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Large-margin Predictive Latent Subspace
Learning for Multi-view Data Analysis

Ning Chen†, Jun Zhu†, Member, IEEE , Fuchun Sun and Eric P. Xing, Senior Member, IEEE

Abstract—Learning salient representations of multi-view data is an essential step in many applications such as image classification,
retrieval and annotation. Standard predictive methods, such as support vector machines, often directly use all the features available
without taking into consideration the presence of distinct views and the resultant view dependencies, coherence, and complementarity
that offer key insights to the semantics of the data, and are therefore offering weak performance and are incapable of supporting
view-level analysis. This paper presents a statistical method to learn a predictive subspace representation underlying multiple views,
leveraging both multi-view dependencies and availability of supervising side-information. Our approach is based on a multi-view latent
subspace Markov network (MN) which fulfills a weak conditional independence assumption that multi-view observations and response
variables are conditionally independent given a set of latent variables. To learn the latent subspace MN, we develop a large-margin
approach which jointly maximizes data likelihood and minimizes a prediction loss on training data. Learning and inference are efficiently
done with a contrastive divergence method. Finally, we extensively evaluate the large-margin latent MN on real image and hotel review
datasets for classification, regression, image annotation and retrieval. Our results demonstrate that the large-margin approach can
achieve significant improvements in terms of prediction performance and discovering predictive latent subspace representations.

Index Terms—Latent subspace model, Large-margin learning, Classification, Regression, Image retrieval and annotation.
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1 INTRODUCTION

MODERN data analytic problems in social media,
information technology, and natural sciences often

involve rich data consisting of multiple information
modalities. For example, in a moment-sharing social
network such as Instagram, a photo record would in-
clude image, text (status updates and viewer opinions),
and various meta information such as user demograph-
ics, geo-tags, time stamps, etc.; in a biomedical data
repository, a clinical sample record may include gene
expression intensity, protein activity status, clinical traits,
and patient information with family history. These dif-
ferent modalities represent different angles to reveal the
fundamental characteristics and properties of the study
subjects, and is often referred as views of the subjects.

Proper integration of multiple views present in multi-
modal data is of paramount importance for seeking accu-
rate distillation of salient semantic representations of the
study objects, therefore numerous efforts along this di-
rection can be found in the literature. To name a few, [6]
studied co-training scheme of a classification model for
web pages based on both content and link anchor text;
[44] proposed a dual view latent space model for video
shot based on both color/shape of the keyframe and the
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corresponding closed captions; and this list continues
to grow, under various contexts and addressing a di-
verse range of data forms [17][11][34][35][14]. However,
most of these approaches for multi-view integration and
distillation do not go hand-in-hand with main stream
predictive methods such as support vector machines
(SVMs) [8] or Boosting algorithms [19] to form a unified
system that allows strongly predictive latent semantic
representations of multi-view data to be extracted. Typ-
ically, standard predictive methods would use one of
the following strategies: 1) build a single classifier on
observed features from all views, without taking into
consideration the presence of distinct views; 2) build
a set of classifiers defined on each view, regardless of
the relationships among views; and 3) let a latent space
model such as a multi-view topic model to distill the
latent representations of data without considering the
predictive information1, and then apply a downstream
classifier on such representations [44]. While offering
many insights on how multi-view data can be worked
with, these approaches appear to enjoy limited practical
benefits from the extra information present in multi-view
data, in terms of predictive performance [7], computa-
tional cost [35], and power for view-level analysis [14] such
as predicting tags for image annotation or analyzing the
underlying relationships among views.

Moreover, with the rapid increase of free on-line infor-
mation such as user tagging, ratings, etc., various forms
of side-information that can potentially offer “free” su-
pervision over the media data have led to a need for new
models and training schemes that can make effective use

1. But see [45] for a few exception with limited performance gain.
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of such information to achieve better results, such as
more discriminative latent representations of image con-
tents and more accurate image classifiers. In this paper,
we develop a new statistical framework that enables one
to learn a predictive latent space representation shared
by multi-view data by leveraging supervising side in-
formation; and to perform both view-level analysis (e.g.,
image annotation) and response-level predictions (e.g.,
classification) based on the learned representation.

Our method builds on a probabilistic latent subspace
model that relates features of perceivable entities (e.g.,
images) to abstract concepts (e.g., latent topics) in a
probabilistic way, which allows flexible and efficient sta-
tistical reasoning and inference. Our model is a generic
multi-view latent space Markov network (MN) that builds
on a weak conditional independence assumption that the
data from different views and the response variables are
conditionally independent given a set of latent variables.
This conditional independence is weaker than the typical
assumption (e.g., in the seminal work of co-training [6])
that multi-view data are conditionally independent giv-
en the very low dimensional response variables [18].
Although in principle a directed Bayesian network (BN)
(e.g., latent Dirichlet allocation (LDA) [5][4][48]) can be
extended to handle multi-view data, its conditional de-
pendency properties could make it hard to perform pos-
terior inference because all latent variables are coupled
given observed variables [41]. In contrast, undirected
latent variable models, such as ours and those presented
in [41][32][44], could be very efficient in inference be-
cause of the conditional independence.

One critical limitation of existing paradigms for learn-
ing probabilistic latent subspace models, as discussed
in [48], is that the commonly used likelihood-based
methods are often not discriminative enough to lever-
age the supervising side information accompanying the
multi-view data to extract a strongly predictive repre-
sentation; and is prone to undesirable effects such as
over-fitting to small data [41][44][45][28]. To overcome
such limitations, we use a completely different and
arguably more desirable learning paradigm based on
the maximum margin principle. More specifically, we
develop a new discriminative learning approach for the
proposed latent space Markov network, which jointly
maximizes the likelihood of multi-view data and min-
imizes a prediction loss on the labels from side infor-
mation (e.g., hinge-loss for classification or ϵ-insensitive
loss [33] for regression) to discover a strongly predictive
subspace representation and learn a prediction model
thereupon. The learning and inference problems are
efficiently solved with an extension of the contrastive di-
vergence method [40]. Extensive experiments show that
the proposed large-margin approach can achieve signif-
icant improvements in terms of prediction performance
and semantic saliency of the predictive latent subspace
representations. Moreover, the inference in the latent
space MN is much faster and easier compared with the
directed counterpart models, e.g., MedLDA [48].

The remaining paper is organized as follows. Section 2
reviews related work. Section 3 presents the multi-view
latent subspace MN. Section 4 presents the large-margin
training methods for both classification and regression.
Section 5 presents extensive empirical evaluation on
various datasets. Finally, Section 6 concludes with future
research directions discussed.

