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Abstract

Regularization has played a key role in de-
riving sensible estimators in high dimensional
statistical inference. A substantial amount of
recent works has argued for nonconvex reg-
ularizers in favor of their superior theoreti-
cal properties and excellent practical perfor-
mances. In a different but analogous vein,
nonconvex loss functions are promoted be-
cause of their robustness against “outliers”.
However, these nonconvex formulations are
computationally more challenging, especially
in the presence of nonsmoothness and non-
separability. To address this issue, we pro-
pose a new proximal gradient meta-algorithm
by rigorously extending the proximal aver-
age to the nonconvex setting. We formally
prove its nice convergence properties, and il-
lustrate its effectiveness on two applications:
multi-task graph-guided fused lasso and ro-
bust support vector machines. Experiments
demonstrate that our method compares fa-
vorably against other alternatives.

1 Introduction

Regularization has played a major role in recent de-
velopment of statistical machine learning algorithms
and applications. Many regularizers, with their unique
properties, have been designed. In particular, convex
regularizers have been prevalent due to their compu-
tational convenience. However, the potential superior-
ity of nonconvex regularizers has long been recognized
and pursued [1-5]. Empirically, nonconvex regulariz-
ers often yield better results than their convex coun-
terparts [6-8]. On the flip side, nonconvex regularizers
are computationally more challenging, but there has
been steady progress [6, 9-12]. For instance, [9, 10, 12]
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are among the first to apply the proximal gradient to
nonconvex regularizers; [11] extended the coordinate
descent to the nonconvex and nonsmooth setting; [6,
8] employed the convex-concave procedure; and [7] ap-
plied the alternating direction method of multipliers;
etc. These existing works have greatly expanded our
tool sets for coping with nonconvexity, generating re-
markable successes but also suffering some limitations:
a). Only apply to special scenarios [9, 11]; b). No con-
vergence result [7] or merely the weak “convergence”
in terms of function values [10-12]; c¢). Slow conver-
gence due to successive linearization [6, 8]; d). Inca-
pable of handling non-separability [9-12]. In this work
we propose a meta-algorithm that enjoys stronger con-
vergence guarantees and works in broader settings.

We are interested in the general setting where the
regularizer (or the loss function) is nonconvex, non-
smooth, and non-separable. For instance, the overlap-
ping group pursuit [8] advocated a nonconvex regu-
larizer for each overlapping group and achieved bet-
ter estimates. The same idea can be extended to the
graph-guided fused lasso [13], see Example 1 below.
However, the resulting optimization is now highly non-
trivial, rendering many of the existing algorithms in-
applicable, hence deserving a serious investigation.

We borrow the prozimal averaging idea of the recent
work [14] and significantly extend it to the nonconvex
setting, by making the following contributions:

e Rigorously addressing the multi-valuedness and
non-uniqueness of the proximal map. This dif-
ficulty does not occur for convex functions but is
common for nonconvex ones. It is the key to deal
with non-separable functions where most existing
works (such as [9-12, 15]) do not apply.

e Re-establishing, sometimes with essential modi-
fications, the many key properties of the proxi-
mal average, including a complete characteriza-
tion on the real line. For instance, we show in
Example 3 that there are infinitely many func-
tions that all lead to the same hard-thresholding
rule, thus shedding new lights on both the statis-
tical and algorithmic aspects of nonconvex regu-
larizers. These theoretical developments are com-
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pletely new and provide a solid ground for some
ongoing work.

e Proving the convergence of the whole sequence
produced by our algorithm, which is even new for
the convex case. This contribution is particularly
important in applications (such as biostatistics)
where variable selection, if not the sole purpose, is
as desirable as achieving a small prediction error.

e Experimentally validating the proposed algorithm
on applications where nonconvexity and non-
separability really makes a difference. The algo-
rithm can be easily parallelized so even better ef-
ficiency can be anticipated.

To further demonstrate its flexibility, we also apply
our approach to the robust support vector machines
(RSVM) by swapping the role of loss and regularizer.
Here, we encounter a second motivation for noncon-
vex functions: As shown in [16, 17], any convex loss
cannot be robust against adversarial outliers. Accord-
ingly, RSVM replaces the convex hinge loss with the
nonconvex truncated hinge loss [18-20]. Through ex-
periments we show that our algorithm is much more
efficient than previous approaches such as alternating
[18] and the convex-concave procedure [19-21].

We formally state our problem in Section 2. Section 3
contains all technical results that are essential for the
convergence proof in Section 4. Experiments on both
multi-task GFlasso and robust SVM are conducted in
Section 5, and we conclude in Section 6.

2 Problem Formulation

We are interested in solving the minimization problem:

K
v?éi]ﬁlp {(w) + f(w), where f(w) = Zakfk(w), (1)
k=1

and the scalars, a, > 0,) ", a; = 1, are fixed constants
throughout the paper. It is clear that many statisti-
cal machine learning algorithms can be cast under our
general formulation (1). For instance, take ¢ as the
least squares loss and f; as the 1-norm (with K = 1)
we recover lasso [22]. We can also swap the role of the
“loss” ¢ and the “regularizer” f. For instance, let fy,
be the hinge loss for the k-th training data and ¢ be
the squared 2-norm, we recover the support vector ma-
chines [23]. These special cases are convex problems,
and have been extensively studied in the past. Instead,
we will focus on the more general setting where both
functions ¢ and {fi} are nonconvex and non-smooth.
The motivation to have nonconvex functions can be
diverse, and will be illustrated in Example 1 and Ex-
ample 2 below. We emphasize that the function f is
non-separable, in the sense that its components {fi}
have overlapping argument w.

In general, (1) can be very challenging to solve, even
when we lower our expectation to the convergence to
some critical point. Fortunately, practical problems
usually come with some structure that we can (and
should) exploit. In particular, we make the following
assumption:

Assumption 1 The function ¢ has L-Lipschitz con-
tinuous gradient VI, each fy, is My-Lipschitz contin-
wous (all w.r.t. the Fuclidean norm || - ), and the
proximal map P‘;k can be computed “easily” for any
w>0.

Recall that a mapping g : R? — R¢ is M-Lipschitz
continuous for some M > 0 if for all x,y € R?, || g(x)—
9(y)| £ M|x — y|. The proximal map P% for any
function f and parameter pu > 0 is defined as:

P (w) = argmin, cg» in —w|*+ f(z). (2
When f is the indicator function of some set C', P'; (w)
simply returns the closest point in C to w, namely
the familiar Euclidean projection. If f is the 1-norm,
then P% becomes the well-known soft-shrinkage oper-
ator that is widely used in sparse methods, e.g. lasso.
The parameter x> 0 in the definition (2) plays the
role of step size in the algorithms we will develop,
and needs to be set properly. Assumption 1 requires
the proximal map to be “easily” computable, meaning
roughly that its complexity should be on par with that
of computing the gradient of function ¢. This avoids
the proximal map to become the bottleneck if we use a
gradient-type algorithm. As we will see, Assumption 1
is quite reasonable in a number of applications.

In the nonconvex setting, we need to pay extra care to
even some “obvious” properties of the proximal map
(such as non-emptiness and non-uniqueness). Such
technicalities, albeit important, will be postponed un-
til Section 3. For the purpose of explaining our main
idea let us pretend momentarily that P’ is a well-
defined “function”, i.e., Pﬁﬁ(w) is some “closest point”
to w, measured by the function f. With this “simpli-
fication” we can now demonstrate how Assumption 1
is naturally satisfied in some important applications:

Example 1 (GFlasso, [13]) The graph-guided fused
lasso exploits some graph structure to improve feature
selection. Given some a priori graph whose nodes cor-
respond to the feature variables, [13] used the regular-
izer fi;(w) = |w; — w;| for every edge (i,5) € E, to
encourage connected nodes to be selected jointly. How-
ever, as pointed out in [13], this regqularizer brings a
large bias as it also requires connected nodes to have
similar weights, which is likely not true in general.
Here we reduce the bias by proposing the nonconvex
reqularizer: f;; = min{fij, T}, i.e., we cap the regular-
izer at the threshold 7. This will allow some weights
to differ significantly without getting heavily penalized.
In this example ¢ is the least squares loss.
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Algorithm 1 PA-PG.

Algorithm 2 PA-APG.

1: Initialize wq, u.
2: fort=1,2,... do

33z =wi1 — uVEe(Wi_1),

=

W €D Loy IS’;k (zy).

5: end for

1: Initialize wo = uy, pu, m = 1.
2: fort=1,2,... do
3 oz =w — puVe(uy),

4 Wi €D Lo FA’%C (z¢),

14++/144n2
5. My = —H5—,
. _ ne—1 _
6: U1 = Wi + Mert (Wt Wtfl).
7: end for

It is easily verified that each f;; is V/2-Lipschitz contin-
wous w.r.t. the Fuclidean norm. Moreover, the proxi-
mal map P’;ij can be computed in closed-form (see Ap-
pendix J for the detailed derivation): For s € {i,j},
trivially [P‘;LJ (W)]s = ws, while for {s,t} = {i,j},
[PY ()]s = w. — sign(w, — wy) min{pm, 254},
2
- {0, i = wj] 2 27 + (V7 = Vi)
Lo |w —wil < 2y/m7 + (VT = Vi)+)

Roughly speaking, n = 0 iff |w; —wj,| is large, and con-
sequently [P’inj (W)]s = ws, i.e., the algorithm gives up
“fusing” w; and w;, which can be beneficial in reducing
the estimation bias when w; and w; are truly different.

