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ABSTRACT

In this paper, we address the problem of discovering topi-
cally meaningful, yet compact (densely connected) commu-
nities in a social network. Assuming the social network to be
an integer-weighted graph (where the weights can be intu-
itively defined as the number of common friends, followers,
documents exchanged, etc.), we transform the social network
to a more efficient representation. In this new representa-
tion, each user is a bag of her one-hop neighbors. We pro-
pose a mixed-membership model to identify compact com-
munities using this transformation. Next, we augment the
representation and the model to incorporate user-content in-
formation imposing topical consistency in the communities.
In our model a user can belong to multiple communities and
a community can participate in multiple topics. This allows
us to discover community memberships as well as commu-
nity and user interests. Our method outperforms other well-
known baselines on two real-world social networks. Finally,
we also provide a fast, parallel approximation of the same.

Categories and Subject Descriptors

H.2.8 [Information Systems]: Data Mining; G.3 [Probability

and Statistics]: [Probabilistic Algorithms]

Keywords
Community Detection, Social Networks, Graphical Models

1. INTRODUCTION

Social Networks allow users to stay in touch with friends,
relatives and other acquaintances wherever they are in the
world. At the same time, they unite users with common
interests and/or beliefs through various groups and pages.
These groups allow users to share ideas, pictures, posts, ac-
tivities, events, etc. with other users. This makes them
an invaluable source of heterogeneous data that can be ex-
ploited to discover relationships among groups of people. An
important problem associated with discovering relationships
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among users in a social network is the automated discovery
of communities. A community is a collection of users as a
group such that there is a higher degree of 'similarity’ among
users in the group as against people across groups.

The notion of ‘similarity’ between users is subjective and
has been addressed differently in previous works. Prelimi-
nary paradigms treated communities as densely connected
components in the network. They postulated that real net-
works are not random, but display inhomogeneities leading
to a high level of order and organization with high concen-
trations of edges within special groups of vertices (communi-
ties), and low concentrations between these groups [4]. This
is often referred to as the notion of “compactness” in com-
munity structure. The notion of compactness is important
as it reflects a higher level of interaction and social vicinity
among members of a community and allows the interpreta-
tion of the global organization of the social network as the
coexistence of their local structural sub-units (communities)
associated with more highly interconnected parts. Such an
interpretation is also desirable for explaining local cliques
that people find themselves in their daily lives, for example
in people’s personal relationships, in corporate organizations
and in scientific research activities.

Using this interpretation of communities, methods like
cut-based graph partitioning|6], local agglomerative/divisive
clustering|4], centrality based|7] and Clique percolation meth-
ods (CPM)|16] have been suggested to optimize different no-
tions of compactness. While these works gained rapid popu-
larity, a drawback in most of these models (with exceptions)
is that they involve a hard partitioning of nodes, and do
not allow users to have memberships in multiple communi-
ties. However, today, it is understood that users in a social
network rarely belong to only one community: for instance
the same individual usually has family, friend, and colleague
affiliations in different social circles.

Further, in the context of social networks, communities
have become synonymous to interest groups providing peo-
ple interested in similar topics common forums. In fact,
these ideas have now found explicit existence and dedicated
nomenclature in Google+ “circles” or Facebook “smart lists”.
Finally, early works that only considered the underlying
graph structure were also handicapped as they did not ac-
count for node properties such as user interests which can
be easily gauged from the text associated with the network.

On the other end of the spectrum, there have been purely
user-content based works to cluster users into communities
like CUT|24]. In fact, neither information alone is satisfac-
tory in determining the community memberships: the link



information is often sparse and noisy and results in a poor
partition of networks. On the other hand, the irrelevant
content attributes significantly mislead the process of com-
munity detection. It is therefore important to combine link
and content information for community detection in net-
works. At the same time it is also important to retain the
notion of compactness as we wish to exploit the inhomoge-
neous structure of social networks and discover individuals
contained in communities that are not just topically similar
but are closely knit and share communications.

Several mixed-membership models for community discov-
ery have been proposed to incorporate structural and/or
user-interest information in social networks. A significant
reason for the success of these models is that they enable
us to incorporate domain knowledge by modeling a complex
set of factors responsible for generating the data as latent
variables. Inferring the posterior often allows the discovery
of unseen structures and intricate relations between entities.
For example, social network users are often modeled as hav-
ing distributed membership over a set of communities or a
set of topics (user-interests), and a community itself as a
distribution over topics (community-interests).

Broadly, all of these models fall under one of two model-
ing paradigms. The first paradigm (MMSB|1], Link-PLSA-
LDA(13], Topic-Link LDA[11] and RTM|3]) draws a vector
of community memberships for the two candidate entities
(documents or users) and typically makes a Bernoulli draw
for a binary link between them using a notion of similarity
between the community membership vectors. These meth-
ods directly model the adjacency matrix leading to a Q(U?)
latent variables, where U is the number of users (nodes)
in the network. This can be too large for real-world so-
cial networks. The second paradigm (CART|17] and various
TURCM models[19]) implicitly assumes a link between the
sender and the recipients for every post in the social network
and extends the author-topic model[18] to model community
memberships for the sender-recipient pair for every message.
This significantly increases the number of parameters to be
estimated to Q(U?C) where C is the number of communi-
ties. This too, can be large for real-world social networks.

