulation
Denote the set of input images by I = {I1, · · · , IM}.

According to Definition 1, we are interested in segment-
ing out K different foregrounds F={F1, · · · ,FK} from
all images in I, each with an unknown subset of F . Our al-
gorithm deals with two different scenarios. In the unsuper-
vised scenario, a user solely inputs the number K, and our
algorithm automatically infers K distinctive foregrounds
that are most dominant in I. In the supervised scenario,
a user can provide bounding-box or pixel-wise annotations
for K foregrounds of interest in some selected images.

In our approach, we break the MFC problem defined
above into two subproblems, which we solve iteratively:
foreground modeling and region assignment. Foreground
modeling learns the appearance models of K foregrounds,
and region assignment allocates the regions of each image
to one of K foregrounds or the background. Intuitively,
given a solution to one of the two subproblems, the other
can be easily solved. From an initial region assignment,
one can learn K foreground models, which in turn improve
region assignment in every image. These two processes al-
ternate until achieving a converging solution.

2.1. Foreground Models

Without loss of generality, we define the k-th foreground
(or the background) model as a parametric function vk :
S → R that maps any region S ∈ S in an image to its fitness
value to the k-th foreground (i.e. how closely the region is
relevant to the k-the foreground). If an image Ii is overseg-
mented as Si, then vk : 2|Si| → R takes any subset S ⊂ Si
as input and returns its value to the k-th foreground. During
the region assignment, each foreground model is used to as-
sess how fit a region (or a set of regions) to a foreground, as
shown in Fig.2.(a). During the foreground modeling, each
foreground model is updated by learning from the segments
allocated to the foreground, as shown in Fig.2.(b).

One important objective of our approach is to enable
adaptability to any choice or combination of foreground
models as plug-ins. Any classifiers or ranking algorithms

Figure 2. An example of the baby foreground (FG) model. (a) A
FG model is a parametric function that maps any region to a value
to the foreground. (b) After the region assignment, the FG model
is updated by learning from the segments assigned to the FG.

can be used as foreground model so long as it can evalu-
ate a region and be updated by learning from the assigned
regions. (If we view the foreground model as a classi-
fier, the former is a testing step and the latter is a train-
ing step). In this paper, we use two different foreground
models - the Gaussian mixture model (GMM) (i.e. Boykov-
Jolly model [2, 15]) and spatial pyramid matching (SPM)
with linear SVM [13]. The former has been a popular ap-
pearance model in cosegmentation [1, 22], and the latter
is one of baselines for object classification and detection.
Table 2 summarizes the region descriptors, model parame-
ters, learning methods, and region valuation of the two fore-
ground models. For both GMM and SPM models, we fol-
low the algorithms proposed in the original papers [2, 15]
and [13]. In experiments, the final region score is computed
by vk(S) = α · vkGMM (S) + (1− α) · vkSPM (S) by chang-
ing α from 0 to 1. Note that thanks to our flexible definition
of the foreground model, the simple SPM model can be re-
placed by the state-of-the-arts deformable part models [7]
for better performance.

2.2. Region Assignment

Given the foreground models, the region assignment is
performed on individual images separately. The goal of this
step is to divide Si (i.e. the segment set of each image Ii)
into disjoint subsets of foregrounds Fk

i (k = {1, · · · ,K})
and background (For notational simplicity, we use FK+1

i

for background). Since all foregrounds do not appear in
every image, some foregrounds (Fk

i ) are empty sets.
Naively, we may distribute each segment s ∈ Si to one

of Fk
i that has the maximum value vk(s) for it. However,

in image segmentation, the value of a segment bundle (i.e. a
subset of Si) can be worth more than or less than the sum of
values of individual segments. For example, suppose that
a black patch is the most valuable to the cow foreground.
But, if the black patch is combined with a skin-colored
patch, this bundle would be more valuable to the person
foreground than to the cow foreground.

Consequently, the region assignment reduces to finding
a disjoint partition Si =

⋃K+1
k=1 Fk

i with Fk
i ∩F l

i=∅ if k 6=l,
to maximize

∑K+1
k=1 vk(Fk

i ). More formally, it corresponds



GMM SPM
Region A set of RGB colors extracted at every pixel of region S. A spatial pyramid h(S) (2 levels, 200 visual words of gray/HSV SIFT).
features The minimum rectangle enclosing S is used as the based pyramid.
Model A Gaussian mixture with C components. The parameters θk

A linear SVM is learned by using Fk as positive data and randomly
and = {πk

c , µ
k
c , σ

k
c }Cc=1 which are the prior probability, mean, chosen regions from other foregrounds or background as negative data.learning and covariance. The standard EM is used for learning.

vk(S)
The mean log-likelihood of the RGB descriptors of S to the vk(S) =

∑T
t=1 ytαtK(h(S), h(t)) where h(t) is the histogram of

k-th learned GMM model. t training region, yt∈{+1, –1} is positive/negative labels, K(·, ·) is the
histogram intersection kernel, and T is the number of training data.