The next example swaps the role of the loss ¢ and
the regularizer fi, demonstrating the flexibility of the
general formulation (1).

Example 2 (Robust SVM, [18-20]) Support vec-
tor machine (SVM) is one of the most popular algo-
rithms for binary classification. However, it is known
not to be robust against outliers [16-18, 20]. In fact,
[16] constructed an example on which all algorithms
based on convez losses fail. Instead, [18, 20] proposed
the (nonconvex) truncated hinge loss as a robust alter-
native: fi(w) = min{7, (1 — y;x;/ w),}. It is easy to
verify that f; is ||x;||-Lipschitz continuous w.r.t. the
Euclidean norm, and its prorimal map can be com-
puted as (see Appendixz K for the detailed derivation):

(3)

_uw x| #T
PIJ}L@(W):W+ |:1 yng x£:|0 *YiXi,

X, X

where [] denotes the projection onto the interval
[0, 1], and the parameter n € {0,1} is explicitly given
in (33) in the appendiz. Roughly speaking, n = 0 iff
the margin y;x, w is small, i.c., the pair (x;,y;) is
likely to be an outlier, in which case P“q_ (w) =w, ie.
the algorithm “refuses” to update the weight. In this

example £ is the (multiple of the) squared 2-norm.

The two examples represent two extremes in applica-
tions: the former has a nonconvex non-separable reg-
ularizer while the loss is the simple least squares, and
the latter has a nonconvex non-separable loss while the
regularizer is the simple (squared) 2-norm. Of course

it is possible to have other combinations (e.g. the over-
lapping group lasso [8]), but for illustration purpose we
shall contend ourselves with the above examples.

Having demonstrated the relevance of problem (1), we
now turn to how to solve it efficiently. The main
difficulty, apart from the nonconvexity, is the non-
separability of the functions {f;}: they all share the
same weight w. Accordingly, the coordinate descent
algorithm of [11] cannot be efficiently applied. Sim-
ilarly, the (block) proximal gradient (PG) algorithm,
such as those in [9, 10, 12, 15], cannot be directly ap-
plied either, because we do not know how to efficiently
compute the proximal map P’;, even when we assume

each P‘]ﬁk is easy to compute. Other possible algorithms
include the alternating strategy [18] and the convex-
concave procedure [8, 20]. However, due to successive
linearizations, these algorithms can be slow, and nor-
mally would need the functions fi to be smooth.

Our idea is to approximate the proximal map P’; using
the linearization:

P; ~ Zk Qe Pl;k .
Pretending P‘]ﬁk (w) is a single “point”, we can plug
the right-hand approximation into the PG algorithm.
The resulting algorithm (PA-PG), summarized in Al-
gorithm 1, can now be used to solve (1). It is extremely
simple: alternating between a standard gradient step
w.r.t. the loss ¢ and a proximal step! w.r.t. the reg-
ularizers {fi}. Although the approximation (4) may
seem overly naive, linearizing a nonlinear object (at
least “locally”) is a ubiquitously useful technique (such
as the Taylor expansion in calculus). Indeed, for con-
vex functions ¢ and {f;}, the recent work [14] gave a
formal justification of Algorithm 1 and also the accel-
erated variation in Algorithm 2. In our later experi-
ments we found Algorithm 2 to be again more effective
than Algorithm 1 even for nonconvex functions.

(4)

We aim to generalize the nice results of [14] to the
current nonconvex setting and demonstrate its effec-
tiveness through experiments. This goal, as clear as it

!The big overbar and hat notation will be understood
after we present relevant technical results in Section 3.
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is, is far from trivial though. The difficulties we face
include: a). How should we interpret the sum in (4),
considering that for nonconvex fg, P‘;k may no longer
be single-valued? b). Does the right-hand side still
correspond to a proximal map of some function? c).
Can we formally justify the linearization? d). What
guarantee does (4) enjoy if plugged into the proximal
gradient algorithm? These questions cannot be an-
swered by existing works, such as [14] which relies en-
tirely on convexity, or [15] which relies entirely on sep-
arability (i.e., the functions f; have non-overlapping
arguments). A substantial technical development is
needed, which we do in Section 3.

Before going into the technical details, let us point out
a few practical advantages of Algorithm 1 and Algo-
rithm 2: 1). As a general meta-algorithm, they can
be used in a variety of settings. 2). For separable
functions, they reduce to the block PG algorithm [15]
while for K = 1 we recover the algorithms in [9, 10,
12], including the popular FISTA [24, 25] when con-
vexity is present. 3). They can be easily parallelized
when K is large (such as the RSVM example). 4).
The iterates they generate converge to a critical point
(globally optimal if convexity is assumed). These nice
properties are not shared by too many algorithms, let
alone simultaneously.

3 Technical Results

To justify our new algorithm, we need a few techni-
cal tools from variational analysis [26]. We equip RP
with the usual inner product (-, -) and the induced Eu-
clidean norm ||-||. For any closed? function f (not nec-
essarily convex), its Moreau envelope (with parameter
w > 0) is defined as [26]:

ef(w) = inf, 5 [w —2[* + f(2), (5)

and the proximal map is the corresponding mini-
mizer(s), see (2). One can roughly think the envelope
function e?‘ as a “regularized” version of f. For in-
stance, if f is the 1-norm, then e% is the celebrated
Huber’s function in robust statistics [17]. Since we
have stepped out of the convex domain, many “obvi-
ous” properties, such as well-definedness, smoothness,
and uniqueness, can no longer be taken for granted.
Fortunately, many appealing properties retain, possi-
bly under an alternative interpretation.

It can be shown that P/ is nonempty-valued iff f ma-
jorizes some quadratic function and g is small [26].
Here, for simplicity, we assume throughout that f is
bounded from below so that we need not restrict p.
Thus, P; : RP = RP is nonempty-, compact-, possibly

2The function f : R? — R U {co} is closed iff its epi-
graph {(x,t) € R” x R: f(x) <t} is a closed set.

nonconvex- and multi-valued. In fact, Lemma 1 in Ap-
pendix C showed that the proximal map Pgﬁ(w) is sin-
gle valued iff the envelope function eSﬁ is differentiable
at w. Both are trivially true for convex functions, but
they may fail for general nonconvex functions, particu-
larly functions that are “capped” at a certain value—
our running examples in this paper. When p | 0,
es(w) T f(w) for all w [26]. As mentioned before, the
proximal map is the key component of the proximal
gradient algorithm.

In the nonsmooth and nonconvex setting, the usual
gradient or subgradient no longer applies to character-
ize critical points. Instead, we are forced to “localize”.
We first define the regular (or Frechét) subdifferential

df(w) at w, as the collection of vectors v such that
vz, f(2) 2 f(wW)+(z—w,v) +o(|z —wl|),

where the little-o term signifies a local neighborhood.
Since 9 f can be empty even for Lipschitz functions
(e.g. —|-| at the origin), we take its “closure” to avoid
this degeneracy, arriving at the subdifferential 9 f(w):

{v:3Iw, > w, f(w,) = f(w),v, € éf(wn),vn — v}

Clearly, 5‘f(w) C 9f(w) for all w. Pleasantly, if f is
(resp. continuously) differentiable at w, then df(w)
(resp. 9f(w)) coincides with the usual derivative.
From the definition it follows that if w is a local mini-
mizer, then 0 € df(w) C f(w), which generalizes the
familiar Fermat’s rule. We will be interested in finding
(asymptotically) some w so that 0 € 9f(w), i.e., the
critical points of f.

We reassure ourselves some nice properties of the
Moreau envelope and the proximal map in Ap-
pendix A. In particular, we proved that any Moreau
envelope is concave after subtracting the function
ﬁ |||I*. The converse, which we prove next, will allow
us to “average” functions in a somewhat peculiar but
computationally appealing way.

Let SCV,, be the set of finite-valued p-semiconcave
functions, that is, functions f : R? — R such that
f- ﬁ ||[* is concave. For conciseness, denote CPB
the class of closed, proper, and bounded from below
functions. The next result, whose proof is deferred to
Appendix B, significantly extends [14, Proposition 2]:

Proposition 1 Fizp > 0 and f € CPB. Then f = e}
for some function g € CPB iff f € SCV,. Moreover,
the Moreau envelope map e : CPB — SCV, that sends
f€CPB to e‘; 18 increasing, and concave on any con-
vex subset of CPB (under the pointwise order).

Note that in the nonconvex setting, the Moreau enve-
lope (for any fixed p > 0) is no longer injective (see
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Example 3 below). It is clear that SCV,, is a convex
set. Therefore we can average p-semiconcave functions
and still be able to find a pre-image under the Moreau
envelope map, thanks to Proposition 1. This leads to
the generalized notion of the proximal average. Specif-
ically, recall that f = Y, ayfi with each f; € CPB,
i.e. f is the convex combination of the component
functions {f} under the weight {ay}. Note that we
always assume f € CPB.