2 RELATED WORK
The literature of discovering latent representations from
large collections of data consists of both deterministic
(e.g., canonical correlation analysis (CCA) [24][26][1]
and Fisher discriminant analysis (FDA) [15]) and prob-
abilistic (e.g., directed LDA [5][39][50] and undirect-
ed Harmoniums [41][32][44]) methods. A deterministic
method cannot be easily extended to perform view-level
predictions, such as image annotation, and it would
also need a density estimator in order to apply the
information criterion [11] to detect view disagreement.
Thus, we choose the probabilistic framework and base
our approach on an undirected multi-view latent space
model, which enjoys nice properties as discussed.

To consider supervising side information, supervised
latent space models have been developed, including
supervised LDA [4][39][48] and supervised Harmonium-
s [45][28]. However, almost all these models are learned
using likelihood-based estimation, which often involves
dealing with an intractable normalization factor [39][50]
and may not yield improvements compared with the
standard prediction tools based on purely discriminative
ideas (e.g., SVM) [45]. The recent work of MedLDA [48]
has shown a promising direction of applying the large-
margin principle to learn predictive latent space repre-
sentations which could be more suitable for prediction
(e.g., classification). Other developments along this line
include the large-margin upstream scene understand-
ing models [49] and the conditional topic models with
features [50]. However, these methods are all directed
Bayesian networks, which may involve a hard inference
problem, as we have discussed. The present work repre-
sents an important contribution of deploying the large-
margin principle to learn undirected latent space models.

The large-margin principle has also been applied to
learn Markov networks with latent variables [51][16][46].
However, their goals are mainly to use latent variables to
capture residual and high-order dependency for improv-
ing prediction performance, essentially different from
ours of learning predictive latent representations of the
data. Our approach is also different from the existing
much research that has been done on exploring multi-
view information to alleviate semi-supervised learning
[6][14][2][18][26], unsupervised clustering [9] and struc-
tured output problems [21]. Other work that relates
to ours includes the hybrid generative/discriminative
learning [31], which uses likelihood-based estimation,
and the sufficient dimensionality reduction method-
s [20]. Finally, this paper is a systematic extension of the
preliminary conference version [10].
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3 MULTI-VIEW LATENT SUBSPACE MNS
In this section, we present a multi-view latent subspace
Markov network (MN) by incorporating complex struc-
tures on each view. We will start with an unsupervised
latent subspace MN and then present a supervised latent
subspace MN based on maximum likelihood estimation.

3.1 Unsupervised Multi-view Latent Subspace MNs
Fig. 1 shows the structure of a two-view latent sub-
space MN which consists of two types of input data
X , {Xi}N

i=1 and Z , {Zj}M
j=1, each corresponding

to a view; and a set of latent variables H , {Hk}K
k=1,

corresponding to the latent representations one desires
to infer. We encode the structure of the variables on each
view using a Markov network. Purely for simplicity of p-
resentation, we focus on the case of pairwise interactions
between variables within each view. We emphasize that
our results extend easily to more general cases of higher-
order dependencies. Let Ex denote the set of edges2

between the input variables X, and likewise for Ez . We
will use e to denote one individual edge and use Xe to
denote the variables associated with e.

A constructive way to define the joint distribution
of a latent subspace MN is as follows. First, we define
the distribution of the data on each view and the
latent variables separately. For each view, we use an
exponential family distribution

p(x) = r(x) exp
{ ∑

e∈Ex

θ⊤
e ϕ(xe) −A(θ)

}
,

p(z) = s(z) exp
{ ∑

e∈Ez

η⊤
e ψ(ze) −B(η)

}
, (1)

where ϕ and ψ are vectors of feature functions; θ
and η are weights; and A and B are log partition
functions. Like [41], we will treat log(r(x)) and log(s(z))
as additional features multiplied by a constant. For
the latent variables H, each component Hk has an
exponential family distribution and

p(h) =
∏

k

p(hk) =
∏

k

exp
{
λ⊤

k φ(hk) − Ck(λk)
}
,

where φ(hk) is the vector of features of hk. Ck is another
log-partition function.

Then, the joint model distribution is defined by
combining the above components in the log-domain
and introducing additional terms that couple the
random variables X, Z and H. Specifically, we have

p(x, z,h)∝ exp
{ ∑

e∈Ex

θ⊤
e ϕ(xe)+

∑

e∈Ez

η⊤
e ψ(ze)+

∑

k

λ⊤
k φ(hk)

+
∑

e∈Ex,k

ϕ(xe)
⊤Wk

eφ(hk)+
∑

e∈Ez,k

ψ(ze)
⊤Uk

eφ(hk)
}
, (2)

where W and U are feature weights. From the joint
distribution, we can derive the conditional distributions
on each view with shifted parameters (θ̂, η̂, λ̂)

p(x|h) = exp
{∑

e∈Ex
θ̂⊤

e ϕ(xe)−A(θ̂)
}

p(z|h) = exp
{∑

e∈Ez
η̂⊤

e ψ(ze) −B(η̂)
}

p(h|x, z) =
∏

kexp
{
λ̂⊤

k φ(hk)−Ck(λ̂k)
}
,

2. We treat a singleton vertex as a degenerate edge.

Fig. 1. An unsupervised two-view latent subspace MN.

where θ̂e = θe +
∑

k Wk
eφ(hk), η̂e = ηe +

∑
k Uk

eφ(hk),
and λ̂k = λk +(

∑
e∈Ex

ϕ(xe)
⊤Wk

e +
∑

e∈Ez
ψ(ze)

⊤Uk
e)⊤.

We can see that conditioned on the latent variables, both
p(x|h) and p(z|h) define a Markov network, which is
known as conditional random fields (CRFs) [27], where
h correspond to global conditions and x or z correspond
to structured prediction variables in CRFs.

Reversely, one can start with defining the local con-
ditional distributions as above and directly write the
compatible joint distribution, which is of the log-linear
form as in Eq. (2). In the sequel, we use Θ to denote
all the parameters (θ, η, λ,W,U). It is worth noting that
both the exponential family Harmonium (EFH) [41] and
its extension of dual-wing Harmonium (DWH) [44] are
special cases of multi-view latent subspace MNs, when
the generalized edge sets Ex and Ez contain only sin-
gleton vertices. Therefore, it is not surprising to see that
multi-view MNs inherit the widely advocated property
of EFH that the model distribution can be constructively
defined based on local conditionals on each view.

We briefly introduce DWH here as it sets up the
ground for our experiments in Section 5. As in [44],
DWH has a two-view structure, where X is a vector
of discrete word features (e.g., image tags) and Z is a
vector of real-valued features (e.g., color histograms). We
assume that each Xi is a Bernoulli variable that denotes
whether the ith term of a dictionary appears or not in
an image, and each Zj is a real number that denotes
the normalized color histogram of an image. Each real-
valued Hk follows a univariate Gaussian distribution.
Therefore, the conditional distributions can be defined as

p(xi = 1|h) = Logistic(αi+Wi·h),

p(zj |h) = N (zj |σ2
j (βj+Uj·h), σ2

j ),

p(hk|x, z) = N (hk|x⊤W·k+z⊤U·k, 1),

where Wi· and W·k denote the ith row and kth column
of W, respectively. Likewise for Uj· and U·k.