Note that CUT[24] purely models content and MMSBI1|
purely models linkage. CART[17] and TURCM models|19)
claim to combine both but do not model compactness. E]

Further, while the first paradigm assumes that users that

are interconnected share similar interests, the second paradigm

posits that users that actively talk about similar topics are
connected with each other. Neither is always true in the real
world. In real world social networks, there are users who are
members of communities but do not actively contribute in
them. Also, there are members who may be vocal about the
same topics but may not be connected at all. As we will later
see in our evaluations on real-world datasets, previously sug-
gested latent variable models following the two paradigms do
not conform to the notion of compactness in social networks.
This often leads to cases when the individuals contained in
a community may not share much communication and, as
such, may not actually reflect a community in the ‘tradi-

! Also note that other bayesian models like RTM|3], Link-
PLSA-LDA|13| and Topic-Link LDA[11] have also been pro-
posed for document networks (citation networks and co-
authorship networks) but they are not directly extendable
to social networks in their full generality.

tional’ sense. Finally, all the aforementioned latent variable
models work on binary (link or no-link) networks.

In this paper, we propose a framework to use integer-
valued weights in the networks. We believe that this is
intuitive in a real-world setting where the strength of in-
teraction between users can be measured as the number of
common friends or followers, number/length of documents
exchanged, number of comments or likes on same thread,
etc. We represent the integer-weighted network efficiently
as a bag of users; each user is herself represented as a bag of
her neighbors. We use this representation to present a mixed
membership model that can discover compact communities.
Next, we extend both the representation and the model to
incorporate the content information leading to compact yet
topically consistent communities. We believe that with our
approach, it would be possible to “zoom” into the network
and uncover not only the communities but also the inter-
ests of the communities and its members. Hence, it would
provide a tool to identify and interpret local organizations
in large networks that are not only topologically compact
(based on graph structure) but also semantically aligned
(based on topics discovered). We show improvements over
previous methods in terms of held-out perplexity, several
compactness metrics and on a link prediction task.

As another contribution, we also provide a faster, effi-
cient parallel implementation of the method and illustrate
its speed-up over the sequential counterpart.

2. NOTATION

Let a (text associated) social network (TSN) be defined
as a network where every edge is associated with a set of
text documents. Let U be the set of users (nodes) in the
TSN. Let Ny be the set of neighbors of user (sender) u € U.
For a given user u € U and its neighbor r € Ny, let Sy, be
the strength of interaction between u and r and Dy, be the
set of documents sent by u to r. Then, Dy = Ureny,Dur
is the set of all documents authored by u. Let Wq be the
multi-set of words in a given document d. We note that
a document can be sent to multiple users (recipients) at
the same time. Let Ra be the set of recipients for a given
document d. Let the vocabulary set be V. Also, let the
cardinality of all these sets (in boldface) be represented by
their corresponding capitalized symbols. Overall, let A,, be
the (weighted) degree of node u where A, = ZTGN“ Sur.
We experimented with various definitions of Sy, as discussed
before and found that Sy, = D,, i.e. setting strength of
interaction as the number of documents exchanged between
the users works best. Assume this setting henceforth.

3. NET-LDA: THE NETWORK MODEL

The idea of transforming the input representation for a
better task-specific performance is not new[9]. A well-known
example of this idea is the bag-of-words representation for a
document, in which each document is seen as an exchange-
able collection of words. This representation has proven to
be effective in various NLP tasks such as topic modeling.
We propose an alternate representation to model the link
structure of a social network that explicitly takes into ac-
count the entire neighborhood of every user. By doing so,
we can better model the inhomogeneity of structure in social
networks and lead to more compact communities.



As the name suggests, Net-LDA closely follows the mod-
eling scheme in LDA [2] to model the network structure. To
model neighborhoods in the underlying graph, we translate
the network to a document corpus and argue that an LDA
model on the newly constructed corpus discovers commu-
nities in the social graph just as LDA discovers topics in a
document corpus. Each user in the network is represented
by a document in this alternate representation and the list of
all the users interacting with it forms the words in the docu-
ment (replicated as many times as the integer weight of the
edge connecting them). Formally, let every user u be char-
acterized by a network interaction footprint (NIF), a docu-
ment representing all its interactions with other users in the
network: NIF(u) = Ureny{r,7,...Sur times} and U repre-
sents the multi-set union (i.e. each interacting user r € Ny
is represented Sy, times in the NIF document). For exam-
ple, in a dummy network where user A sends two documents
to user B, three documents to user C' (and no more docu-
ments to other users), the network interaction footprint of A
(document representing A) is [B, B, C, C, C|]. Note that be-
cause of this transformation, we only need (>, A.) space
to represent the graph (instead of Q(U?)).