Definition 1 (Proximal average) The proz-
imal average AM is any function g such that
el = Zszl ake’;k. In face of non-uniqueness, we will
always pick A" = —ej,, where M := =3~ ozke‘;k.

The main idea behind this definition is to find some
function whose Moreau envelope is simply the average
>k ake’;k. Indeed, the existence of such a function
follows from the surjectivity of e*, which we proved in
Proposition 1. However, unlike the convex case, the
proximal average for nonconvex functions need not be
unique, and for concreteness we have picked a conve-
nient representative in Definition 1. We remark that
[27] used a slightly different definition for the sake of
pursuing smoothness; for us the current definition is
more useful. Note that for any function f, the so-called
p-proximal hull h? = —e(fe;) has the same Moreau

envelope as f but need not coincide with f [26] (while
for convex functions f, always h‘; = f). One easily
verifies, through the proximal hull, that our particu-
lar choice in Definition 1 is indeed legitimate (and will
prove convenient later, see Proposition 5).

To facilitate our discussions, let us first prove some
results that are interesting in their own rights. For any
multi-valued map P : RP = RP, we define its closure
P:RF = RP, w— {z: Hw,,2,} = (W,2),2, €
P(w,)}, i.e., the graph of the closure P is simply the
closure of the graph of P. By “closing” a map we gain
some continuity property. Also define P(w) = P(w)
at points w where P(w) is single-valued and empty
otherwise.

Definition 2 (Extremal proximal maps) Define
the limiting prozimal map L’Jf = ISI;, and the hull
prozimal map Hy : RP = RP,w > conv(P}(w)),
where conv denotes the convex hull.

Thanks to item iv) of Proposition 7 (in Appendix A)
and [26, Theorem 1.25], we know 0 # Li(w) C
P/ (w) C Hi(w) for all w. The inclusion can be strict,
as we will see shortly. It may help to keep in mind that
L and H% are the smallest and biggest proximal map
“compatible” with the function f, respectively. In Ap-
pendix C we prove many new structural properties of
these different notions of proximal maps.

The next result characterizes exactly when Moreau en-
velopes coincide (proof in Appendix D).

Proposition 2 Fiz u > 0. For any f € CPB, there
exist h’;,ﬂ’]ﬁ € CPB such that for any g € CPB, e} =
e + ¢ for some constant c iff Wy < g —c < U iff
PZ; (w) C Py(w) C Hi(w) for all w.

In fact, ¢4 is the restriction of h% onto some closed set.
Their explicit forms can be found in the proof. It is
also true that P}, = L on the real line. Using Propo-

sition 2 we can easily characterize when the proximal
average is unique (essentially our particular choice in
Definition 1 plays the role of h). It also leads to the
following result that completely characterizes proximal
maps on the real line (proof in Appendix D):

Proposition 3 The map P : R = R is a proximal
map iff it is (nonempty) compact-valued, monotone,
and has a closed graph. Moreover, there is a unique
function (up to addition of a constant) f such that
P,=P iff P is also convex-valued.

Thus, both the SCAD [2] and the MC+ [3] threshold-
ing rules correspond to a unique regularization func-
tion. In contrast, there are infinitely many different
regularizers that all lead to the hard thresholding rule,
see Example 3. Importantly, Proposition 3 allows us to
directly design the proximal map (thresholding rule),
without even the need to refer to the regularizer f!
We now come to the main result for justifying Algo-
rithm 1. Recall that the main property of the proximal
average, as seen from its definition, is that its Moreau
envelope is the convex combination of the Moreau en-
velopes of the component functions. We wish to say
something similar for its proximal map. Indeed, this
is possible after an appropriate modification (proof in
Appendix E):

Proposition 4 For all w, 0 # Y, akls’;k(w) <

[P (%) N (1S, P, (w))]. )

Recall that the middle term is exactly the approxi-
mation we employed in Section 2. Unlike the con-
vex case, we have to replace the simpler average
Zszl akP’;k with the slightly more complicated clo-

sure » ., o If”f‘k7 due to the possible multi-valuedness

of P . Indeed, some element in S, axP%, (w) may
not be in P}, (w), which itself may change if we use a
different proximal average. Proposition 4 avoids such
pathology by always picking a common element. More-
over, in Section 4 we prove Algorithm 1 converges to
a critical point of the proximal average, which itself
may not even be unique! This ambiguity is resolved
using Proposition 4, which guarantees all realizations
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Figure 1: (a): the £y function; (b): hard-thresholding operator; (c): proximal hull hj.j; (d): proximal map of hy.;
(e): solid: another (continuous) function that has (b) as proximal map, dashed (+ red solid): function g. See
Example 3 for the explanations and formulas. Throughout p =1, = 1.

of the proximal average coincide along the trajectory
of Algorithm 1.

On the real line, thanks to Proposition 3, >~ o IS‘;k =
Dk Ok L,}Lw with the latter being readily available. For
our Example 1 and Example 2, the computations
also reduce to the real line (see Appendix J and Ap-
pendix K, respectively), hence can be easily addressed.

Let us now demonstrate some pathology of the proxi-
mal map, using a familiar nonconvex function.

Example 3 Consider the cardinality function on the
real line |x|g = %21,;750. Its proximal map (with = 1)
is the well-known hard-thresholding operator:

x, |z| > A
0, lz] < A
In the literature, the above proximal map at |x| = A

is usually set to 0. Mathematically, this is not precise
and possibly confusing: If PHo was single-valued at
x| = A, thene (z) = 2 min{\?, 22} would be contin-
uwously differentiable, which is not true. Interestingly,
without the tools we have developed so far, [1] noticed
that the functions

h(x) == 5 (A% = (|2 = A)*1j51<n) (7)
Az[Ljzj<n + ’\721|x\zx (8)

2
&
[

also have (6) as their (limiting) proximal map. We
verify that the former is exactly the proximal hull hHo'
Applying Proposition 2 we know any function f > h|'|0
with equality on the closed set [—oo, —A] U [A, 00] U{0}
will have (6) as its limiting proximal map. Further-
more, if f is strictly larger than h | ~on =M, such
as the function g above, then according to Lemma 7 (in
Appendiz C) it has the same proximal map as the car-
dinality function! See Figure 1 for the illustrations.

Statistically, one is often interested in the hard-
thresholding rule (6), rather than the cardinality func-
tion itself [1, 2, 10]. Figure 1 shows that there are ac-
tually infinitely many functions that all yield the same
proxzimal map (6). This observation suggests that we

should not base our algorithm on any particular func-
tion form but on the proximal map directly (which is
less ambiguous). In this sense the proximal gradient
algorithm seems to be a well fit. Similar conclusions
have been made in [10]. We point out that the lessons
we learned from this example extend to most noncon-
vex reqularizers therefore deserve some attention.

To provide a strong convergence guarantee for Algo-
rithm 1, we will (and perhaps should) restrict the (non-
convex and nonsmooth) functions under our considera-
tion, for otherwise they can behave very pathologically.
To do so we recall some notions from semi-algebraic
geometry [28]. A set A C RP is semi-algebraic if it
is the finite unions of finite intersections of the sets
{w € R? : py(w) = 0,p1(w) < 0}, where po,p; are
polynomials with real coefficients. For instance, hy-
perplanes, halfspaces, spheres, ellipsoids, the positive
semi-definite cone, are all semi-algebraic. The most
striking property of semi-algebraic sets is that their
intersection with any line is the union of finitely many
points and open intervals (due to the fact that any
polynomial admits only finitely many roots). Thus,
for instance, the set of all natural numbers is not semi-
algebraic. A function f : R? — R U {co} is semi-
algebraic iff its graph {(w, f(w)) : w € dom f} is a
semi-algebraic set. For instance, all power functions
with rational exponent and all polyhedral functions are
semi-algebraic. On one hand, semi-algebraic functions
are extremely well-structured, allowing one to prove
many strong results; on the other hand, they appear
very naturally in various applications, such as the ones
we consider here: All functions appear in our exper-
iments are semi-algebraic. Note that the exponential
function and power functions with irrational exponent
are not semi-algebraic. They belong to the more gen-
eral class of definable functions®. For brevity, we omit
the relevant definitions here but refer to the nice ar-
ticle [28]. Since all of our results extend to definable
functions (w.r.t. some order-minimal structure that
contains all semi-algebraic functions), we will use the
term definable freely below; for all practical purposes,

one can simply think of “definable” as semi-algebraic.

3In case one wonders, there do exist non-definable (even
convex) functions, which oscillate infinitely often. Such
functions are unlikely to be useful in applications though.
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Definable functions are closed under all familiar alge-
braic operations. For instance, the sum, product, and
composition of definable functions are definable, re-
spectively. So is the scalar multiple and the inverse.
Moreover, the following result is useful to us (proof in
Appendix F).