To learn the unsupervised multi-view latent subspace
MNs, a natural method is the maximum likelihood
estimation (MLE), which has been widely used to train
directed [39][47] and undirected latent variable mod-
els [41][32][44][45]. To deal with the intractable log-
likelihood log p(x, z), an approximation method such
as mean field or contrastive divergence [44] is usually
applied. More details will be provided along with the
algorithm development for large-margin learning.

To use the unsupervised multi-view MN for predic-
tion (e.g., classification), a naı̈ve method is a two-stage
procedure: 1) using the latent subspace MN to discover
latent representations; and 2) feeding the latent represen-
tations into a downstream prediction model (e.g., SVM).
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This two-step procedure can be rather sub-optimal for
prediction because supervising information is ignored in
discovering the latent representations. Moreover, as we
have stated, supervising side information can be almost
“free” to obtain; thus it is desirable to develop new
models and learning methods to consider such infor-
mation for improving performance. Below, we present
supervised latent subspace MNs, which incorporate su-
pervising side information into the procedure of discov-
ering latent subspace representations. As we shall see, if
learned appropriately, e.g., using large-margin training,
a supervised latent subspace MN can achieve significant
improvements in discovering predictive latent subspace
representations and prediction performance.

3.2 Supervised Multi-view Latent Subspace MNs
Similar to learning an unsupervised latent subspace MN,
MLE is the natural method to learn a supervised latent
subspace MN. In this section, we present the MLE-based
supervised latent subspace MN, which would motivate
our development of a large-margin approach.

In order to perform MLE, we need to define a
likelihood model for observed data, including input
features and response variables in the supervised case.
Specifically, let Y be the response variable and V be the
parameters of a response variable model. Then we need
to define the joint distribution p(x, z,h, y). We consider
univariate prediction, where Y can be a discrete variable
for classification or a continuous variable for regression.
Based on the constructive definition, we need to
specify the conditional distribution of Y given H in
order to define p(x, z,h, y). For the general multi-class
classification, where y ∈ {1, · · · , T}, we define the
conditional distribution using a softmax function3

p(y|h) =
exp{V⊤f(y,h)}∑
y′ exp{V⊤f(y′,h)} , (3)

where f(y,h) is the feature vector whose elements from
(y− 1)K+1 to yK are those of h and all others are 0. V
is a stacking parameter vector of T sub-vectors Vy , of
which each one corresponds to a class label y. Then, the
joint distribution p(x, z,h, y) has the same form as in Eq.
(2), but with an additional term of V⊤f(y,h) = V⊤

y h in
the exponential. For regression, where y ∈ R, we define
the conditional distribution as a normal distribution

p(y|h) = N (y|V⊤h, σ2), (4)

where V is now a K-dim vector. Then, the joint distribu-
tion p(x, z,h, y) has the similar form as in Eq. (2) with an
additional term of − 1

2σ2 (y2 − yV⊤h) in the exponential.
Note that the supervised hierarchical (or tri-wing)

Harmonium (TWH) [45] is a special case of the super-
vised latent subspace MN for classification. With the
above joint likelihood function, we can perform standard

3. For notation simplicity, we omit the offset parameters in both
classification and regression models. Offset parameters can be easily
included by adding one unit dimension to h.

MLE by using contrastive divergence or mean field ap-
proximation to learn the parameters4. The procedure is
generally similar as that in learning TWH [45]. The major
difference lies in posterior inference, which would be
clear after we have presented the large-margin learning.

4 LARGE-MARGIN SUPERVISED MULTI-VIEW
LATENT SUBSPACE MNS

As stated above, the MLE-based supervised latent sub-
space MN requires defining a normalized distribution as
in Eq. (3), of which the normalization factor could make
the inference hard, especially in directed models [39][50].
Moreover, as shown in [45] and our empirical studies,
the MLE-based model may not obtain improvements
over the naı̈ve two-step method discussed at the end
of Section 3.1. These motivate us to develop a more
discriminative procedure for learning supervised latent
subspace MNs. In this section, we present a large-margin
supervised latent subspace MN for discovering pre-
dictive latent subspace representations from multi-view
data by incorporating the widely available supervising
side information, which can be discrete for classification
or continuous for regression.

4.1 Classification
We first present the classification model. For brevity, we
consider the general multi-class classification. The binary
case can be similarly derived.

4.1.1 Problem Definition
Similar to the log-linear model in Eq. (3), we define
the latent discriminant function F (y,h;V) as linear when
latent variables H are given, that is, F (y,h;V) =
V⊤f(y,h), where f and V are defined the same as in
Eq. (3). Now, the problem is how to consider the uncer-
tainty of H in the deterministic large-margin principle.
Here, we take the expectation (i.e., first moment) of the
latent variables H and define the expected prediction rule

y∗ , arg max
y

Ep(h|x,z)[F (y,h;V)]

= arg max
y

V⊤Ep(h|x,z)[f(y,h)] (5)

where the expectation can be efficiently computed with
the factorized form of p(h|x, z) when x and z are fully
observed. If missing values exist in x or z, an inference
procedure is needed to compute the expectation of the
missed components, as detailed below in Eq. (7).

Then, learning is to find an optimal V∗ that minimizes
a loss function. Here, we minimize the hinge loss, as
used in the very successful large-margin SVMs.
Specifically, given training data D = {(xd, zd, yd)}D

d=1,
the hinge loss of the expected predictive rule (5) is

Rhinge(V) ,
∑

d

max
y

[∆ℓd(y) − V⊤Ep(h|xd,zd)[∆fd(y)]],

4. A discriminative method that maximizes the conditional likeli-
hood p(y|x, z) could be developed as in [28], but it could be inferior
to a hybrid generative/discriminative method.
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where ∆ℓd(y) is a loss function (e.g., 0/1-loss) that
measures how different a candidate prediction y is
compared to the true label yd, and Ep(h|xd,zd)[∆fd(y)] =
Ep(h|xd,zd)[f(yd,h)] − Ep(h|xd,zd)[f(y,h)]. It can be
proved that the hinge loss is an upper bound of the
empirical error Remp ,

∑
d ∆ℓd(y

∗
d). Applying the

principle of regularized risk minimization, we define the
joint problem of learning a prediction model V and
a likelihood model Θ for fitting the input data as solving

P1 : min
Θ,V

L(Θ) +
1

2
C1∥V∥2

2 + C2Rhinge(V), (6)

where L(Θ) , − ∑
d log p(xd, zd) is the negative data

likelihood and C1 and C2 are non-negative constants,
which can be selected via cross-validation. Note that
Rhinge is also a function of Θ.