The network interaction footprints of the users are rep-
resented as random mixtures over latent community vari-
ables. Each community is in turn defined as a distributions
over the interacting users r. This idea is analogous to LDA
where the network interaction footprint is a document, in-
teractions are words in that document and communities are
latent topics. Just as LDA clusters similar words into one
topic, this extrapolation would cluster users with similar
neighborhoods in one community. This can also be seen as
soft clustering (e.g. Soft K-Means) on the adjacency matrix
of the graph. This makes the communities detected by Net-
LDA “compact”. Technically, this occurs due to the sparsity
induced by the Dirichlet prior. The sparsity through the
user-community Dirichlet prior penalizes the model for us-
ing many topics for a document. This ensures that all the
neighbors of a node have slightly higher odds to belong to
the same community. This, in turn, makes the community
structure spatially “compact”. On the other hand, the spar-
sity induced by the community-neighbor Dirichlet ensures
that the user (document) is assigned to only a few commu-
nities (topics). This conforms to real world scenarios where
users are typically members of a small number of commu-
nities. Note that this model has 6(3°, A.) latent variables,
which is much smaller than U? in models following paradigm
1 (e.g. MMSB) for real-world (sparse) networks. Further,
this model has §(UC) parameters which can be efficiently
estimated and is a reduction over Q(U?) parameters as in
models following Paradigm 2.

4. SN-LDA:THE SOCIAL NETWORK MODEL

In the social network literature, previous works|8] have
shown success in combining local (node-based) features with
neighborhood features for various graph mining tasks. In or-
der to account for the spatial as well as topic-coherence of
communities discovered, we represent the TSN as a collec-
tion of users, where each user is represented as a bag of one
hop neighbors and a bag of documents authored by the user.

We further augment Net-LDA with content information.
To achieve this, we associate every user with a multinomial
distribution 7 over communities. This distribution gives the
membership of the user in every community. We define a
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Figure 1: Plate diagram of SN-LDA

topic to be a semantic theme represented as a multinomial
distribution ¢ over words. We associate topics with the com-
munities and hence model communities as a multinomial dis-
tribution 0 over the topics of interest amongst users in the
community. This can help us determine key topics prevail-
ing in a community and can be useful in locating/searching
communities on given themes and interests. Just as in Net-
LDA, we represent the user as a distribution 7 over the
community space and communities as a distribution n over
the space of interacting users. The plate notation is given in
Figure[l|and generative story below. Here Dirx (a) denotes
a X-dimensional symmetric Dirichlet with scalar parame-
ter a and Mult(.) denotes the discrete multinomial. The
sender, neighbor (recipient) and words are observed. The
communities and topics are latent.

1. For each topic index, 1 < k < Z, sample a V dimen-
sional multinomial, ¢), ~ Diry(S).

2. For each community index, 1 <c¢ < C:

(a) Sample a U dimensional multinomial 7j. ~ Diry (6).

(b) Sample a Z dimensional multinomial f, ~ Dirz ().

3. For each user u € U, sample a C' dimensional multi-
nomial, 7, ~ Dirc (7).

4. For each user u € U:

(a) For each document d € Dy sent by sender u:
i. Draw community assignment CL, ~ Mult(7,).
ii. For every word w € Wq:
e Draw topic assignment Zy, 4., ~ Mult(gcid).
o Draw word X,qw ~ Mult(d_;zudw).
(b) For each neighbor r € Ny:

i. For each document d € Dy,:

e Draw community assignment C2, ;, ~ Mult(#,).

e Draw neighbor Ryrq ~ Mult(7]q2 .d).



We hypothesize that while a document is assigned to a par-
ticular community, the recipients of the document might still
belong to different communities. This necessitates the com-
munity variables for the document ¢! and the recipients ¢?
to be separate. To test this hypothesis, we design another
graphical model (we call it Naiive SN-LDA) where the com-
munity variable is only drawn once for each document. The
generative story of Naiive SN-LDA can be obtained by re-
placing 4(b) with 4(a)-iii in SN-LDA as follows:

4(a)-iii. For each recipient r € Ra:
e Draw recipient (neighbor) Ryrq ~ Mult(ﬁc;d).

We will see in our evaluations that Naiive SN-LDA doesn’t
do well in practice. This substantiates our hypothesis and
justifies the aforementioned modeling choice.

4.1 Parameter Estimation

We sample the topic and community assignments from
the conditional for the variable given the observations and
other assignments using a Gibbs sampling procedure. Let
Cid, CSM, Zwdw, Rura and Wy g, be the community, topic,
recipient and word assignments for a given user, document
and word, as appropriate. Let #i{::f}l’ii be the number of
times a, (1 < a < A) is generated along with the combina-
tion of variables b; ... b, in the model, (1 <b; < B;,1 <3 <
v) excluding the instance 7. Also, #c. w4 be the number of
times topic z is assigned to words in community c¢ for user
u in document d. The Gibbs sampling equations are given
below.