Table 2. Description of two foreground models – GMM and SPM models.

to the integer program (IL) problem below:

max

K+1∑
k=1

∑
S⊆Si

vk(S)xk(S) (1)

s.t.
K+1∑
k=1

∑
s∈S,S⊆Si

xk(S) ≤ 1, ∀s ∈ Si,

xk(S) ∈ {0, 1}

where variables xk(S) describe the allocation of bundle S
to k-th foreground Fk

i . (i.e. xk(S) = 1 if and only if the
k-th foreground takes the bundle S). The first constraint
checks whether the assignment is feasible; any segment s ∈
Si cannot be assigned more than once.

The region assignment in Eq.(1) requires to check all
possible subset S ⊆ Si. Unfortunately, there are 2|Si| possi-
ble subsets, so enumerating them is infeasible. It is proven
in [5] that Eq.(1) is identical to the weighted set packing
problem, and thus it is NP-complete and inapproximable.

3. Tractable MFC
In this section, we propose a tractable MFC method that

iteratively solves the two subproblems defined in the pre-
vious section. The foreground modeling is straightforward,
but the region assignment is intractable. Hence, we here fo-
cus on developing a polynomial time algorithm to solve the
region assignment by taking advantage of structural proper-
ties that are commonly observed in the image space.

3.1. Tree-Constrained Region Assignment

Given the K+1 foreground models, the region assign-
ment module progresses as follows. First, each image Ii is
oversegmented as Si as shown in Fig.3.(b). Any segmen-
tation algorithm can be used, and we apply the submodular
image segmentation [11] to each image. Given the segment
set Si of image Ii, each foreground in F creates a set of
foreground candidates Bki = {Bk

1 , · · · , Bk
n}, where every

candidate is a tuple Bk
j = 〈kj , Cj , wj〉, where kj is the in-

dex of the foreground that submits candidate j, Cj ⊆ Si
is a bundle of segments and wj is its value wj=v

k(Cj)
(See an example in Fig.3.(d)). In this step, we allow each
foreground to submit as many candidates as it is willing to
take (Section 3.2). Finally, solving the region assignment

Figure 3. An example of region assignment with apple bucket and
baby foregrounds (FG) and background (BG). (a) An input image
Ii. (b) Segment set Si. (c) Adjacency graph Gi. (d) The set of
FG candidates Bi that are submitted by two FGs and BG. Each
candidate is a subtree of Gi, associated with its value. (e) The most
likely tree T ∗i given Bi. (f) The optimal assignment is a forest of
subtrees in Bi. (g) The segmentation of two FGs.

in Eq.(1) corresponds to choosing some feasible foreground
candidates among all submitted Bi={B1i , · · · ,B

K+1
i } in or-

der to maximize the overall values2 (Section 3.3).
There are two possible approaches to make the region

assignment problem in Eq.(1) tractable: putting a restric-
tion on value function vk or a restriction on generating fore-
ground candidates Bi. We explore the latter approach (i.e.
restriction on Bi) because one of our design goals is to en-
able flexible choice of foreground models. (e.g. it is hard to
define any regularity constraints on the output scores of the

2Our region assignment is closely related to combinatorial auction [5]
with following terminological correspondences: Given a set of segments
(items) Si, K+1 foreground models (bidders or buyers) submit a set of
foreground candidates (package bids) Bi. The region assignment in Eq.(1)
is commonly referred to a Winner determination problem or a Welfare
problem in combinatorial auction literature.



SPM model for arbitrary segment bundles). In the following
sections, we will discuss how to achieve the tractability.

Assumption: We assume that a foreground instance in
an image is represented by a set of adjacent segments. A
pair of segments is considered as adjacent if its minimum
spatial distance in an image is less than or equal to ρ. This
is a reasonable assumption because most foregrounds of in-
terest occupy connected regions in an image. Our approach
allows multiple instances (e.g. several apple buckets in an
image), which are regarded as multiple connected regions.