Since problem (6) jointly maximizes the data likeli-
hood and minimizes a training loss, it can be expected
that by solving this problem we can find a predictive
latent subspace representation (i.e., Ep(h|x,z)[h]) and a
prediction model (represented by the parameter V),
which on one hand tend to predict as accurate as possible
on the training data, while on the other hand tend to
explain the data well. More insights will be provided in
the next section along with the algorithm development.

4.1.2 Optimization with Contrastive Divergence
Since the data likelihood L(Θ) is generally intractable
to compute, we use an efficient variational inference
method (i.e., contrastive divergence) [23][40][41][44] to
approximate the joint likelihood. Specifically, we derive
a variational approximation Lv(q0,q1) to represent the
negative log-likelihood L(Θ):

Lv(q0,q1) , R(q0(x, z,h),p(x, z,h))−R(q1(x, z,h), p(x, z,h)),

where R(q, p) is the relative entropy between distribu-
tions q and p; q0 is a variational distribution with x
and z clamped to their observed values, while q1 is a
distribution with all the variables free. For q (either q0 or
q1), we employ the structured mean field assumption [43]
that 5 q(x, z,h) = q(x)q(z)q(h).

Substituting the variational approximation Lv(q0, q1)
into problem (6), we get an approximate objective
function L(Θ,V, q0, q1). Then, we can develop an
alternating minimization method which iteratively
minimizes L(Θ,V, q0, q1) over (q0, q1) and (Θ,V). The
problem of solving q0 and q1 is posterior inference.
Specifically, for a variational distribution q (can be q0
or q1), we keep (Θ,V) fixed and update each marginal as

q(x) = p(x|Eq(h)[h]), q(z) = p(z|Eq(h)[h])

q(h) =
∏

k

p(hk|Eq(x)[x],Eq(z)[z]) (7)

For q0, (x, z) are clamped at their observed values, and
only q0(h) is updated, which can be very efficiently done
due to its factorized form. The distribution q1 is achieved

5. The parametric form assumptions of q, as employed in previous
work [44][45], are not needed.

by performing the above updates starting from q0, and
several iterations (e.g., 5 used in our experiments) can
yield a good q1. Note that Eq. (7) holds for exponential
family models where h enters linearly in ln p(x, z|h).
Please see [40] for more details. Again, we can observe
that both q(x) and q(z) are CRFs, with the expectation of
H as the condition. Therefore, for linear-chain models,
we can use a message passing scheme [27] to infer
their marginal distributions, as needed for parameter
estimation and view-level prediction (e.g., image anno-
tation), as we shall see. For generally structured models,
approximate inference techniques [37] can be applied.

After we have inferred q0 and q1, parameter estimation
can be solved with coordinate descent by alternating
the following two steps: 1) estimating V with Θ fixed:
this problem is learning a multi-class SVM [13], which
can be efficiently done with existing solvers; and 2)
estimating Θ with V fixed: this can be solved with
sub-gradient descent. By defining ∆E[·] , Eq1 [·] − Eq0 [·],
we can compute the sub-gradient as follows. For
θ, we have ∀e ∈ Ex, ∂θe = ∆E[ϕ(xe)]; for η, we
have ∀e ∈ Ez, ∂ηe = ∆E[ψ(ze)]; for λ, we have
∀k, ∂λk = ∆E[φ(hk)]; and for W and U, we have:

∂Wk
e =∆E[ϕ(xe)φ(hk)⊤] − C2

∑

d

(Vydk−Vȳdk)
∂Eq0 [hk]

∂Wk
e

∂Uk
e =∆E[ψ(ze)φ(hk)⊤] − C2

∑

d

(Vydk−Vȳdk)
∂Eq0 [hk]

∂Uk
e

,

where ȳd = arg maxy[∆ℓd(y) + V⊤Eq0
[f(y,h)] is the

loss-augmented prediction. The expectation Eq0 [ϕ(xe)] is
actually the count frequency of ϕ(xe) on the training data
D; likewise for Eq0 [ψ(ze)]. With the above sub-gradients,
we apply L-BFGS [29], which uses line search to choose
a step size, to iteratively solve for the optimum Θ until
convergence.

Note that in our integrated large-margin formulation,
the sub-gradients corresponding to W and U contain
an additional term (i.e., the third term) compared to the
standard DWH [44] with contrastive divergence approx-
imation. This additional term introduces a regularization
effect to the latent subspace model. If the loss-augmented
prediction ȳd differs from the true label yd, this term
will be non-zero and it will bias the model toward
discovering a better representation for prediction. As
we shall see, this bias term will make the large-margin
based multi-view latent subspace model tend to discover
a latent representation that is more predictive.

4.2 Regression

In this section, we present the large-margin latent sub-
space MN for regression.

4.2.1 Problem Definition
Similar to the classification model, we define the linear
expected prediction rule for regression as

y∗ , V⊤Ep(h|x,z)[h], (8)
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where V is a K-dim vector. To learn the prediction
model V, we need to devise a loss function that
integrates the large-margin principle for prediction
with latent subspace discovery. Here, for prediction, we
choose to minimize the ϵ-insensitive loss, which is used
in standard support vector regression (SVR) [33]

Rϵ(V) ,
∑

d

max(0, |yd − V⊤E[hd]| − ϵ),

where ϵ ∈ R+ is the precision parameter, which is usually
small, and we have defined E[hd] = Ep(h|xd,zd)[h] for
notation simplicity. Similarly, following the regularized
risk minimization principle, we learn the entire model
for regression and fitting the observed input data by
solving the joint optimization problem

P2 : min
Θ,V

L(Θ) +
1

2
C1∥V∥2

2 + C2Rϵ(V), (9)

where L(Θ) is the negative log-likelihood of input data
as we have defined in classification.

Similar to the classification model, by jointly minimiz-
ing the negative log-likelihood and the regression loss,
we can expect to learn a latent subspace representation
as well as a prediction model which on the one hand
tend to predict the data accurately, while on the other
hand attempt to interpret the data well.

4.2.2 Optimization with Contrastive Divergence
Although in principle we can use the similar procedure
as in the classification model to solve problem P2 by
employing a sub-gradient descent method to learn the
parameters Θ, here we use a Lagrangian method to solve
an equivalent constrained formulation of P2. One reason
is that the loss Rϵ is a bit more complicated than Rhinge
because of the non-differentiable absolution operator
within the max function. Specifically, problem P2 can
be equivalently written as

P2′ : min
Θ,V,ξ,ξ⋆

L(Θ) +
1

2
C1∥V∥2

2 + C2

∑

d

(ξd + ξ∗
d)

s.t.∀d :





yd − V⊤E[hd] 6 ϵ+ ξd

−yd + V⊤E[hd] 6 ϵ+ ξ∗
d

ξd, ξ
∗
d > 0

(10)

where ξd and ξ∗
d are slack variables.