P(Cird = C*|Ciurd’ _) S8
#C*2R atd
S #CPR +US

c*r! —urd
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A single iteration of the sampler performs O(DC + W Z)
computations to model the texts (Let D be the total number
of documents and W be the total number of words in the
TSN) and O(C'3_, >, cn,, Sur) computations to model the
network. Hence, the sampler has a worst time complexity of
O(DC+WZz)+CY, ZreNr Sur]. The complexity could
be significantly high even for moderate size TSNs. Note that
this is a longstanding drawback of latent variable models.

®3)

S. PARALLEL SN-LDA

The Gibbs Sampling procedure utilized by our model makes
multiple passes at the data and hence, does not scale to real-
world data sizes. An obvious solution to address this issue
is to distribute the learning over multiple processors. Next,
we provide a parallel implementation of SN-LDA that has
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Figure 2: Plate diagram of Parallel SN-LDA

theoretical guarantees of convergence and also does well in
practice.

The approach for the parallel variant (inspired from Dis-
tributed LDA[14]) is to split the data (social network) roughly
equally into P processors. Each processor is roughly (ran-
domly) assigned U/P users (along with their network in-
teraction footprints and all the documents authored by the
users). All the sufficient statistics in the previous Gibbs
sampler (#,ﬁ{::f;’ﬁﬁa, bj, A, Bj, 1) are also distributed with
each processor keeping a local copy. Moreover, the paral-
lel version also keeps a copy of the four distributions 6, ¢,
m and n on each processor. Appropriate priors are intro-
duced to bind these distributions globally. For instance, a
global hierarchy of word-topic distributions ¢ and a topic
dependent strength parameter ¢, is placed over the local
word topic distributions ¢y,. Likewise, 8,7 and n are also
distributed. The model on each processor essentially is an
SN-LDA model. Figure[2]shows the Bayesian model reflect-
ing this structure. The generative process for the model is:

1z ~ Dir(9)
6% ~ Dir(a)
% ~ Dir(B)
Tup ~ Dir(vyp)
Zudwp ~ ecidp

Tlep ™~ Dir(niﬂf)
Bep ~ Dir(067)
brp ~ Dir(¢p.¢%)

ne ~ Gamma(a,b)
0% ~ Gammal(g, h)

Xudwp ~ ¢Zudwp

Rurap ~ nc2
urdp

Pseudocode of Parallel SN-LDA is given in Algorithm [T}
Processors concurrently perform Gibbs sampling on the local
data partition followed by a global update of the counts.
Local variables C,ltdp, C?mip and Zuqwp are inferred locally
and the global variables 7,, 62, 62, nl, n2, ¢ and ¢ are
then inferred globally after the local processing finishes on
all processors. Here, we employ an auxiliary variable method
|5] to sample both the local and global variables. Please refer
to the appendix for the Gibbs sampling equations.



Algorithm 1: Parallel SN-LDA Implementation

Initialize: All Local and Global Variables;
while /(Termination Condition) do
for each processor p in parallel do

Sample ~yp locally,
end
Synchronize;
Sample global variables 61,02, nt,n2, o1 and ¢3;
Broadcast global variables 0,02, nk, 0%, o5 and ¢3;
end

The average case time complexity of one iteration of the
Gibbs sampler (both local and global updates) is O[(X +
M)/P+ M] where X = DC+WZ+C3, > cn, Sur and
M = ZW + CU 4+ CZ. This is an improvement over the
sequential implementation when P > O(Xt2%). Note that
this is an average case analysis and assumes that all the pro-
cesses run at the same speed and the data is uniformly (and
roughly equally) divided across machines. Our evaluations

show that the technique works well in practice.

6. EVALUATION
6.1 Datasets

In our experiments, we perform a comparative evaluation
of Net-LDA and SN-LDA against baseline models (CUT,
TUCM, TURCM-1, TURCM-2, Full TURCM, CART and
MMSB) on two real-world datasets: first, is the publicly
available Enron Email corpuaﬁ and secondly, a subset of the
collection of tweets crawled from Twitterﬁ, over a 7 month
period (June 1 - Dec 31, 2009). The Enron dataset contains
email exchanges from about 150 employees, mostly senior
management. On the other hand, Twitter is a social net-
working and micro blogging service where users communi-
cate by short text messages (up to 140 characters) called
‘tweets’. Follower relationships impose an underlying graph
structure. The Twitter dataset used has 5405 nodes, 13214
edges and 23043 posts. The posts were preprocessed and
stemmed appropriately. We choose these two datasets for
the diversity and challenges they bring along with them.
While Twitter imposes a restriction on the length of posts,
the number of followers of a user can run into millions. In a
social network, such nodes (users) are sometimes called ‘star
nodes’. This is a case when the graph is dense but the as-
sociated content is much smaller. On the other hand, while
the Enron dataset has fewer nodes, emails can be arbitrarily
long; case of a sparse graph but rich content. Scaling a tech-
nique that integrates both content and link to such diverse
social networks is an important challenge.