Suppose that we build an adjacency graph Gi=(Si, Ei)
where every segment is a vertex and (sl, sm) ∈ Ei if
min d(sl, sm) ≤ ρ (e.g. ρ=5 pixels) for all sl, sm∈Si (See
an example in Fig.3.(c)). Then, any connected regions in
the image can be represented by subtrees of Gi, and thus the
final region assignment {F1

i , · · · ,F
K+1
i } should be a for-

est (i.e. set) of subtrees (See an example in Fig.3.(f)). Con-
sequently, without loss of generality, we restrict any fore-
ground candidate Bi ∈ Bi to be a subtree of the Gi, and our
goal of region assignment is to select some Bi that are not
only feasible but also maximize the objective of Eq.(1).

3.2. Generating Candidate Sets

In this section, we discuss how each foreground gener-
ates a set of foreground candidates Bki , each of which is a
subtree of Gi (i.e. generating candidates in Fig.3.(d) from Gi
in Fig.3.(c)). In this step, each foreground does not care for
the winning chances of its proposals by competing the ones
submitted by the other foreground models.

Given the adjacency graph Gi, each foreground samples
highly valued subtrees as candidates Bki by using beam
search with vk as a heuristic function and a beam width
D [19] (e.g. D=10 in our tests). Algorithm 1 summarizes
this process. We start with all unit segments ∀s ∈ Si to be
added to Bki . In every round, we enumerate all subtrees that
can be obtained by adding one edge from previous candi-
dates. The beam width D specifies the maximum number
of subtrees to be retained at each round. We only keep topD
highly valued subtrees as Bki without consuming too much
time on poorly valued ones (See step 3 of Algorithm 1).
In practice, this beam search selects good and sufficiently
many candidates, because each foreground usually occupies
only a part of an image. The computation time of this step
per foreground is at most O(D|Si|2), and the number of
foreground candidates |Bi| is at most (D|Si|).

3.3. Tractable Region Assignment

Given Bi, we are ready to solve Eq.(1) by choosing some
feasible candidates among Bi. For a tractable solution, we
first introduce a theorem in [20], which is reformulated to
be fit to our context as follows.

Theorem 1 ([20]). Dynamic programming can solve Eq.
(1) in O(|Bi||Si|) worst time if every candidate in Bi can

Algorithm 1: Build candidates Bk
i from Gi by beam search.

Input: (1) Adjacency graph Gi = (Si, Ei). (2) Value function
vk of the k-th foreground model. (3) D: Beam width.

Output: k-th foreground candidates Bki .

1: Set the initial open set to be O←∀s ∈ Si. Bi←∀s ∈ Si.
for i = 1 to |Si|−1 do

foreach o ∈ O do
2: Enumerate all subgraphs Oo that can be obtained by
adding an edge to o. O ← Oo and O ← O\o.

3: Compute values vo ← vk(o) for all o ∈ O and remove o
from O if it is not top D highly valued. Bi ← O.

be represented by a connected subgraph of a tree T ∗i .
Theorem 1 suggests a linear-time algorithm for region

assignment, if Bi can be organized as a tree. In the fore-
ground candidate set Bi, each Bi ∈ Bi is a subtree but its
aggregation Bi may not. Therefore, we reject some Bi that
cause cycles but are not highly valued, because the final so-
lution is a forest of candidate subtrees. The pruned Bi is
denoted by B∗i . Now we discuss how to obtain T ∗i and B∗i
from Bi.

Inferring the tree from the candidate set: Given can-
didate set Bi (i.e. a set of subtrees), our objective here is to
infer the most probable tree T ∗i . It can be formulated as the
following maximum likelihood estimation (MLE) in a sim-
ilar way to tree structure learning (e.g. Chow-Liu tree [3]):

T ∗i = argmax
T ∈T (Gi)

P (Bi|T ) (2)

where P (Bi|T ) is the data likelihood and T (Gi) is the set
of all possible spanning trees on Gi.

In the supplementary material, we outline a Chow-Liu
style algorithm that computes the most likely tree T ∗i given
Bi in O(|Bi||Si|2) time. It is also proven that the solution
by this algorithm minimizes the values of rejected Bl in Bi
under the constraint of tree structure as follows:

T ∗i = argmin
T ⊂T (Gi)

∑
Bl∈Bi,Bl 6⊂Ti

v(Bl) (3)

Once we obtain T ∗i , we retain only the candidates B∗i
(⊂ Bi) that are subgraphs of T ∗i .

Search Algorithm: As stated in Theorem 1, the optimal
solution of Eq.(1) given B∗i can be efficiently obtained. We
implement a dynamic programming based search algorithm
by modifying the CABOB algorithm [21]. We present the
pseudocode in the supplementary material.