Proposition 5 The function f is definable iff e’]}b(w),
as a function of (w, i), is definable on RP x Ryi4. In
particular, the proximal average (cf. Definition 1) of
definable functions is definable.

As we mentioned before, when u | 0, e’; 1 f point-
wise [26]. Under the Lipschitz assumption, we can
strengthen the convergence to be uniform (Proof in
Appendix G):

Proposition 6 Under Assumption 1 we have 0 < f—
3 K
A< F - S, < BN ap 2.

Similar as the convex case, we see that the proximal
average A" is a better under-approximation to f than
the average of Moreau envelopes, i.e. ), ake;‘k.

4 Theoretical Justification

Given our development in the previous section, it is
now clear that Algorithm 1 aims at solving the ap-
proximate problem:

miny (w) + A¥(w). 9)

The next important pieces are to show a). Algorithm 1
converges for the approximate problem (9); b). The
approximate problem (9) is reasonably “close” to the
original problem (1). Indeed, for the first piece, we
have the following result (proof in Appendix H):

Theorem 1 Let Assumption 1 hold and the functions
¢ and {fr} be definable. Choose p < 1/L, then Algo-
rithm 1 converges to a critical point of (9), provided
that the iterates are bounded.

The last assumption is trivially met if, say the objec-
tive in (9) has bounded sublevel sets. To appreciate
the significance of Theorem 1, let us consider a simple
example: Assume say both 1 and -1 are critical points
of our problem, then any limit point of the iterate
sequence {1,—1,1,—1,...} is indeed critical, but the
whole sequence does not converge at all. This behavior
can happen for the coordinate descent algorithm [11]
or the convex-concave procedures (cccp) [8, 19, 20],
but is eliminated for our algorithm, thanks to Theo-
rem 1.

To fulfill our second piece, we need a notion of approx-
imate minimizer. We call w an e-local minimizer of f
if there exists some neighborhood A of w such that
forall z € N, f(w) < f(z)+e. Of course, when € = 0,

we retrieve the usual notion of local minimizer. Then
we have (proof in Appendix I):

Theorem 2 Let Assumption 1 hold. Fiz the accuracy
€ > 0 and choose p < min{1/L,2¢/ Y, ayM2}. If
Algorithm 1 converges to an e-local minimizer of (9),
w, then W is also a (2¢€)-local minimizer of (1). Same
is true if W is in fact an e-global minimizer.

It is possible to prove that locally Algorithm 1 con-
verges at a rate no slower than sublinear (when all
functions are semi-algebraic). Moreover, if we let
14 0, we can prove that the iterates converge to a crit-
ical point of the original problem (1). In experiments,
we found that a relatively small p already yields sat-
isfying results, therefore we omit the rather technical
discussions.

5 Experiments

We evaluate our algorithm on two application do-
mains: truncated GFlasso (Example 1) and robust
SVM (Example 2). We demonstrate the benefits of
nonconvex formulations by comparing with the con-
vex counterparts, and we verify the effectiveness of
our proposed algorithm against alternative optimiza-
tion methods such as alternating coordinate descent
(alter) [18] and the convex-concave procedure (cccp)
[19]. We found that Algorithm 2 is always faster than
Algorithm 1 in all our experiments so only the former
(denoted as proxavg) is included here.

5.1 Multi-task GFlasso (Example 1)

Formally, the multi-task graph-guided fused lasso
model is given by:

q
%HY—XWH%JFAZFlsb(Wj) (10)
+ 7 Z(j,k)eE Wik Y(w; — sign(w;r) W),

where w; € RP is the j-th column of W. Here ¢
is a regularizer that encourages sparsity among the
elements of w;, and v is a regularizer that encour-
ages fusion between the elements of w; and wj, when
output variables j and k are connected in the graph.
In our experiment we use ¢(u) = ||lul|; and ¥(u) =
> min{|w;|, 7} If 7 = 0, we recover the multi-task
lasso while if 7 = oo, we recover the GFlasso which
is convex. For any 7 > 0, the fusion regularizer is
non-separable and nonconvex.

We compare different methods (corresponding to dif-
ferent 7’s) on a synthetic data in which pairs of corre-
lated output variables, y; and yy, have similar weights,
w; and wy. We choose a block correlation graph for
concreteness and generate the data as follows. First,
partition the output variables yq,...,y, into disjoint
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Figure 2: The F1 score under (a): varying sample size (n); (b): varying dimensionality (p); (c): varying graph
error. (d): Speed comparison between our algorithm (proxavg), alternating, and cccp.

ccat proxavg | alter | cccp svin | sparse
training time (sec) 25.34 897.98 | 1151.26 | 69.85 | 110.21
test accuracy (%) 91.12 84.77 | 87.02 | 69.96 | 89.20
detected outlier (%) 9.94 20.12 18.45 - 10.47

Table 1: Results on the CCAT data set.

groups. Next, generate the sparsity pattern for the
weight matrix W by assigning the same (randomly
chosen) set of active input features to all the output
variables in each group. The nonzero entries of W are
drawn from Uniform(0.4,0.8), but all variables in the
same group are given the same weight for each feature.
Draw X ~ N(0,I) and Y ~ N(XW,02I). Finally,
generate the correlation graph E over the output vari-
ables by thresholding the sample covariance matrix at
some value v. We also test the robustness of the al-
gorithms by randomly changing certain percentage of
the edge weights.

A series of experimental results are shown in Figure 2.
Regularization parameters A, v, and 7 (whenever ap-
plicable) are selected by optimizing the prediction er-
ror on a held-out set. We observe that a). The non-
convex fusion regularizer (0 < 7 < o0) consistently
outperforms lasso (7 = 0) and GFlasso (7 = o) in
terms of both feature selection (F1 score) and predic-
tion error (not shown); b). Our algorithm is several
times faster than both alter and cccp.

5.2 Robust SVM (Example 2)

We conducted experiments on two benchmark data
sets. The Long-Servedio [16] dataset is a well-crafted
synthetic data for testing robustness against label
noise and delicate leverage points. We generate 10,000
training examples (each with 21 features) and ran-
domly flip 10% labels. The other real dataset CCAT
from RCV1 [29] contains 23,149 training examples
(each with 47,152 features) and 781,265 test exam-
ples. Similarly, we randomly flip 10% of the labels in
the training set, and scale the corresponding features
by 10. We average the results with 10 repetitions and
report them in Table 1. For both SVM, alter [1§],

and cccp [19], we use the state-of-the-art LIBLINEAR
solver [30]. Instead of the (squared) 2-norm regular-
izer, our algorithm extends easily to the 1-norm regu-
larizer hence we also include sparse to further demon-
strate the flexibility. In contrast, LIBLINEAR cannot
deal with the 1-norm regularizer.

We confirmed that SVM fails miserably on the Long-
Servedio dataset (achieving 72.14% prediction error),
while all other solvers (aimed for the robust SVM)
achieve nearly perfect results and identify the cor-
rect amount of outliers. Our algorithm is fastest but
the margin is small (due to the small size of the
dataset). For the CCAT dataset, our algorithm not
only achieves superior prediction accuracy but also
much pronounced efficiency. Again, SVM severely suf-
fers from outliers while alter and cccp are slow due
to their sequential nature: multiple calls of the SVM
solver can only be executed consecutively. Interest-
ingly, with small sacrifice in accuracy and training
time, sparse, using 1-norm regularizer in SVM, learns
a model with only 4.8% nonzero entries, whereas the
models learned by all other methods are at least 10
times denser. This could hugely reduce the test time—
a critical requirement in some financial applications.

6 Conclusions

We successfully extended the proximal average prox-
imal gradient algorithm into the nonconvex setting,
through a careful examination of the now multi-valued
proximal map. We proved that the whole sequence of
iterates converges to a critical point. Experimentally,
the proposed algorithm has shown much promise, and
naive parallelizability makes it even more favorable.
We intend to strengthen the convergence guarantee
and develop a fully distributed implementation.
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Supplement for Minimizing Nonconvex and Non-separable Functions

We start with recalling some definitions needed throughout.

For general nonsmooth and nonconvex functions, the usual gradient or subgradient, of course, no longer applies.
Fortunately, a suitable theory from variational analysis is available, e.g. [26]. For any closed function f, its
regular (or Frechét) subdifferential at w, 0f(w), is the collection of vectors v such that

vz, f(z) 2 f(W)+(z—w,v)+o(|z —w]).

The last lower order term implies that the regular subdifferential is a local property of the function (as it should
be in the absence of convexity). Unfortunately, 0f can be empty at certain points even for Lipschitz continuous

functions (e.g. —| - | at the origin). Taking an appropriate closure we can avoid this degeneracy and arrive at
the subdifferential Jf:

vedf(w) < Iw, = w, f(wn) = (W), vV € Of (W), vy = V.

Clearly, df(w) C 8f(w) for all w. If f is (resp. continuously) differentiable at w, then df(w) (resp. Of(w))
coincides with the usual derivative. From the definition it follows that if w is a local minimizer, then 0 € df(w)
and 0 € 0f(w), which generalizes the familiar Fermat’s rule. In the main text, we are interested in finding some
w so that 0 € 9f(w), i.e., the critical points of f.