6.2 Experimental Design

As we discussed before, our definition of communities lays
emphasis on two criteria: how tightly users in a commu-
nity are inter-connected and how strongly users in a com-
munity share interests. Hence, we firstly give a qualitative
evaluation of the communities and try to argue how top-
ics and links combine to produce communities effectively.

Zhttp://www.cs.cmu.edu/ enron
3http://snap.stanford.edu/data/twitter7.html

Sample c1, ca, z locally using the local data partition

We evaluate the strength of inter-connections in the com-
munity structure by computing various compactness met-
rics like normalized-cut|20] and fuzzy modularity [10] of the
community structure discovered. Normalized-cut measures
the degree of disassociation between groups by computing
the cut cost as a fraction of the total edge connections to
all the nodes in the graph. On the other hand, modularity
|15] was specifically designed as a measure of compactness
for community structure. It assumes that a good division
of the network is one in which the number of edges between
groups is smaller than expected. Since we perform a fuzzy
partition of the network, we will instead use a fuzzy vari-
ant called Fuzzy Modularity @ introduced in [10]. Along
with these two measures, we will also use other commu-
nity quality evaluation measures from the graph clustering
literature such as Average link J,;(C) and Rouben’s mea-
sure Jrm (C)|23]. Next, we pick the task of link prediction
and show improvements over baseline models. Finally, we
demonstrate speed-up of the parallel variant of SN-LDA over
its sequential counterpart in terms of various compactness
measures, perplexity and link-prediction accuracy.

A key step in such parametric approaches is choosing the
hyper-parameter values. A common heuristic is to pick the
values that minimize held-out perplexity on a validation set.
A quick investigation on the two datasets showed that set-
ting the number of topics to 15 and number of communities
to something between 10 to 12 roughly leads to optimality.
Hence, we use the setting Z=15, C=12 in our experiments.
In line with other topic modeling works, we set a = %, 6=
%,’y = % and 6 = % in our SN-LDA implementation. For
Parallel SN-LDA, guided by the set-up in previous works|14]
we set a = %,b: l,c=2,d=0.1,e = %};_D,f:
1,9 = %}éfl%h =1l,a= %,ﬁ = %,’y =0.1andd = %
Gibbs sampling was carried out by starting with a random
assignment to all the latent variables and using the corre-
sponding update equations to compute fresh values over a
large burn-in period (first 1000 iterations). When this dis-
tribution stabilizes, sufficient number of samples were taken
at regular intervals (every 5th iteration for next 4000 itera-
tions) to avoid correlation.

6.3 Results
6.3.1 Qualitative Analysis

From our first analysis, we intend to qualitatively corrob-
orate our intuition that communities are formed when users
with similar interests aggregate together. We first give a
view of top words for a few sample topics discovered by SN-
LDA on the Enron corpus in Table As many as 10 out
of the 15 topics can be recognized as popular and sensible
topics of discussion in Enron like power, gas, etc. Similar
visualization is possible for the twitter datasets where we
obtain topics like Internet, Stock Markets, Web, News, etc.

Next, we illustrate intuitively the utility of such a proba-
bilistic model. For instance, we can compute the distribution
over topics for a particular user showing the things that she
is primarily interested in (See Figure [3h). [12] showed how
one can discover social roles of people by associating words
with users through their community memberships and the
corresponding community-topic distribution. In Table [2] we
give top words for a few roles using the Enron corpus. From
these words we can see that social roles are nothing but work
profiles for people working in Enron, like management, en-
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Figure 3: (a) Community Proportions for a given user, (b) Topic Proportions for a given Community and (c) Topic Proportions

for a given user for Twitter dataset

Email ‘Web Stock Gas California
Market Prices Power
message mailto pdx enron edison
subject aol nymex gas power
fw hotmail | enronxgate prices energy
original net company book ect
mail http corp dynergy california
Positions Office Power Gas Gas
Crisis Trading | Production
analyst backup gas city enron
associate plan california hou energy
capacity seat power gas paso
california business ect trading ngcorp
company work energy california el

Table 1: (Manually labeled) Topics for SN-LDA on Enron

Management | Engineering | Analyst
contract mailto pdx
agreement dynergy california
meeting electric cash
corporation psa database
budget calpx meeting

Table 2: Social Roles discovered by SN-LDA on Enron

gineering and analyst. These social roles can be confirmed
against their true roles in Enron. For example, the roles
of Sally Beck (Chief Operating Officer), Vincent Kaminski
(Head of Quantitative Modeling Group) and Louise Kitchen
(President of Enron Online) can be conveniently recognized
as management and the role of William Williams III (Senior
Analyst) can be recognized as an analyst. Interestingly, the
social roles/departmental structures also have high degree
of overlap with the community structure discovered.