The constrained problem P2′ is generally intractable
because the likelihood L(Θ) is intractable to evaluate. As
in the classification model, we approximate L(Θ) with
the contrastive divergence approximation Lv(q0, q1).
Then, we introduce Lagrange multipliers µd, µ

∗
d, vd, v

∗
d

for the four constraints associated with data d, and
define the Lagrangian function L with the approximate
likelihood Lv(q0, q1)

L = Lv(q0,q1)+
1

2
C1∥V∥2

2+C2

∑

d

(ξd+ξ∗
d)−

∑

d

(vdξd+v∗
dξ

∗
d)

−
∑

d

{
µd(ϵ+ξd−yd+V⊤E[hd])+µ∗

d(ϵ+ξ∗
d +yd−V⊤E[hd])

}
.

Now we optimize the Lagrangian function L by alter-
natively performing the following steps:

1) Inferring q0 and q1: this step is the same as in the
classification model.

2) Estimating Θ with µd and µ∗
d fixed: this can

be solved with gradient descent (e.g., using L-
BFGS [29] as in the classification model), where
the gradients for (θ, η, λ) are as before and for
(W,U) we have:

∂Wk
e = ∆E[ϕ(xe)φ(hk)⊤] −

∑

d

(µd − µ∗
d)Vk

∂Eq0 [hk]

∂Wk
e

∂Uk
e = ∆E[ψ(ze)φ(hk)⊤] −

∑

d

(µd − µ∗
d)Vk

∂Eq0 [hk]

∂Uk
e

(11)

3) Estimating the Lagrange multipliers {µd, µ
∗
d}: by

setting ∂L/∂ξd, ∂L/∂ξ
∗
d , ∂L/∂V = 0 and exploring

the KKT conditions, we can get

V =
1

C1

∑

d

(µd − µ∗
d)E[hd]. (12)

Plugging Eq. (12) into the Lagrangian function L,
we get the dual problem

max
µ,µ∗ − 1

2C1
∥
∑

d

(µd−µ∗
d)E[hd]∥2

2 −
∑

d

[ϵ(µd+µ∗
d)−yd(µd−µ∗

d)]

s.t. ∀d : µd, µ
∗
d ∈ [0, C2],

which can be solved using an existing algorithm
like SVM-light [25] to obtain µd and µ∗

d.
Again, we can see that in this integrated large-margin

formulation for regression, the gradients of W and U
contain an additional term encoded with µd and µ∗

d.
Similar as in the classification model, this additional
term introduces a regularization effect to the latent sub-
space model. If the prediction V⊤E[hd] differs from the
true value yd with the absolute gap larger than ϵ, the
lagrangian multipliers µd or µ∗

d (at most one is non-
zero because of the KKT conditions) will be non-zero
and will bias the model toward discovering a better
representation for prediction.

4.3 Special Case: Maximum Margin Harmonium
We have developed the large-margin learning frame-
work on a general multi-view latent subspace MN for
classification and regression. In order to fully examine
the basic learning principle and compare with existing
Harmonium models [41][44][45], we introduce a spe-
cialized but very rich instantiation of our supervised
latent subspace MN where the data on each view are not
structured. We denote the specialized model by MMH
(max-margin Harmonium). We emphasize that this sim-
plification does not restrict our ability to demonstrate the
generability of the framework because both the problem
definition and optimization algorithm are general to any
structured input data, as we have presented. Specifically,
MMH uses the DWH model detailed at the end of
Section 3.1 as the probabilistic likelihood model to fit
the input data (x, z), where x is a vector of discrete
word features (e.g., image tags) and z is a vector of real-
valued features (e.g., color histograms). We can follow
the same procedure as above to do parameter estimation.
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For inferring q0 and q1, the distributions of x, z and
h are all fully factorized. Therefore, the sub-gradients
in classification or gradients in regression can be easily
computed. Details are deferred to Appendix A.1.

4.4 Time Complexity on Testing
Before ending this section, we discuss the time complex-
ity of applying the supervised latent subspace MN on
various applications, including classification, regression,
image retrieval and annotation.

The commonality among using a latent subspace MN
for classification, regression and retrieval is that all these
applications rely on inferring the latent representations
(i.e., Ep(h|x,z)[h]) only without missing information on
the input data. For the large-margin latent subspace MN,
since it defines a partial likelihood function, that is, the
likelihood on input data (x, z) only, we can infer these
latent representations in a single-round manner. More
precisely, the latent representation is Ep(h|x,z)[h] = Υ,
where Υk =

∑
e∈Ex

ϕ(xe)
⊤Wk

e +
∑

e∈Ez
ψ(ze)

⊤Uk
e , ∀1 ≤

k ≤ K, which can be very efficiently computed in a
linear complexity in terms of the dimensionality of the
input features. In contrast, for the MLE-based supervised
latent subspace MN, it defines a full likelihood function
p(x, z, y) over the input data (x, z) and response value y.
In testing where Y is not observed, the inference involves
an interactive procedure, which iteratively infers the
(approximate) posterior distribution of Y and the latent
representation. Therefore, the testing time of using the
MLE-based supervised latent subspace MN is typically
a constant times more expensive than that of the large-
margin based method. But in general, these undirected
models are much more efficient than their directed coun-
terpart models, as we will show in Section 5.5.

For image annotation, let us use x to represent tags,
which are observed in training. In testing, we infer
the posterior distribution p(x|z), which can be approx-
imately computed by running the update Eq. (7) with
z clamped at its observed values. Then, tags with high
probabilities are selected as the annotation results. As
we can see, the inference procedure is similar as the
iterative one of using a MLE-based latent subspace MN
for classification. Therefore, the time complexities of the
unsupervised and supervised (both large-margin and
MLE-based) multi-view MNs are almost the same.

5 EXPERIMENTS

Now, we present qualitative as well as quantitative
evaluation on three real datasets to demonstrate the ad-
vantages (e.g., effectiveness and time efficiency) of large-
margin supervised multi-view latent subspace MNs. We
first extensively evaluate the specialized but rich MMH
model and compare with extant latent subspace mod-
els for classification, regression, image annotation and
retrieval in Section 5.3. Then, we present a structured
latent subspace MN for modeling paragraph ordering
information on hotel review data in Section 5.4.

5.1 Datasets and Features

The datasets6 are TRECVID2003 [44], 13class-animal
Flickr image data and hotel review data [50]. These
datasets are quite rich and diverse in terms of feature
types and dimensionality, as detailed below.

TRECVID2003 contains 1078 manually labeled video
shots that belong to 5 categories. Each shot is represented
as a 1894-dim vector of text features and a 165-dim
vector of HSV color histogram, which is extracted from
the associated keyframe. We evenly split this dataset into
training and testing sets.

The Flickr dataset is a subset selected from NUS-WIDE
[12], which is constructed from Flickr web images. This
dataset contains 3411 images of 13 animals – squirrel,
cow, cat, zebra, tiger, lion, elephant, whales, rabbit, snake,
antlers, hawk and wolf. See Fig. 8 for example images
from each category. For each image, six types of low-
level features [12] are extracted, including 634-dim re-
al valued features (i.e., 64-dim color histogram, 144-
dim color correlogram, 73-dim edge direction histogram,
128-dim wavelet texture and 225-dim block-wise color
moments) and 500-dim bag-of-word SIFT [30] features.
We randomly select 2054 images for training and use
the rest for testing. The 1000-dim online tags are also
downloaded for evaluating image annotation.