We caution that the subdifferential alone no longer characterizes the function (even in the presence of differen-
tiability) [31], although such pathologies cannot happen for definable functions.

For any, not necessarily convex, function f, its Fenchel conjugate
£*(2) = max (w, ) — f(w)
w

is always convex.

A Properties of the Moreau envelope and proximal map

Proposition 7 Let u, A > 0, f be a closed, proper, and bounded from below function, then

i) (&) =+ 5 1%
ii). e < f, infy e} (w) = infy, f(w), argmin,, e} (w) = argmin,, f(w) C {w:w € Pl (w)};

iii). z € Ph(w) = w €z+pu- 0f(2), and 0 (w) C i(w — Pl(w));

w). Up to a (Lebesque) null set, P'; is single-valued and Ve/s(w) = i(w —Ph(w)).

v). e (w) = e} (w) and P4 (w) = P}¥(w) = \- P4

f)\,l(/\_lw) for all w;

vi). el (w) = e;ﬂ”(w) and P:;; (w)N [ w + ﬁP?ﬂ‘(w)] # 0 for all w;

e
y n L 2ys — L2
vii). pe + (uf + 5 117" =2 117
Proof: The first item is the usual duality from infimal convolution to summation, see e.g. [26].

For item ii), setting z = w in the definition of the Moreau envelope, we see e;‘ (w) < f(w) for all w. Similarly
using the nonnegativity of 1 ||I* we can prove infy e (w) = infw f(w) and argmin, e};(w) = argmin,, f(w).
Moreover, if w is a global minimizer of f, then we claim w € P}‘- (w) for otherwise by choosing any z € P?(w)

we have e/;(z) < ¢};(w), contradicting the fact that w is also a global minimizer of e/;.

We come to item iii). If z € P%;(w), then using the (generalized) Fermat’s rule we have 0 € i(z —w)+0f(z).
The fact that de’;(w) C %(w — P’ (w)) follows from the general calculus rule of subdifferentials, see e.g. [26,
Theorem 10.13].
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For item iv), we notice that any Moreau envelope is the difference of two finite-valued convex functions, which
follows from vii) of Proposition 7 (and is proved below). Thanks to the Rademacher theorem (see e.g. [26,
Theorem 9.60]), any Moreau envelope is differentiable up to a (Lebesgue) null set. But if e’; is differentiable at

w, then —Veli(w) = 5(—e‘f‘)(w) = i(conV(P’Jf(w)) —w), see e.g. [26, Example 10.32]. Thus P;(w) is a singleton

and Vel (w) = %(W — P%(w)) up to a null set.
Item v) is the result of simple algebraic manipulations.

For the first claim in vi), use the definition:

e;\?(w) = inf 5 |w — z|)* + ¢ (2)

e 2 2
:1rz1flrl1lf%||w—z|| +ﬁ||z—ll|| + f(u).

Fix u and minimize z we obtain z = % Plug it back in and simplify we verify the claim. The second claim
follows from taking the subdifferential on both sides of the first claim:

A+
8ei‘;fb (W) = 0e; " (w).
Indeed, the second result in item iii) implies that there exists some z € del.(w) = 8e;+“(w) such that z €
s
+(w—Pl(w)) and z € ﬁ(w - P?Jr“(w)). Rearranging we obtain the claim.
s

For the last item iv), simply note that

. 2 2 2
pelp(w) = min b |1z — w|> + 1 (2) = § [wif* = sup, { (w.2) — [ (2) + L ]12)] },
and resort to the definition of the Fenchel conjugate. |

The results resemble Proposition 1 of [14], with some equalities replaced by subset containments (which is
necessary as demonstrated in Example 3). The last property in ii) shows in particular that any global minimizer
of f is a fixed point of the proximal map, hinting that the proximal gradient algorithm might still work in the
nonconvex setting. Item iv) reassures that we can still treat the proximal map P; (up to a small change) as the
derivative of the Moreau envelope e?, except perhaps on a null set. The last item vii) is a more general form of
Moreau’s identity, from which the continuity of e’; is apparent.

B Proof of Proposition 1

Proof: We prove the first part, which will imply that e* : CPB — SCV,, is onto.
=: This is already mentioned in the last item in Proposition 7.

<: Let h = ﬁ ||I* = f be convex and finite valued. Then the function j(w) := h*(u~tw) — i |wl|? is clearly
closed. Moreover,

e (w) = inf & lw— 2 + (" '2) - & ]
= g lwll® = sup [{w, ™" 2) = 0" (4" 2)]

s [WII* = h(w) = f(w),

due to the convexity of h.

The rest of the proof follows that of [14]. It is clear that e* : CPB — SCV,, is increasing w.r.t. the pointwise
order, ie., f > g = e} >el.



Minimizing Nonconvex Non-Separable Functions

Let « €]0, 1], then

1nf o llw — z||> + af(z) + (1 — a)g(z)

+ 45w = 2] + (1 - a)g(z)
+

inf 152 |w — 2[|* + (1 — a)g(z)

Cari(1-a)g(W) = )

= inf g7 {lw — z||> + af ()
> inf o0 ||w — z||> + af(2)
= ael(w) + (1 — a)ey(w)

verifying the concavity of e*. |

Y

C Discussion on different notions of the proximal maps

We document in this section some new results about the different notions of proximal maps defined in the main
paper.

Recall that a multi-valued map P : RP = RP is upper semicontinuous and compact valued (usco) iff for all
w € RP, P(w) is nonempty and for any sequence (w,,z,) with z, € P(w,), w, — w, the sequence z, has a
cluster point in P(w). Note that for a usco map P, P(w) is compact for each w.

Fix 41> 0 and f € CPB, recall the definition of the map P:

. Ph(w), if P%(w) is single-valued
0, otherwise '

We record the following result for convenience:

Lemma 1 P‘;(w) is a singleton iff e‘; 1s differentiable at w.

Proof: Suppose first that P%(w) is a singleton, then according to [26, Example 10.32] both 9(—e};)(w) and
d(es)(w) are singletons. Applying (26, Theorem 9.18] we know e’ is differentiable. Conversely, if € is
differentiable at w, so is —e?. Applying again [26, Example 10.32] together with [26, Exercise 8.8] and [26,
Corollary 8.11] we know P(w) is a singleton. ]

Thus Is? is almost everywhere defined. Our next goal is to extend its domain into the whole space by semicon-
tinuity. Succinctly, we take the closure of its graph and obtain the limiting proximal map L‘; (see Definition 2).

Lemma 2 L‘; is the minimal (in the sense of graph inclusion) usco map that extends IS‘;

Proof: Clearly for each w, L;(w) 2 |5’;(W) Thanks to item iv) of Proposition 7 and [26, Theorem 1.25], we
know ) # L;(w) C P (w) for all w. In order to prove L is usco, take any sequence (wy,z,) with z, € L;(w,)

and w, —= w, and we want to find a cluster point z of {z,} that is in L’Jf(w). Using the definition of L‘Jﬁ

m—r oo

we know there exists (Wy,m, Zn,m) —— (Wn,2n), Znm = IS’;(an) Since P;‘ is locally bounded [26, Theorem
1.25] and wy, T W 2% w, w.lo.g. we can assume {Wn,m} hence also {2z} are bounded. For each

n, we choose some m,, such that Wy, m,, —Wy| < % and |2y, m,, — 2zn| < % Passing to a subsequence if necessary

we can assume the sequence {z, , } is convergent. Clearly z, converges to the same limit say z. Thus we
. > n—oo

have constructed the sequence (W, ., , Zn,m,, ) With z,, n,, = P‘]ﬁ(wmmn) and w,, ,,,, — W, therefore the limit

z € L;(w), completing the proof for the usco of L.
It is clear from the definition that any usco map that extends ﬁ; must also extend L‘; , implying the minimality

of the latter. [ |

Later on we will need some beautiful results about monotone maps hence we recall some definitions here. A
multi-valued map P : R? = RP is monotone if for all w,z and u € P(w),v € P(z) we have (w —z,u —v) > 0.
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Monotone maps are generalizations of monotone functions. A maximal monotone map is a monotone map whose
graph is not properly included in any other monotone map. According to [26, Proposition 12.19], any proximal
map P’; is monotone. Clearly, the restriction P;‘ is monotone as well, so is its “closure”:

Lemma 3 L’; is monotone.

Proof: For any w,z,u € Li(w),v € L%(z), we find (wp,u,) — (w,u) with u, € FA)?(W”) and similarly
(Zm, Vi) — (2, V) with v,,, € IS’;(zm) Thus 0 < (Wy, — Zp, Uy, — Vi) = (W — 2,0 — V). [ ]

Lemma 4 0(ef)(w) = p~!(w — P (w)), 0(e})(w) = = (w — L} (w)).

Proof: Simply combine Lemma 1, [26, Corollary 9.21], and [26, Example 10.32]. |

The p-proximal hull of f € CPB is defined as h’; := —eéﬁeu). As shown in [26, Exercise 1.45], ey = e} <= h’ =
!

hi. Moreover, f agrees with h? on the (closure of the) range of its proximal map Im(P’]ﬁ). It turns out that the
proximal map of the proxmal hull is simply the convex hull:

Lemma 5 H’]ﬁ = PL‘,;.