In Figure [3h, we illustrate for the Twitter dataset that a
particular user (user 93) has a membership in community 4
to a high degree in our SN-LDA model. Besides, the model
also suggests that the user participates in community 6 to
some extent. This analysis gives us an insight to the ex-
tent of participation of a user in various social groups. This
probabilistic notion of membership has clear advantages in
modeling user tastes and preferences to the hard clustering
approach taken in many previous approaches for community
discovery. Further, topical peaks for a community indicate
the dominant topics for that particular community. For ex-
ample, after looking at the topic proportions for community
4 (see Figure ), which is the primary community for user
93, it was found that topics 14 (Stock Markets) is the domi-
nant topic in this community. Also topic 4 (Internet) is the
dominant topic in community 6. Now that we know how
to estimate community memberships and topical interest of

Enron Corpus | Twitter Corpus

[ [ N—Cut [ Jy | Jrm | N—Cut [ Jo | Jrm
Net-LDA 6.280 1.230 | 0.5753 7.432 1.189 0.698
SN-LDA 6.083 1.616 | 1.134 6.953 1.457 | 0.928
TUCM 10.563 0.672 0.413 9.112 0.657 | 0.442
TURCM-1 9.584 0.695 0.441 9.938 0.623 0.425
TURCM-2 8.235 0.701 0.452 8.887 0.729 0.461
Full TURCM 8.137 0.921 0.563 9.115 0.696 0.451
CART 11.375 0.694 0.481 10.976 0.605 0.410
CUT 10.122 0.705 0.456 10.785 0.627 | 0.422
MMSB 7.980 1.266 0.646 8.463 1.198 0.606
Naiive SN-LDA 13.184 0.296 0.280 10.847 0.418 0.416

Table 3: Network Quality Measures on Enron and Twitter

communities, we can also determine the topical interests of
the users. Figure |3 shows the distribution over topics for
the Twitter user (user 93). It shows that this user is pri-
marily interested in topic 14 (Stock Markets) and also likes
topics 4 (Internet). Recall that topics 14 and 4 were strong
interests of the communities (community 4 and 6) the user
had a high membership in). This analysis is useful in finding
individual user’s interests and tastes. This kind of analy-
sis supports our hypothesis that users tend to communicate
frequently over certain topics (based on interests) and form
communities based on those interests. This also illustrates
the power of SN-LDA over the plain Net-LDA model.

6.3.2 Community Quality Analysis

Next, we present our first quantitative results for evaluat-
ing the goodness of communities obtained on the compact-
ness metrics previously defined and compare Net-LDA and
SN-LDA against state-of-the-art methods. Tables [3] and
show the comparison on both datasets. To establish consis-
tency of the method for various parameter values, table
shows the fuzzy modularity comparison for different num-
bers of communities (Z fixed to 15). Both NetLDA and
SN-LDA show much better scores than the baselines, sug-
gesting that our models have detected more spatially com-
pact communities. Also, as expected SN-LDA shows an im-
provement over Net-LDA due to its additional power of ac-
counting for user interests while discovering communities. It
is interesting to note that Net-LDA shows an improvement
over MMSB, another model for community detection using
link structure in graphs, which suggests that our modeling
scheme for networks models compactness in a better manner
for integer-valued graphs. Naiive SN-LDA does not perform
well. This substantiates our modeling choice for drawing
separate community labels for content and link modeling.

To reiterate our argument, we visualize the community
assignments for CART and our two methods on the Enron
dataset in figure[d] We assign each user to his most probable
community and rearrange so that all the users assigned to



Enron Corpus Twitter Corpus
6 8 10 12 14 6 8 10 12 14
Net-LDA 0.619 0.542 0.463 0.340 0.421 0.413 0.442 0.462 0.471 0.463
SN-LDA 0.634 0.534 0.427 0.427 | 0.436 0.438 0.491 0.482 0.484 | 0.485
TUCM 0.148 0.243 0.291 0.287 0.246 0.167 0.263 0.321 0.313 0.262
TURCM-1 0.198 0.271 0.339 0.331 0.283 0.168 0.261 0.309 0.287 0.241
TURCM-2 0.203 0.278 0.346 0.337 0.289 0.166 0.265 0.324 0.309 0.261
Full TURCM 0.215 0.294 0.363 0.350 0.299 0.171 0.272 0.332 0.316 0.267
CART 0.152 0.249 0.302 0.294 0.255 0.157 0.227 0.243 0.235 0.196
CuUT 0.133 0.231 0.266 0.278 0.227 0.159 0.244 0.299 0.285 0.237
MMSB 0.2601 | 0.3313 | 0.3745 | 0.375 0.362 0.226 0.274 0.289 0.291 0.284
[ Naiive SN-LDA [ 0.114 [ 0.119 [ 0.125 [ 0.127 [ 0.128 | 0.158 [ 0.175 [ 0.187 [ 0.192 [ 0.200 |