The hotel review dataset consists of 5000 hotel re-
views randomly collected from TripAdvisor7. Each re-
view document is associated with two-view features (i.e.,
12000-dim bag-of-word features and 14-dim contextual
features [50]) as well as a global rating score and five
aspect rating scores. The global ratings rank from 1 to 5.
In our experiment, we predict the global rating scores for
reviews and uniformly partition the dataset into training
and testing sets. Note that the bag-of-words features
(e.g., text or SIFT) are treated as binary and modeled
using the Bernoulli view.

5.2 Predictive Latent Subspace Representations

To demonstrate the power of our method in discovering
predictive subspace representations, in this section, we
examine various characteristics of the latent subspace
representations for modeling both image and text.

5.2.1 Image Modeling
We first take a holistic view of the entire latent represen-
tations. Fig. 2 shows the 2D embedding of the discovered
10-dim latent representations by MMH, DWH and TWH
on the video keyframes in the TRECVID dataset. Here,
we use the t-SNE stochastic neighborhood embedding al-
gorithm [36] to embed the latent representations in a 2D
space. The results clearly show that the latent subspace
representations discovered by MMH exhibit a strong
grouping pattern for the images belonging to the same
category, while images from different categories tend

6. http://www.cs.cmu.edu/∼junzhu/data.htm
7. http://www.tripadvisor.com
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Fig. 2. t-SNE 2D embedding of the discovered latent subspace representation by (Left) MMH, (Middle) DWH and (Right) TWH on the TRECVID
video dataset (Better viewed in color).
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Fig. 3. Example topics discovered by a 60-topic MMH on the Flickr animal dataset. For each topic, we show 5 topic-ranked images as well as the
average probabilities of that topic on representing images from the 13 categories.

to be separated from each other on the 2D embedding
space. In contrast, the latent subspace representations
discovered by the likelihood-based DWH and TWH do
not show a clear grouping pattern, except for the first
category; and images from different categories tend to
mix together. These observations suggest that the large-
margin based MMH can discover more discriminative
latent subspace representations, which will result in
better prediction performance, as we shall see. We have
similar observations on the Flickr dataset.

Now, we take a closer examination of each dimension
in the discovered latent subspace. We take the Flickr
data as an example. Fig. 3 shows five example topics
(each topic corresponds to one dimension in the latent
subspace) discovered by the large-margin MMH on the
Flickr image data. Due to space limitation, for each topic
Tk, we show the 5 top-ranked images that yield a high
expected value of Hk, together with the associated tags.
Please see Fig. 11 in Appendix A.3 for the 5 bottom-

ranked images for each topic. Also, to qualitatively vi-
sualize the discriminative power of each topic among the
13 categories, we show the average probability8 of each
category distributed on the particular topic, as shown in
the right part of Fig. 3. From the results, we can see
that many of the discovered topics are predictive for
one or several categories. For example, topics T3 and T4
are discriminative in predicting the categories hawk and
whales, respectively. Similarly, topics T1 and T5 are good
at predicting squirrel and zebra, respectively. We also have

8. To compute the distribution, we first turn the expected value of H
to be non-negative by subtracting each element by the smallest value
and then normalize it into a distribution over the K topics. The per-
class average is computed by averaging the topic distributions of the
images within the same class. Then we show the topic distribution on
13 categories specified by different topic. Note that our transforma-
tion (i.e., shift-normalization) doesn’t affect our interpretation of the
discriminative power, which is visually reflected as the (normalized)
difference of the average values between categories. Using the raw
values of E[H] will produce the similar visualization patterns.
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TABLE 1
Average distributions over the topics for documents with different rating scores by a 5-topic MMH and 5-topic DWH.

Max Margin Harmonium (Avg-KL: 3.568)
Average Ep(h|x,z)[h] in 5-level Rating Score examples T1 T2 T3 T4 T5
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Dual-Wing Harmonium (Avg-KL: 0.038)
Average Ep(h|x,z)[h] in 5-level Rating Score examples T1 T2 T3 T4 T5
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some topics which are good at discriminating a subset of
categories against another subset. For example, topic T2
is good at discriminating {squirrel, wolf, rabbit} against
{tiger, whales, zebra}; but it is not very discriminative
between squirrel and wolf.

To quantitatively evaluate the predictiveness of the
discovered latent subspace representations, we compute
the pair-wise average KL-divergence between the per-
class average distribution over latent topics9. As shown
on the top of each plot in Fig. 2, the large-margin
based MMH obtains a larger average KL-divergence
score than likelihood-based methods. This again sug-
gests that the latent subspace representations by MMH
are more discriminative or predictive. We obtain similar
observations on the Flickr dataset (see Fig. 3 for some
example topics), where the average KL-divergence scores
of 60-topic MMH, DWH and TWH are 1.62, 1.28 and
0.232, respectively. This is consistent with our intuitive
observations that the latent subspace representations (see
Fig. 3) by MMH are more discriminative.

5.2.2 Text Modeling
Now, we examine the properties of latent subspace MN
on text modeling. Again, we present both holistic and
topic-wise close examinations. Table 1 shows the topics
discovered by 5-topic MMH and DWH on the hotel

9. We first turn the expected value of H into a distribution over the
K topics. The per-class average is computed by averaging the topic
distributions of the images within the same class. For a pair of distri-
butions p and q, the average KL-divergence is 1/2(R(p, q) + R(q, p)).

review data. As in [50], we denote the 5 rating scores
from small to large by R1, R2, · · ·R5. We also show the
per-rating average distributions over topics in the left
part, which are computed in a similar way as the per-
class average distributions in the above section. The right
side of Table 1 shows the top 15 words for each topic Tk.

Similar to the observations in image modeling, we
can see that the latent subspace representations dis-
covered by MMH are much more discriminative than
those discovered by DWH, as reflected from the much
higher pair-wise average KL-divergence score and the
quite different average distributions over topics, and the
individual dimensions (i.e., topics) of the latent subspace
learned by MMH are very expressive and discriminative,
too. For example, topic T2 for MMH has larger probabil-
ities on representing documents with high rating scores
(e.g., R5 and R4), but has smaller probabilities (drops to
near zero) on documents with lower rating scores (e.g.,
R1 and R2). Moreover, the probability of topic T2 shows
a smooth increasing trend on representing documents
with rating scores from low to high. If we look at the
top words of T2 (e.g., ’great’, ’fantastic’, ’wonderful’,
’perfect’, etc.) as shown in the right part of Table 1, we
can see that T2 represents a positive aspect of a hotel.
Therefore, it is more likely to appear in representing a
positive review. In contrast, the negative topics T3, T4
and T5 (e.g., with negative words ’worst’, ’dirty’, ’poor’,
etc.) show a smooth decreasing trend on probabilities
in representing documents with rating scores from R1
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to R5. Topic T1 is kind of neutral which has the highest
probability on representing the documents with a neutral
rating score (e.g., R3 or R4) and overall T1 has a much
larger probability than any other topics on representing
a document. This is reasonable on the hotel review data
because most of the words in a review are about the
basic hotel information (e.g., ’room’, ’hotel’, ’food’ and
’area’). For DWH, the topics are not very discriminative
as demonstrated from the comparable probabilities on
representing documents with different rating scores. Ta-
ble 2 in Appendix A.3 also shows the results on TWH,
which is comparable to DWH.