Proof: Since P‘; is usco and monotone [26, Proposition 12.19], its “convex hull” H‘Jﬁ is also monotone and usco
(32, Lemma 7.12]. By [32, Lemma 7.7] we know H/ is maximal monotone. On the other hand, combining
26, Example 11.26] and [26, Proposition 12.19] we also know Pj. is maximal monotone. Since e} = ej. [26,
s s
Example 1.44] and f agrees with h; on Tm(P%), it easily follows that P{,.(w) 2 P’(w) for all w. By construction
;

H:(w) 2 P%(w) for all w. Therefore we have two maximal monotone maps Pi and H both extending the
s

monotone map Pﬁﬁ . Applying [32, Theorem 7.13] completes our proof. ||

Note that a similar argument around maximal monotonicity reveals that conv(L’(w)) = H;(w) for all w.

We can now start to characterize when two functions have the same Moreau envelope.

Lemma 6 Fiz any p > 0 and f,g € CPB. Then the following are equivalent:

(i). ey =€} +c for some constant c;
(it). For all w, Pt(w) NP (w) # 0;
(iii). Lt = L%;

(iv). Hy =HY.

Proof: (i) = (ii): Clearly 0¢;(w) = e} (w) for all w. For any w, according to item iii) of Proposition 7, we
know there exists some z € P/(w) such that %L(w —z) € 0¢lf(w). Similarly, there exists some u € P4(w) such

that i(w —z)= i(w — u), namely that z = u. Therefore P’Jf(w) P4 (w) # 0 for all w.

(i) = (i): Observe that for any h € CPB the Moreau envelope €}/, being a difference of two finite-valued convex

functions (see e.g. item vii) of Proposition 7), is locally Lipschitz continuous. Thanks to Rademacher’s theorem,

we thus know e} is differentiable up to a (Lebesgue) null set. For any w, consider its (open) neighborhood Ny

such that the restrictions of both e}L and el are Lipschitz continuous. Clearly e — e}‘ is also differentiable on

Ny up to a null set. On the other hand, according to Lemma 1, if €} is differentiable at w, then P} (w) is a
1

singleton and Vej,(w) = 5 (w — P} (w)). Thus on Ny, up to a null set, the derivative of e/ — €/ not only exists

but also vanishes, due to the assumption P} (w) (P’ (w) # () for all w. Since a Lipschitz continuous function is

absolutely continuous, using the mean integral theorem we know eff — e‘; = ¢y on the neighborhood N, for some



Minimizing Nonconvex Non-Separable Functions

constant ¢y. Hence we have proved that the continuous function ef — eéf- is locally constant on the connected
set RP. A simple topological argument shows that el — esﬁ must be a constant on all of RP.

(ili) = (ii): Clear, since P’;(w) 2 L;(w) # 0 for all w and f € CPB.
(i) = (iii): Apply Lemma 4.

(i) =

iv) = (iii): Using Lemma 5 we have PL‘Z = PL‘; hence LL‘S = L{]‘,;. But the already established equivalence (i)
<= (iii) implies Lﬁ? = L) for any f € CPB. Thus L} = L%. ]

(iv): e = el + c implies hf = h’; + ¢ hence HY = H’;, thanks to Lemma 5.

Lemma 7 Let P? be the proximal map of some function f € CPB. Then we can explicitly construct the function

(11)

" 5
o(w) = h'(w), WEIm(.Pf)
a(w), otherwise
with any a(w) > h% (W) + ew for some ey > 0, such that P} = P'.
Proof: By definition hy < g </, see (15). Applying Proposition 2 we have e} = /. Let z € P/(w), then

2
ef(w) = 5; |z = wl” + f(2)
2
32 12 = wll” + h(2)

2
= Lz wl® + g(z)
— eli(w),

implying z € P{(w). Similarly, any z € P{(w) N Im(P}) must be in P’;(W) as well. If there exists z €
Pg(w)\lm(P?), then

2 2
ey (W) = 5, Iz = w|” +a(2) > 5 |z — w|” + h}(z) > e (W) = el (w),

contradiction. Therefore P‘; = Pb.

The explicit construction of g relies on that of the proximal hull h’;. We first take the convex hull of P at each
point. This recovers H = P{,. Next we recover the proximal hull h%. Tt follows from [26] that h’; + ﬁ” )% is
s

convex, thus

. 2
et () = min 3, o 2]’ + (2 (12)
= 5 [wl* —sup (w/p,2z) — (W} (2) + 5 1z]%) (13)
Thanks to convexity, we have H(w) = d(h’; + i” “12)*(w/p). Integrating H; along rays we can recover
(b + ﬁH -||*)*. Lastly, taking Fenchel conjugate we have h’s hence g explicitly. [ |

Note that the function ¢g in (11) may not be closed, hence can be inconvenient. However, if we choose a(w) —
h‘;(w) > e > 0 (ie., € is independent of w), then closedness can be achieved, without harming the conclusion,
by taking the lower semicontinuous hull.

Corollary 1 Im(P%) = Im(H}) <= Im(P}) = Im(H}) < P} =H}.

Proof: Apply Lemma 5 and Lemma 7. |

On the real line we can completely characterize the proximal map.
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Lemma 8 IfP : R = R is mazimal monotone, then it is a proximal map.

Proof: Tt follows from [26, Exercise 12.26, Theorem 12.25] that P is the subdifferential of some convex function
f- Let h= f* — 1|-|*. We claim that P, = P. Indeed,

en(w) = min 3 lw — z|* + h(z) = §llw|® = sup (w, 2) — f*(=).
z

Thus P, (w) = df(w) = P(w), thanks to the convexity of f. ]

Proposition 3 P : R = R is a prozimal map iff it is (nonempty) compact-valued, monotone, and has a closed
graph. Moreover, P is mazimal monotone iff there is a unique function (up to addition of a constant) f such
that Py = P iff P is also convez-valued.

Proof: If P is a proximal map (of some function f), then it is clearly compact-valued, monotone, and has a
closed graph, see [26]. Conversely, let P : R = R be compact-valued, monotone and have closed graph, then
its (pointwise) convex hull H is maximal monotone [32, Lemma 7.12, Lemma 7.7]. Applying Lemma 8 we know
there exists a function h € CPB such that P, = H. We construct the closed function

o() = {h(w), w e m(P) 14

0, otherwise

According to Lemma 7, P is a proximal map iff P, = P.

Indeed, let ¢ € P(w) C P, (w). Then
ep(w) = 2(q —w)*> +h(q) = 3(q — w)> + g(q) > e,(w) > e,(w),

implying ¢ € P (w). Therefore P (w) 2 P(w) for all w. For the converse, first let ¢ € P (w) N Im(P), thus
we know g € P(z) C P (2) for some 2z € R. If 2 # w, then due to monotonicity, we must have ¢ € P (u) for
any (w A z) <u < (wVz). Note that P and P, agree almost everywhere (since both are single-valued almost
everywhere). Using the closedness of the graph of P we know ¢ € P(w). Therefore P(w) 2 P (w) N Im(P)
for all w. To complete the proof we need to remove the intersection with Im(P). Let s = sup{Im(P)} and
i = inf{Im(P)}. Let ¢ € P,(w)\Im(P) (there is nothing to prove if there does not exist such ¢). We claim that
it is impossible to have i < ¢ < s. Suppose not, then ¢ is sandwiched in the bounded interval ]a, b[ with some
a € P(u),b € P(v). By our definition of g in (14), ¢ € Im(P), thus there exists P(w,) 3 ¢, — ¢. W.l.o.g. we can
assume a < ¢, < b. Due to monotonicity of P, we must have u < w,, < v. Therefore we can find a subsequence
of {wy,} that converges to, say z. Since P has a closed graph, we must have ¢ € P(z) C Im(P), contradiction. We
are left with ¢ = s or ¢ = 4. Assume the former, which implies s < co. For any z > w, using monotonicity and
maximality we must have s € P (2). Since P, agree with P almost everywhere, we must have again ¢ € Im(P).
The case ¢ = i is dealt with similarly. In summary, we have proved that actually P (w) C Im(P) for all w, hence
completes the proof for P =P,.

Turning to the second claim, we first note that the maximal monotonicity of P clearly implies its convex-
valuedness. The converse follows from [32, Lemma 7.7].

If P is not convex valued at some point w, then the range of P must have a gap around P(w). We construct
the function g in (11) with different a(w). They all have the same proximal map but differ more than just a
(global) constant. Conversely, if P = P 7 = P, is maximal monotone, then Id + df = Id + dg and the functions

f+3 |-I> and g + : ||| are convex [26, Proposition 12.19]. Since convex functions are determined by their
subdifferentiable (up to a constant), we have f = g + ¢ for some constant c. ||

Proposition 3 provides guidance on designing different thresholding rules while Lemma 7 enables the construc-
tion of the corresponding regularization function. Together they consist of a significant generalization of [33,
Proposition 3.2].