Table 4: Fuzzy Modularity Comparisons on Enron and Twitter Corpora as C is varied, Z=15

Figure 4: Visualizing the community assignments for (a) CART, (b) Net-LDA (c)SN-LDA on Enron Dataset

a particular community are stacked together. After this op- Enron Corpus Twitter Corpus
eration, the adjacency (strength) matrix is plotted for each Prec. | Rec. | F1 Prec. [ Rec. | F1
model. We can observe that Net-LDA and SN-LDA roughly [ Net-LDA [ 0708 | 0.467 | 0.563 | 0.648 | 0.547 | 0.593 |
. . [ SN-LDA | 0.656 | 0.527 | 0.584 | 0.677 | 0.559 | 0.612 |
show a block diagonal structure reaffirming our argument
that th thods detect ¢ it P . TUCM 0.583 0.403 0.476 0.542 0.428 0.478
at these methods detect compacter communities.  rrevi- TURCM-1 0.528 | 0.329 | 0.405 | 0.526 | 0.401 | 0.455
ous models (like CART), on the other hand, do not show a TURCM-2 0.512 | 0.367 | 0.427 | 0.582 | 0.449 | 0.507
characteristic compactness structure. Full TURCM 0.504 | 0.412 | 0.453 0.558 | 0.450 | 0.498
CART 0.565 0.332 0.418 0.538 0.388 0.451
. ) cuT 0.513 0.304 0.382 0.515 0.353 0.419
633 Llnkpredlcnon MMSB 0.590 0.482 0.531 0.547 0.474 0.508
Next, we illustrate performance on a supervised link pre- Naiive SN.LDA | 0512 | 0286 | 0367 | 0.505 | 0.326 | 0.396

diction task. Link prediction is closely related to commu-
nities. In fact, community information is often included in
similarity-based link prediction methods|21] with an implicit
assumption that two nodes in the same community are more
likely to be connected. However, we believe that this as-
sumption would fail if the communities were not spatially
compact. Hence, we provide performance on the link pre-
diction task as another evaluation of our models. For this,
we made a 60-40 split of all documents. We learnt our model
parameters from the 60% training split and trained SVM to
predict links (if there is a document exchange in Enron)
between user pairs on the test-split, using user community-

Table 5: Link Prediction Results on Enron and Twitter

|22]. However, unlike topic models where data is just the set
of words, here we want to evaluate how well our models do on
learning the linkage structure as well as the text. Hence, we
further compute the perplexity of observing links and text
separately. The link and text perplexity can be computed
using S samples from independent chains of the posterior:

membership profiles as the feature vectors. Table [5| shows 1
that both NetLDA and SN-LDA outperform the baselines P(Weest].) = > > log< (ZZWM I Zez|c¢wz>
on both datasets further confirming our hypothesis. wEU dEDu s wed =
1
6.3.4 Parallel SN-LDA PReentl) = 3, 3. 2 2 leog (ggmw>
As our final evaluation, we illustrate the speed-up of Par-
allel SN-LDA over its sequential counterpart. Herein, we vol ve? oz
are interested in two aspects of performance: the quality of Telu = Hue +Huc +7 0. = #Czc: «
the models learned measured by the compactness metrics, 2 (#ffccl +H#US? + V) XL #EP + o)
performance on the link prediction task and perplexity of #7W 4 3 #CR 4 5
held out data, and the time taken to learn the models. buw|z = o Mrje = o

To begin with, we compute held out perplexity. Perplexity
is a measure used to evaluate language models. We compute
perplexity using the harmonic mean method proposed in

X (#2Y +8) > #ER+0)

—log p(Wtest|.)

Ppx(W) = exp ( W
test

) Pre(R) = can

Rtest

—log p(Rtest].)

)
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Figure 5: Perplexity Comparisons: Parallel SN-LDA and SN-LDA (a) Text, (b) Link, (c¢) Overall Perplexity on Enron
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Figure 6: Speedup & Comparison of Fuzzy Modularity on (a) Enron, (b) Twitter

Figure [§] plots held out perplexity against runtime for par-
allel SN-LDA model (when number of processors is 2,4 and
8) and SN-LDA for the Enron dataset. Herein, it is easy to
observe that Parallel SN-LDA shows a greater drop in both
held-out perplexities as well as overall perplexities with time
implying faster convergence. Both text and link perplexities
fall monotonically. This implies that the model’s predictive
ability on both text and link improves with time. The drop
becomes more and more steep as the number of processors
increase. Please note that in the limit, the perplexity of the
parallel algorithms matches the sequential algorithm. This
pattern is independent of choice of Z and C. Similar pattern
is seen on the Twitter dataset. In fact, the parallel model
also improves with time on various compactness metrics at
a greater rate than the sequential version as the number of
processors is increased. Figure [f] shows the improvement on
both datasets. A similar pattern was also seen in terms of
link prediction in Figure [7] Also note that in our exper-
iments, Parallel SN-LDA with just 4 processors converges
faster that all the baselines with the exception of MMSB.