3.4. The MFC Algorithm

The overall algorithm is summarized in Algorithm 2. We
repeat the foreground modeling and region assignment, and
stop when the objective value of a new region assignment in
Eq.(1) stops increasing. Since we consider the foreground
model as a black box, it is difficult to analytically under-
stand the convergence property. However, if we use only



Algorithm 2: Multiple foreground cosegmentation
Input: (1) Input image set I. (2) Number of foregrounds (FGs) K.

(3) (In supervised case) annotationsA = {A1, · · · ,AK}.
Output: Foregrounds Fi = {F1

i , · · · ,FK
i } for all Ii ∈ I.

Initialization
foreach Ii ∈ I do

1: Oversegment Ii to Si and build adjacency graph Gi = (Si,
Ei) where (sl, sm) ∈ Ei if min d(sl, sm) ≤ ρ.

if unsupervised then
2: Apply diversity ranking of [11] to the similarity graph of
S=

⋃M
i=1 Si to find K regionsA={A1, · · · ,AK} that are

highly repeated in S and diverse with respect to one another.
3: Set F ← A.

Iterative Optimization
/* Stopping condition. */
We stop the iteration if a new region assignment does not increase
the objective value (i.e.

∑M
i=1

∑K+1
k=1 vk(Fk

i ) from Eq.(1)).

/* Foreground Modeling (Any methods can be used). */
foreach k = 1:K do

1: Learn GMM and SPM FG models from Fk (See Table 2).

/* Region assignment */
foreach Ii ∈ I do

foreach k = 1: + 1K do
2: Generate FG candidates Bki by Alg.1 as a set of Bk

i =
〈kj , Cj , wj〉, where kj is the foreground index, Cj ⊆ Si
is a subtree of Gi, and wj=v

k(Cj).
3: Compute the most probable candidate tree T ∗i and pruned
B∗i by Eq.(2) from Bi=

⋃K+1
k=1 B

k
i .

4: Obtain Fi to solve region assignment in Eq.(1) by using
dynamic programming on B∗i (in the supplementary material).

the GMM model as our foreground model, the algorithm is
guaranteed to converge at least to a local minimum [15].

The initializations for region assignment are different be-
tween supervised and unsupervised settings. In the super-
vised scenario, the initial foreground regions are labelled
by users: A = {A1, · · · ,AK} where Ak is the regions an-
notated as the k-th foreground. In the unsupervised setting,
we apply the diversity ranking method of [11] to the sim-
ilarity graph of S = {S1, · · · ,SM} to discover the most
repeated K regions that are diverse with respect to one an-
other. Note that in the unsupervised setting, commonality
of the regions is favored. Hence, when we apply the unsu-
pervised cosegmentation to the images like Fig.3, it is un-
avoidable to detect grass regions as one of K foregrounds
because it is dominant across the input images.

4. Experiments
We evaluate the MFC algorithm using the FlickrMFC

dataset and the ImageNet [6] dataset. The FlickrMFC and
our MFC toolbox in Matlab can be found at our webpage
http://www.cs.cmu.edu/∼gunhee.

4.1. FlickrMFC Dataset

Datasets: The FlickrMFC is a fully manually labeled
dataset that consists of 14 groups, each of which includes

10∼20 images. Each group is sampled from a Flick pho-
tostream and contains a finite number of repeating subjects
that are not presented in every image. The details of Flick-
rMFC dataset are shown in the supplementary material.

Baselines: As baselines, we use one LDA-based unsu-
pervised localization method [18] (LDA) and two coseg-
mentation algorithms: CoSand [11] (COS) and discrimi-
native clustering method [9] (DC). Since the two coseg-
mentation methods are not intended to handle irregularly
appearing multiple foregrounds, we first manually divide
the images into several subgroups so that the images of
each subgroup share the same foregrounds. If an image
contains multiple foregrounds, it belongs to multiple sub-
groups. Then, we apply the methods to each subgroup sepa-
rately to segment out the common foreground. This is an ex-
act scenario where a conventional cosegmentation is applied
to the image sets of multiple foregrounds. The (LDA) [18]
was not originally developed for cosegmentation, but it can
segment multiple object categories without any annotated
information. We use the source codes provided by original
authors3.