Corollary 2 If P : R — R is increasing and continuous, then there is a unique function f (up to the addition
of a constant) such that P, = P.
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Proof: Simply note that any continuous monotone map is maximal monotone. ||

Thus, both the SCAD [2] and the MC+ [3] thresholding rules correspond to a unique regularization function. In
contrast, there are infinitely many different regularizers that all lead to the hard thresholding rule, see Example 3.
Note that, unlike the convex case, the proximal map in general need not be non-expansive.

D Proof of Proposition 2

Proof: We define the functions h’; := —e’(teu) (namely the p-proximal hull of f) and
{

() = {h/;(w), weIm(L}) 15)

0, otherwise

Due to the closure operation on Im(L’;), 6’; is closed. We note that f — hiﬁ > 0 with equality on Im(P’;), hence

also on Im(P’;) due to lower semicontinuity.

First assume that et = e.‘; + ¢ and we prove that h"; <g—c< E‘f‘. As shown in [26], f > hf; for all f € CPB.
Thus g > ht = fe?_eu) = feé‘_e“_c) = feé‘_e“) + ¢ = h% + ¢, which is the first inequality to be proved.
o F—c ¥

For the second inequality, Lemma 6 in Appendix C shows that Léﬁ

Im(Pg) 2 Im(Lg) = Im(L%). Thus g —c < £

= LY, thus g agrees with hf' = h’; + ¢ on

Next we prove that eg;‘ = e/t, which will certify the converse for the first two claims. By definition, for all w
¥

. 2
e?,;(w): min Q%wazﬂ +h'(2)
z€Im(LY)
. 2
= min g |w—z|" + f(2)
zEIm(L‘;.)
< ef(w),

since f agrees with h’ on Im(P%) O Im(L}) and L%;(w) # 0. On the other hand, we clearly have ¢} > h’; hence

eyn > ey = €/, completing the proof for e}, = €.
f

o=y

From the equality ej,, = €/ follows L’(w) C Pi.(w) for all w. It is then clear from Lemma 6 that Pj.(w) C
s s s

Py (w) C Hi(w) for all w implies el = €/ +c. We prove its converse. Clearly, we have P4 (w) C Hy(w) = H (w)

for all w, thanks again to Lemma 6. Note that for any z € Tm(L’) we have from e} = e} + ¢ that h%(z) =

hi(z) — ¢ = g(z) — ¢, since g agrees with h on Im(Pg) 2 Im(Ly) = Im(L%). Now take any z € PZ;, (w). Clearly
z € Im(L%) = Im(Ly) hence

2 2
e (W) = g5 W — 2]+ hip(z) = 5 [w — 2" + g(2) — ¢

. 2
= min 2% [w —ul|” + b’ (u)
u€lm(LYy)

. 2
= min_ o [w—ul"+g(u)-c
uelm(LY)

=el(w)—c

Thus z € P} (w), proving P’Z‘; (w) C Pt (w) for all w. ]

E Proof of Proposition 4

Proof: By Lemma 1, on the domain D of the map _, a P o Dok ake’;k is differentiable, hence any version of
the proximal average A* must also be differentiable at points in D. Thus on D, Py, = >, ai P o Since both
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P and >, akP’Jﬁk have closed graphs, the closure >, a,P s, 18 in their intersection. Note that 3, ak.ls}‘k is
almost everywhere defined, thus its closure is everywhere defined.

F Proof of Proposition 5

Proof: The first part of Proposition 5 is a standard exercise in semi-algebraic geometry. Recall that if the set
A C RP x R? is definable, then its projection {w € RP : 3z, (w,z) € A} is definable too. In the semi-algebraic
setting, this is the well-known Tarski-Seidenberg theorem, while it is a built-in property in general order-minimal
structures [28]. It follows easily from the projection property that all (sub)level sets and (strict) epigraphs of a
definable function is definable. For instance, the strict epigraph {(w,¢) € RP x R : f(w) < ¢} is the projection
of the set [{(w,t,s): f(w)—t =s}|N[(w,ts):s<0], which is definable since the function h(w,t) = f(w)—t
is definable hence having a definable graph.

To begin our proof, note first that if f is definable, the function g(w,u,z) = f(z) + i |z — w||2 is definable
in the product space R? x Ry, x RP, since the squared Euclidean norm is definable as well. (Recall that the
squared Euclidean norm is semi-algebraic and we assume all semi-algebraic functions are definable.) Thus the
strict epigraph of e/, {(w, p,t) € RP x Ry x R:ef(w) <t} = {(w,p,t) € RP x Ry x R: 3z, 9(w, u,2) < t},
as the projection of the strict epigraph of g, is definable. Similarly one can prove that the strict hypograph
{(w,t) € R? x R : ¢}(w) > t} is definable too. So is thus the graph {(w,u,t) € R? x R4 x R : e/(w) = t}
(since taking union or complement preserves definability). Hence ezf- (w) is definable as a joint function of (w, u).
Conversely, let us assume e’; is definable as a joint function of (w, u). We use the monotonic property of the
envelope function, that is, e‘;(w) 1 f(w) for all w as p ] 0. It follows that the strict hypograph of f, i.e. the set

w,t): f(w) >t} ={(w,t):3u > 0,e’(w) > t}, is definable thanks to the projection property. Similarly the
f
strict epigraph hence the graph of f is definable, namely f is definable.

Finally, thanks to our particular choice of the proximal average, we know from the previous result that
g(w, ) =3, ake}‘k (w) is definable as a joint function of (w, ). Using the previous result once again we know
the proximal average feéig) is definable as a joint function of (w, u). |

G Proof of Proposition 6

Proof: Tt is clear that e’; < f for all functions f. Thus we need only prove the first and the last inequalities.

The proof of the last inequality is the same as [14], which we reproduce for completeness. Observe that by the
definition of the proximal average

— € = Zo‘k —€},) >0,

since f > e‘; for any f. On the other hand

sup { fu(w) — &, (w) | = sup { fi(w) — [inf g [w —l]* + fi(2)] |
= sup { fi(w) — fi(2) = & Ilw — 2]}

W,z

< sup { Mylw = 2| — 2 |w — 2}

sz

2
M
S 2

where the first inequality is due to the Lipschitz assumption on fi. Therefore

sup {f(w) — ep (W)} < Zak[supfk (w) — e (w >}<f“2”2.
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To prove A* < f, we first use the concavity of the Moreau envelope map e (cf. Proposition 1):

B
ef - Ek Ockfk Z akef

Thanks to our choice of the proximal average, using the monotonicity of e* we have

AM = _eN " S " S fu
(- 2o = 75

where the last inequality is due to [26, Example 1.44]. |

H Proof of Theorem 1

Proof: Tt follows from Proposition 4 that Algorithm 1 is the usual proximal gradient (a.k.a. forward-backward
splitting) algorithm, applied to solve the approximate surrogate problem (9). Thanks to Proposition 5 and our
assumption on the definability of £ and {fj}, we know the objective in (9) is definable. All assumptions of [15,
Proposition 3, p. 484] are met, hence follows our claim in Theorem 1. ||

For completeness, we briefly mention the main idea behind [15, Proposition 3, p. 484]. Basically, one first
exploits the optimality condition of the proximal map to show that Algorithm 1 is making sufficient progress
in each iteration. Thanks to a generalization of the celebrated Lojasiewicz gradient inequality [34], one then
lower bounds the progress by the minimum norm of the subgradients. Together these allow one to show 0,
asymptotically, is in the subdifferential, i.e., the algorithm converges to a critical point.

We emphasize that in general it is much harder to prove convergence in terms of iterates rather than the function
values. This is not by chance. Indeed, Sard’s celebrated theorem shows that there can only be few (Lebesgue
null measure) possible function values at all critical points, while in contrast, the set of all critical points can be
arbitrarily large. Think of the constant function: The function takes only a single value at all critical points,
which consist of the whole space.

I Proof of Theorem 2

Proof: The proof is a slight generalization of that in [14] to the nonconvex setting.

If Algorithm 1 converges to an e-local minimizer w of (9), then
Lw) + A* (W) < l(w) + AH(wW) + €.
for all w in a neighborhood Ny of w. Applying Proposition 6 we have
[6(W) + F(W)] = [6(w) + f(w)] = [6(W) + A*(W)] — [((w) + A" (w)]
]

+ [f(W) = A(W)] = [f(w) — A(w)]
<e+e+0=2e.
Therefore w is an (2¢)-local minimizer. The proof for W being a e-global minimizer is similar. |

J Derivation of the proximal map in Example 1

We derive the proximal map for the truncated graph-¢; norm. Note that the problem can be reduced to R? by
considering each edge separately.