5.3 Prediction Performance
In this section, we provide quantitative results on clas-
sification, regression, image annotation and retrieval.

5.3.1 Classification
We first compare MMH with SVM, DWH, TWH, Gaus-
sian Mixture (GM-Mix), Gaussian Mixture LDA (GM-
LDA), and Correspondence LDA (CorrLDA) on the
TRECVID dataset. See [3] for the details of the last three
models. We use SVMmulticlass 10 to solve the sub-step
of learning V in MMH and build the SVM baseline
that uses all the available features without distinguishing
them in different views. For the unsupervised models
(i.e., DWH, GM-Mix, GM-LDA and CorrLDA), a down-
stream SVM classifier is built based on the discovered
latent representations. Fig. 4 (a) shows the classification
accuracy of different models, where CorrLDA is omitted
because of its too low performance. We can see that
the max-margin based multi-view MMH performs con-
sistently better than any other competitors. In contrast,
the MLE-based TWH does not show any conclusive im-
provements compared to the unsupervised DWH. If we
train a downstream SVM classifier using the representa-
tions by TWH, the classification performance (denoted
by TWH+SVM11) will be improved, but still inferior
to that of MMH. These results show that supervising
side information can help in discovering predictive la-
tent subspace representations that are more suitable for
prediction if the model is appropriately learned, e.g., us-
ing the large-margin method. The superior performance
of MMH compared to the flat SVM demonstrates the
usefulness of modeling multi-view inputs for prediction.
The reasons for the inferior performance of other models
(e.g., CorrLDA and GM-Mix) are analyzed in [44][45].

Fig. 4 (b) shows the accuracy on the Flickr dataset.
For brevity, we compare MMH with the best performed
DWH, TWH and SVM. We use the 500-dim SIFT and
634-dim real features as two views of inputs for MMH,
DWH and TWH. Also, we compare with the single-view

10. http://svmlight.joachims.org/svm multiclass.html
11. This naı̈ve combination uses supervision twice and is not an

elegant model, compared to MMH. The similar naı̈ve combination
MMH+SVM wouldn’t outperform MMH in theory because both
methods build SVM classifiers using the same latent representations.
See [48] for similar studies.
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Fig. 4. Classification accuracy on the (a) TRECVID and (b) Flickr
image datasets.
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Fig. 5. (a) Prediction R2; (b) Feature weights in MMH with 10 topics.

MedLDA [48] and discriminative restricted Boltzmann
machine (DiscRBM) [28], which use SIFT features only.
To be fair, we also evaluate a version of MMH that uses
SIFT features, and denote it by MMH (SIFT). Again, we
can see that the large-margin based multi-view MMH
performs much better than any other methods, including
SVM which ignores the presence of multi-view features.
For the single-view MMH (SIFT), it performs compara-
bly with DiscRBM and the large-margin MedLDA, which
is a directed BN. As we have stated, MMH represents
an important extension of MedLDA to the undirected
latent subspace models and for multi-view data analysis.
For DiscRBM, since it performs discriminative training
(i.e., maximizing the conditional likelihood of Y giv-
en input features) and doesn’t estimate the model for
generating input features, it can’t perform view-level
analysis (e.g., predicting image tags). In [28], a hybrid
generative/discriminative likelihood objective was also
discussed to learn RBM, which outperforms DiscRBM.
MMH is different from the hybrid method in three as-
pects: 1) our generative likelihood L(Θ) doesn’t include
Y ; 2) our discriminative part is a hinge-loss instead of
a conditional log-likelihood; and 3) we use an explicit
regularization instead of the implicit regularization (i.e.,
early stopping) used in [28].

5.3.2 Regression
Following [50], we treat the problem of predicting rating
scores on hotel review dataset as a regression problem.
We compare the MMH regression model with DWH,
TWH, sCTRF (i.e., supervised conditional topic random
fields) [50] and MedLDA [48]. For DWH, we build a
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Fig. 6. The average precision curve and the two precision-recall curves for image retrieval on TRECVID data.

linear SVR as the downstream regression model. Many
other baselines (e.g., supervised LDA) are not included
because they are inferior to sCTRFs as reported in [50].
We consider two views for each document, where one
view X denotes the bag-of-word features and the other
view Z represents the 14 types of contextual features [50].

Fig. 5 (a) shows the predictive R2 scores (please see [4]
for the definition). We can observe that by exploring su-
pervising side information (i.e., rating score) in learning
the latent subspace model, MMH consistently outper-
forms the decoupled two-step procedure that is adopted
in unsupervised DWH; but the MLE-based TWH does
not show improvements over the unsupervised DWH.
This again verifies that the large-margin learning plays a
significant role in discovering predictive latent subspace
representations that are suitable for prediction tasks (e.g.,
regression). In addition, the reason why MMH achieves
superior performance than the single-view MedLDA is
that MMH can use multi-view features simultaneous-
ly, which again demonstrates the benefits of modeling
multi-view instead of single-view input for prediction.
In fact, the second-view features play an important role
in finding a predictive latent subspace. We show the
weights of four features on the ten topics discovered by
a 10-topic MMH in Fig. 5 (b), where the four features
as studied in [50] are: ’Pos-Adj’ – positive adjective; ’Re-
Pos-Adj’ – positive adjective that has a denying word
before it, ’Neg-Adj’ – negative adjective; and ’Re-Neg-
Adj’ – negative adjective that has a denying word before
it, respectively. We can see that both the positive and
negative adjective features tend to discover topics that
are more discriminative for rating prediction (e.g., T4
and T9). The best performance of MMH is comparable to
that of sCTRF, which is a directed model. As we shall see
in Section 5.5, MMH is much more efficient in training
and testing.

5.3.3 Image Retrieval
We apply MMH for image retrieval on TRECVID and
Flickr datasets. Each test image is a query and training
images are ranked based on their cosine similarity12

with the given query, which is computed based on
the inferred latent subspace representations using the

12. The cosine similarity between vectors x1 and x2 is x⊤
1 x2

∥x1∥2∥x2∥2
.

learned models. An image is considered relevant to the
query if they belong to the same category. We evaluate
the performance by drawing precision-recall curves and
computing the average precision (AP) score [44][45].