Results: Our algorithm is applied in both supervised
(MFC-S) and unsupervised (MFC-U) settings. In (MFC-S),
we randomly choose 20% of input images (i.e. 2∼4 images)
to obtain annotated labels for the foregrounds of interest.
For the unsupervised algorithms, (MFC-U) and (LDA), it is
hard to know the best K beforehand. Thus, we run them by
changing K from two to eight, and report the best results.

Fig.4 summarizes the segmentation accuracies on the 14
groups of the FlickrMFC dataset. In the figure, the left-
most bar set is the average performance on 14 groups. The
accuracy is measured by the intersection-over-union metric
(GTi∩Ri

GTi∪Ri
), the standard metric of PASCAL challenges. We

observed that the performance of our (MFC-U) is slightly
worse than (COS) and (DC) by 2∼3%. Note that (COS) and
(DC) are applied to the images of each separate subgroup
that shares the same foregrounds. It allows the algorithms to
know what foregrounds exist in images beforehand, which
is a strong supervision. On the other hand, (MFC-U) is a
completely unsupervised; it is applied to the entire dataset
without splitting. Our supervised (MFC-S) algorithm, even
with a very small number of labeled images, significantly
outperformed the competitors by more than 11% over the
best of baselines (COS).

Fig.6 shows some examples of cosegmentation from six
groups of the FlickrMFC dataset. In each set, we show input
images, color-coded cosegmentation output, and segmented
foregrounds from top to bottom. The same colored regions
in the second row are identified as the same foregrounds,
and the meanings of the colors are described below each set.

3Codes are available at [11]: http://www.cs.cmu.edu/∼gunhee/, [9] :
http://www.di.ens.fr/∼joulin/, [18]: http://www.cs.washington.edu/homes
/bcr/projects/mult seg discovery/.

http://www.cs.cmu.edu/~gunhee


Figure 4. Comparison of segmentation accuracies between our supervised (MFC-S) and unsupervised (MFC-U) approaches and other
baselines (COS, DC, LDA) for the FlickrMFC dataset. The S and U indicate whether any annotation information is required (S) or not (U).

Figure 5. Comparison of segmentation accuracies between our approach and other baselines for the ImageNet dataset.

We made several interesting observations in these exam-
ples: First of all, our algorithm correctly treated the multi-
ple foreground cosegmentation in Definition 1. In Fig.6.(a),
two girls, a boy, a baby, an apple bucket, pumpkins are in-
tended foregrounds, which are irregularly presented in each
image. This is a challenging situation for traditional coseg-
mentation methods, but our algorithm could successfully
segment the foregrounds. As shown in the fourth image of
Fig.6.(d), some input images include no foregrounds, which
were successfully identified as well. One main source of er-
rors in our experiments was the similarly looking regions;
for example, in the first image in Fig.6.(a), the face re-
gion of the girl+red is allocated to the girl+blue foreground
(depicted in red), which makes sense in that the two fore-
grounds are the girls with similar skin and hair colors but
their main difference lies in their clothes.

4.2. ImageNet Dataset

Dataset: ImageNet [6] may not be a perfect dataset for
the evaluation of multiple foreground segmentation because
each image contains only a single object class with a sig-
nificant size. Instead, the main objectives of the evalua-
tion with ImageNet [6] are to show (i) the scalability of our
method, and (ii) the performance evaluation for the single
foreground cosegmentation as a simplified task.

Baselines: We follow the experiment setting of [11] in
order to compare our segmentation performance with those
of (COS) [11], (LDA) [18], and MNcut [4] that are reported
in [11]. We select 50 synsets that provide bounding box
labels, and apply our technique to 1000 randomly selected
images per synset in both supervised (MFC-S) and unsuper-
vised (MFC-U) ways. In (MFC-S), the foreground models
are initialized from the labels of 50 randomly chosen im-
ages. Finally, we compute segmentation accuracies by us-
ing the provided bounding box annotations.

Results: Fig.5 shows the segmentation accuracies for 13
selected synsets. The accuracies of (MFC-U) and (MFC-S)
are higher than those of the best baselines (COS) by more
than 3% and 8%, respectively. As discussed before, our al-

gorithm is linear to M and it took about 20 min for 1,000
images on a single machine. We show some selected coseg-
mentation examples in the supplementary material.

5. Conclusion
We propose the MFC algorithm, a less restrictive and

more practical method for multiple foreground cosegmen-
tation. Among future work that could further boost perfor-
mance, first, one can use a more sophisticated foreground
model such as the deformable part model [7] to assess more
accurately how valuable a region is to each foreground; sec-
ond, it is worth exploring other tractable cases of region as-
signment (e.g. relaxing the tree assumption in Section 3.1).
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