J.1 Truncated /;

As a warm up, we first repeat the computation for the truncated ¢; norm: |w|; = min{|w|,7} := |w| A 7. We
remark that the explicit form of the proximal map (for y = 7) has already appeared in [1, Fan’s comment].
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We use the following variational representation:

wh = min pfwl+ (1 —n)7. (16)

Therefore the proximal map can be rewritten as

min o= (w — 2)? + |2]; = min
z ==

in L _ )2 _
b 0<n<1lflzlﬂ2ﬂ(w 2)* +nlz[ + (1 —n)T. (17)

For fixed 7, clearly we have the soft-shrinkage operator

z = sign(w) - (lw] — pn)+ (18)

Plug in back to (17), we obtain

min [l A )]+l = o)+ (1= ). (19)

Once we find an optimal 7, plugging it back to (18) immediately yields the proximal map. Clearly (19) is a
piecewise quadratic function of 7, thus we divide our discussion into several cases.

Case 1: |w| > p. In this case we obviously have |w| > un since n € [0, 1]. Therefore (19) simplifies to
in —L,un? —
omin —gpn” +n(lw| —7) + 7.

Since p > 0, we are minimizing a concave quadratic, thus the minimizer must be attained at the extreme points
0 or 1. Comparing the resulting objective values gives us:

0, if lw| > £ +7
n=1<1, if lw <& +7. (20)
{o,1}, if|lwl=4§+7

Case 2: |w| < p. We need to further distinguish two subcases.

. 1,2 . 1,2
min —s +n(lw|—7)+7 Vs min w”+ (1 —n)T
o<nslul/u 2 (el =) |wl/u<n<1 2 =
For the first subcase, again the minimizer is attained at one of the extreme points, namely, n = 0 with objective

7 and i = |w|/p with objective ’2"—5 - % + 7. For the second subcase, clearly n = 1 with objective in. Note
that

2 |w|T 1,2
w
— -4 7> w
2u n = 2u

due to our assumption |w| < p. Thus n = 0 only when 7 < %wQ, and 1 = 1 otherwise. To summarize,
w

0, if |w| > /2pr
n=141, if Jw| < /2pt . (21)
{0,1}, if Jw| = v2p1

For a quick sanity check, consider when 7 = 0, in both cases we would have 1 = 0, resulting in z = w. Similarly
when 7 = 0o, in both cases we would have 1 = 1, resulting in the soft-thresholding operator.

J.2 Truncated graph-/;
Next consider the slightly more complicated problem:

min ﬁ[(zl —w1)? 4 (22 — w2)?] + |21 — 224 (22)
Z1,22

— : : 1 2 2
B 0217;121 ?1“2 ﬂ[(zl —w1)” + (22 —w2)"] +nle1 — 22| + (1 — )7 (23)
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For any fixed 7, we know from [14] that

A |w1_w2‘

z1 = wy — sign(w; — ws) [(/m) f} (24)

zg = Wy + sign(w; — wy) {(M??) A W} (25)

Therefore, we need only find an optimal 7 from

oin [(u %) A } +n(6 = 2um)+ + (1L —n)T,

where for clarity we let ¢ := |w; — ws|. Like before, we will divide the analysis into several cases.

Case 1: 6 > 2u, implying that § > 2un. Simplifying to obtain

omin, —n? (6 —7)+ 7.

Comparing the objectives at the two extreme points yields

0, if jlwg —we| >p+71
n=11, if lwy —wa| <p+7. (26)
{0,1}, if jwy —we|=p+r71

Case 2: 6 < 2u. Consider further the two subcases:

mina —un? 40 —7)+T Vs min % +(1=n)T

0<n<3, 9 SNs1

For the ﬁI‘bt subcase, again the minimizer is attained at one of the extreme points, namely, n = O with objective

Tand = o Wlth objective —Z - —|— 7. For the second subcase, clearly n = 1 with objective 2 o . Note that
52 52
o tTZa

due to our assumption < 2u. Thus n = 0 only when 7 < %, and 77 = 1 otherwise. To summarize,

0, if |wy — wa| > 2,/uT
n=+<1, if \wl—w2| <2,/p,7'. (27)

{0,1}, if |wy — we| = 2\/uT
Combining the two cases we have

0, |wy — wa| > 2\/pT + ((ﬁ N
n=q1 oo —wel <207+ (VT - VE)4) (28)
{O’ 1}’ |w1 w2| = ZW—"_ ((\ﬁ \/ﬁ

K Derivation of the proximal map in Example 2
We gives the details on how to compute the proximal map for the truncated hinge loss:
f(W) = min(max(p - y?% O)a T)7 (29)

where ¢ = w 'x. For simplicity we do not include the intercept. The margin parameter p is usually set to 1; we
keep it variable here for flexibility.
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K.1 The proximal map for the hinge loss

For completeness and ease of derivation, let us first compute the proximal map for the hinge loss (i.e., 7 = ).
By definition,

(e |2 T _ 1 (v — o2 T
mzlanw z||* + max(p — yz  x,0) rr;lnarél[%\)i]m\\w z||* + alp —yz x)

= max mln—Hw z||> + alp — yz ' x)

a€gl0,1] =z
T T
(z=w+payx) = max a(p—yw x) - Gyx xya?
T
Without the constraint we should take o = pﬂ ;f}’x;‘ We have three cases, and we discuss them separately.

Case 1: yw ' x > p. Then a = 0, z = w, and the objective is 0.
Case 2: yw ' x + uyx ' xy < p. Then o = 1, z = w + uyx, and the objective is p — yw 'x — %yx—'—xy.

pfwax
pyx ' xy

p—yw'x
yx T xy

1 (p—yw x)?
yx ' xy

Case 3: p— uyx 'xy < yw'x < p. Then a = Z=wW+ yx, and the objective is 2u

p—yw ' x

m
i }0 - yx, where [/ denotes

Of course we can incorporate all three cases into a single formula: z = w + [

the projection into the interval [0, ).

K.2 The proximal map for the truncated hinge loss

Now we are ready for the truncated hinge loss:

rnln—||w—z||2 + min(max(p — yz' x,0),7) = min mln—Hw—zH +n(p—yz ' x); + (1 —n)T
z

n€l0,1]

(1 — [ L lw—zl2+ (p—yz" 7
nren[gll]( m7T 40 |min gz w = 2| + (o - yz' %)

where the inner minimization is exactly what we have computed before (with the minor change u — un). Using
our previous computation, we again have three cases.

Case 1: yw ' x > p. Then = 1,z = w and the objective is 0.

Case 2: yw'x + unyx'xy < p. Note that this gives us the additional constraint n < ’; ;f}’;;‘ Let a =

Yyw X

, m} The objective now is simply

min{1

min (1—n)7 +n(p—yw'x — Blyx"xy).
n€(0,a]
This is a concave quadratic function and we are minimizing it. Therefore the minimizer must be one of the
extreme points, namely 0 or a. We simply compare their objectives and pick the smaller one. For concreteness,

let us further diVTide into two subcases.
Case 2.1: % > 1. Then a = 1 and

0, ifr<p—yw' x—fyx Xy
n= : (30)
1, otherwise
And of course z = w + unyx (recall that o = 1 in this case).
Case 2.2: w < 1. Similarly we compare the objectives of the extreme points:
Hyx T xy
B 0, if 7 < blablabla (31)
= ”_y‘?Tx, otherwise ’
Hyx T xy

Note that there is no need to compute blablabla since it will be discarded anyway, as we will see. In the first
1— T
ygvxafxy

case we have z = w while in the second case z = w + X.
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Case 3: p — unyx'xy < yw'x < p. This leads to the additional constraint n > p=UW X i} orofore we must

x| xy ?
p_wax . . . . . . . " Y
have Ty < 1 for otherwise this case is vacuous. The objective is simply
: 1 (p—yw ' x)*
min_ (1=n)T+5 T (32)
et
Tl iy Txy

Thusp=1and z = w + 2 yf}"’xyxyx which happens to be the same as the second subcase in case 2.2. This

implies that both have the objective shown in (32), which is decreasing in 7. Since the second subcase in case

2.2 hasn =2 ui’}" ;‘ while the current case has n = 1, we will always pick the latter.

To be definite, let us summarize the above computations. The proximal map of the truncated hinge loss is given
as follows:

1, if p— yWTX <0
0, 1f%>1 && T <p—yw'x— Lyx'xy
T
1, if %’(7‘%")(; >1 && T7>p—yw'x— LyxTxy
n=_1{01}, XS] & m=p—yw x— byx'xy, (33)
0, if0 < Lot x < &&T<1M
HYX yx xy R
1, 1f0<f)y‘”"<1&&7>1w
(0,1}, f0<EIWX <] g 7= Lo’
w
w
W+ uyx
z = {w,w + pyx} , (34)
w
w + "yffx;‘yf
oo+ £
0, if p— wax <0
T, if % >1 && T<p—yw'x— LyxTxy
e’;(w) =p—yw'x—Lyx"xy, if % >1 && 7>p—yw'x—LyxTxy. (35)
T 0 < PoUW X o] gk T<17(Py‘”x)
' . pyxTxy = 2u T xy
QLA(p—y‘_’r"x)7 if 0 < bouw x vavx<1 && > 1(/)ng)
H Yyx Xy HYX ' Xy 2u yx ' Xy

For a quick sanity check, let us see what happens when 7 — oo: only the 1st, 3rd, and 5th cases survive, which
matches precisely what we had before for the hinge loss.
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