| [ 100 | 500 [ 2500 | 12500 |
P=2 | 0.613 [ 0.593 [ 0.599 | 0.592
P=4 | 0.607 | 0.594 | 0.593 | 0.568
P=8 | 0.602 | 0.593 | 0.575 | 0.564

Table 6: Efficiency Speed-ups by Parallel SN-LDA on Twit-
ter datasets of various sizes

Finally, we compute the speed-up efficiency: fractional
decease in training (cpu) time over the number of proces-
sors used (pTTlp) All simulations have been done on the

same architecture and platform. In all models, training is
assumed to finish when the held-out likelihoods converge
(change in likelihood over consecutive iterations falls below
0.1% of the likelihood in the previous iteration). We chose
twitter datasets of various sizes (100, 500, 2500 and 12500
nodes, respectively) and compute the speed-ups with respect
to the size of datasets for various number of processors used
in Table [f] The consistency of speed-ups across data sizes
makes us believe that it should be possible to scale up our
technique to datasets of larger size with more processors.

7. CONCLUSION

We began by positing that communities are formed by
users who communicate on topics of mutual interest, are
connected to each other in the social graph and share fre-
quent personal communication. We described a new repre-
sentation for social networks and used it to propose a mixed-
membership model which incorporates both text and link in-
formation for community detection in social networks that
conforms to the notion of ‘compactness’. When compared
against existing methods, our experiments show significant
improvements in terms of various compactness metrics and
on the link prediction task. We also provide a fast, efficient
parallel approximation of the model that scales well in terms
of both memory and time. We believe that the scheme of
modeling network information as described in Net-LDA can
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Figure 7: Speedup & Comparison of Link Prediction on (a) Enron, (b) Twitter

be employed to improve various latent variable models pre-
viously described in the literature.

APPENDIX

Gibbs Sampling for Parallel SN-LDA:
For parallel SN-LDA the posterior of Z), C,L C’g given the
global variables vy, 0%, 02,02, 12, ¢, ¢2 has the same form as

the posterior of Z, Ct, C? given 7, 8, a, § for SN-LDA.

2 2 1 2
P(Z..p,C*,,C? |, 00,02, 05,02, ¢, d) o

1 2
L'(Cvp) H T(vp + #5‘37 Py #557 P)
wetp | T(Cv + #YSP +#752P) &, T(vp)

[ . P(#C 77 +0162,) |
y r(6102,)

c’cz

r(o})
1
| P#C27 1 6h)

[ ray H D(#C2RP 4+ nln?)
; F(#CQRP +nb) L(nin2,.)

r($ #ZZJZP +102,)]
T o 1 o,

z

Consequently, the sampling equation for the local variables
are similar to that of SN-LDA given in equation 1-3 with
replaced by «,, a replaced by 0262 and § replaced by ¢}.¢;
and the counts replaced by counts for the given processor.

The auxiliary variable method used to sample the global
variables 7, 0%, 0%, m%,n2, ¢ and ¢ here is explained in de-
tail in [5] and [14]. We use the following expression:

F(a) _ 1 1 a—1 - n—1
I'(a+n) F(n)/ot (L—2)" dt

D(a+n) S n,s)(a)’
o = L sma@

where, S is the sterling number of the first kind.
Sampling v,:

(4)

()

F(C’Yp)
Plpl-) o [
g 11 D(Cyp + #UG'P + #UG°P)
Tl +#9S T+ #5950
11 G y > ) 7 exp(—dyy)

F(’Yp)

c

Using equations [d] and [ :

velp, ,uc?p
P(yp,t,s|=) o< [ {C“ (1= to)#ur ~ THFur } x
ueUp
ct c? Suc c—
H H [S gcp r + #gcp stuCP)'Vp p] p ! exp(—dp)
u€Up ¢

This leads to simultaneous sampling equations for v, t & s:

C Suc cf
P(ylt,s, =) o ] ta™ | TT TT0e"" | v " exp(—dv)
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= Gamma | c+ Z ZSuCP;d—C Z tu | (%)
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1 Suc
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Note that both auxiliary variables can be sampled locally.
Sampling n! and n?:
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Using the same argument but different auxiliary variables:
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P(nl]-) o< Gamma

P(n?|-) x Dirichlet

a+ Zscmﬁb_ ZlOg(tCP):| (*)

P,

5+ Zsm} (%)

p

P(tep|—) x Beta [ni; #SZRP] (+)

P(scrp|—) xx Antoniak [#Zi,RP; ninfr] (%)

Sampling for 6%, 62, ¢ and ¢; is similar to 5! and n?2.
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