Fig. 6 compares MMH with four other models when
the topic number K changes. Here, we show the
precision-recall curves when K is set at 15 and 20.
Interestingly, although MMH does not directly optimize
a ranking-based loss measure, the latent representation-
s discovered by MMH can result in higher retrieval
performance than all other methods in most cases. On
the Flickr dataset, we have similar observations. For
instance, the AP scores of the 60-topic MMH, DWH, and
TWH are 0.163, 0.153 and 0.158, respectively.

5.3.4 Image Annotation
We also report the annotation results on the Flickr
dataset, with a dictionary of 1000 unique tags. The

MMH DWH TWH sLDA
F1@3 0.245 0.202 0.218 0.146
F1@4 0.258 0.208 0.228 0.159
F1@5 0.262 0.210 0.236 0.169
F1@6 0.259 0.208 0.240 0.171
F1@7 0.256 0.206 0.239 0.175

Fig. 7. Top-N F1-measure.

average number of tags
per image is about 4.5.
We compare MMH
with DWH and TWH
with two views –
X for tag and Z for
all the 634-dim real-
valued features. We
also compare with the
sLDA annotation model [39], which uses SIFT features.
We use the top-N F1-measure [39], denoted by F1@N .
With 60 latent topics, the top-N F-measure scores are
shown in Fig. 7. Again, we can see that although not
directly minimizing an annotation loss measure, the
large-margin MMH outperforms other competitors,
mainly because of its good latent representations. Fig. 8
shows example images from all the 13 categories, where
for each category the left image is generally of a good
annotation quality and the right one is relatively worse.

5.4 Structured Latent Subspace MN on Modeling
Paragraph Ordering Information
We have extensively evaluated the advantages of large-
margin learning based on a specialized dual-wing model
(i.e., MMH). In this section, we present a structured
latent subspace MN for modeling paragraph ordering
information on hotel review data. As we mentioned,
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Fig. 8. Example images from the 13 categories on the Flickr animal dataset with predicted annotations. Tags in blue and bold are correct
annotations while red and italic ones are wrong predictions. The other tags are neutral. We have repeated the categories “squirrel” and “cat” at the
right corner to fill the empty space.

on TripAdvisor there are five pre-defined aspects (e.g.,
Location), which could guide the users to compose their
review contents. Since these aspects are displayed in
a particular order to users, we can expect that the
composed contents about each aspect would present
a similar ordering regularity. Although other possible
treatments (e.g., sentence-level ordering) exist, we con-
sider such ordering information between paragraphs
and design the structured latent subspace MN as follows.

We represent a document as a P × N observation
matrix x, where P is the number of paragraphs in this
document and N is the vocabulary size. Each row xp is a
vector, of which each element xpi denotes whether word
i appears in paragraph p. Each column x.i represents
the appearance pattern of word i in all paragraphs.
To consider the paragraph ordering information, we
define a first-order Markov chain on each x.i while as-
suming that different x.i’s are conditional independent.
More formally, we define the conditional distribution
p(x|h) =

∏N
i=1 p(x.i|h), where each p(x.i|h) is a linear

chain CRF [27]. For this structured model, which is in
fact an N -view latent subspace Markov network, we can
perform efficient inference with message passing, whose
complexity is also linear in terms of N . The details are
deferred to Appendix A.2.

To evaluate the structured model, denoted by struct-
MMH, we build another dataset from the hotel reviews
on TripAdvisor, which contains 600 reviews for each
of the 5 rating scores. We randomly choose a half as
training and test on the rest. The reason why we didn’t
use the dataset [50] is that it contains many reviews that
have only one paragraph. Here, while regression can be
performed too, we report the classification accuracy in

Fig. 9 (a). We observe that the large-margin structMMH
outperforms the unstructured MMH and the two-stage
method (denoted by structDWH) that uses a structured
MN as defined above to infer the latent representations
and learn a downstream SVM for classification. This
observation demonstrates that the paragraph ordering
information is helpful to discover more predictive latent
subspace representations for the hotel review data.

5.5 Running Time and Sensitivity Analysis

Fig. 9 (b) compares the time efficiency of MMH with
TWH and directed models, including MedLDA and sC-
TRF [50], on the hotel review dataset [50] for regression.
For testing, we can see that: 1) the undirected MMH
and TWH are much more efficient than the directed
MedLDA which requires a relatively expensive iterative
procedure to infer the distributions of latent variables; 2)
TWH is about several times slower than MMH because
of the reasons as we have discussed in Section 4.4; and
3) sCTRF is about 10 times slower than MedLDA or
about 10,000 times slower than MMH. The main reason
for such slowness is that sCTRF models every sentence
in a document using a Markov chain. Therefore, it
spends most of the time on performing message-passing.
See [50] for more details. For training, we can see that
MMH takes comparable time as TWH and MedLDA,
and is much more efficient than sCTRF, whose inference
is much slower as shown in testing times.

Finally, as shown in Fig. 10, MMH is not very sensitive
to the regularization constant C2 on either TRECVID or
Flickr dataset when the topic number K is set appropri-
ately. In all the above experiments, we fixed C1 at 0.5
and chose C2 using cross-validation during training.
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Fig. 9. (a) classification accuracy of structured MMH and DWH models; and (b) training and testing time on hotel review data [50] for regression.
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Fig. 10. Sensitivity to C2 on (a) TRECVID and (b) Flickr datasets.

6 CONCLUSIONS AND DISCUSSIONS

We have presented a large-margin learning framework
for discovering predictive latent subspace representa-
tions shared by multi-view data. Besides the proposed
multi-view latent subspace Markov networks, the large-
margin learning method is generally applicable for the
broad family of undirected latent subspace models. The
inference and learning can be efficiently done with con-
trastive divergence methods. Finally, we present exten-
sive evaluation results on various types of real datasets
including both image and text data to demonstrate the
advantages of large-margin learning for both predictive
latent subspace discovery and prediction.

Compared to directed topic models, one drawback of
undirected latent subspace models is that their interpre-
tation is generally hard because of the unidentifiability
issue [41]. Although our transformation retains the dis-
criminative power, more elegant methods (e.g., impos-
ing non-negative constraints on parameter weights) are
needed to improve the interpretability. Another potential
limitation of such latent subspace models is that they
do not have an explicit control on the sparsity of the
discovered latent representations. Sparsity is desirable
for large-scale applications where the dimensionality of
the latent representations can be tens of thousands. We
plan to do systematical studies along these lines. We
are also interested in large-scale image annotation and
classification, as motivated by the very exciting work
[42], where dealing with noisy labeling information is
important and challenging in order to learn a robust
large-margin model. Finally, we plan to perform more

investigation of the large-margin learning method on
structured multi-view data analysis, e.g., on text min-
ing [38] and computer vision [22] applications.
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