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Nonparametric Decentralized Detection and Sparse
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Abstract—The kernel-based nonparametric approach proposed
by Nguyen, Wainwright, and Jordan is further investigated for de-
centralized detection. In contrast with the uniform kernel used in
the previous work, a weighted kernel is proposed, where weight pa-
rameters serve to selectively incorporate sensors’ information into
the fusion center’s decision rule based on quality of sensors’ obser-
vations. Furthermore, weight parameters also serve as sensor se-
lection parameters with nonzero parameters corresponding to sen-
sors being selected. By introducing the regularization on weight
parameters into the risk minimization framework, sensor selection
is jointly performed with decision rules for sensors and the fusion
center with the resulting optimal decision rule having only sparse
nonzero weight parameters. A gradient projection algorithm and
a Gauss-Seidel algorithm are developed to solve the risk minimiza-
tion problem, which is nonconvex, and both algorithms are shown
to converge to critical points. Conditions on the sample complexity
to guarantee asymptotically small estimation error are character-
ized based on analysis of Rademacher complexity. Connection be-
tween the probability of error and the risk function is also studied.
Numerical results are provided to demonstrate the advantages and
properties of the proposed approach based on weighted kernel.

Index Terms—Convergence, Gauss-Seidel algorithm, gradient
projection, KL-property, non-convex problem, risk minimization,
RKHS, sensor selection.

I. INTRODUCTION

I N the decentralized detection problem (see, e.g., [1]–[3]),
a number of sensors receive observations about the state of

an event, and then each sensor individually quantizes its obser-
vations and forwards quantized information to a fusion center.
Finally, the fusion center determines the state of the event based
on its received information from the sensors. The goal is to find
jointly optimal decentralized quantization rules for sensors and
a decision rule for the fusion center to achieve the best system
performance.
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One critical factor that affects decision accuracy is the knowl-
edge of the joint distribution of the states and observations
at sensors. Most of the previous studies [4]–[6] assume that
such knowledge is known fully or partially. Such parametric
approaches are justified, because the joint distribution can be
learned via sampled data in advance. As such, implicitly, the
two processes of learning the distribution and designing decen-
tralized detection rules are taken care of separately. However,
such separation may not be preferable when the distribution is
dynamic and changes fast over time. In this case, estimating
the time-varying distribution may significantly increase system
complexity. Furthermore, errors in estimating the distribution
can propagate to reduce detection accuracy. Thus, it is desir-
able to make decisions directly based on training data without
explicitly estimating the distribution. Such approaches are
referred to as nonparametric decentralized detection.
Nonparametric (de)centralized detection was studied previ-

ously in, e.g., [4]–[6], in which detectors are typically designed
to perform well only for specific statistical environments. A
learning-based nonparametric linear regression problem was
studied in [7], [8]. More recently, a kernel-based classification
approach was proposed in [9] for solving the nonparametric
decentralized detection problem, which is more generally
applicable with mathematical guarantee on the performance.
The basic idea is to use a kernel as a measure for capturing
similarity between new and training data (e.g., observations).
The decision is then made to classify the new observation to
the class to which the new observation is closest. In general,
a decision rule is expressed as a linear combination of ker-
nels between a new observation and the training data. More
formally, the kernel function is associated with a reproducing
kernel Hilbert space (RKHS), over which the decision rule of
the fusion center is searched to optimize a given loss function
(such as the probability of detection error and the hinge loss
function) jointly with the local decision rules for individual
sensors. It has been shown by numerical examples in [9] that the
kernel-based approach yields better performances than other
approaches based on estimating joint distributions. Further-
more, compared to parametric approaches, such a kernel-based
nonparametric approach is also applicable for the case with
correlated observations, in which the correlation is implicitly
embedded into training data and their influence on the decision
rules are automatically incorporated by optimizing empirical
risk functions determined by the training data.
In this paper, we study more realistic sensor networks, which

generalize the system models studied in [9], [10] to heteroge-
neous networks, in which sensors’ observations can have dif-
ferent quality and belong to different alphabets. This can be due
to their different locations in capturing the environmental event.
Furthermore, sensors’ transmissions to the fusion center can be
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subject to different rate constraints (in terms of bits per observa-
tion), and hence sensors’ quantization levels are different. These
heterogeneous features are well justified in practice. Sensor net-
works are typically deployed over a large area geographically.
Hence, the noise levels in observations may vary from site to
site, which naturally causes the quality of the observations to
vary from sensor to sensor. Moreover, sensors’ transmissions
to the fusion center are typically over wireless channels, whose
quality depends on the surrounding wireless scattering environ-
ments. Hence, their transmission rates to the fusion center can be
different. More specifically, potential applications of heteroge-
neous models can include geographical distributed sensing [1],
intrusion detection in wireless sensor networks [11], distributed
equipment failure detection [1], multi-static airborne radar [12].
Thus, our goal in this paper is to design nonparametric deci-

sion rules which take heterogeneous features of networks into
consideration for achieving as good performance as possible.
It is also desirable that the approach can yield efficient sensor
selection algorithms, i.e., selecting a subset of sensors that
provide the best performance among all possible subsets. Such
a problem has significant practical importance, because it is
preferable in many cases that only a subset of sensors with good
observation quality provide data to a fusion center due to con-
straints in communication resources and power constraints on
sensors. However, sensor selection is in general a challenging
problem. The main reason is that the quality of sensors is not
easily parameterized into the performance metric, and hence
sensor selection can only be done through a combinatorial
optimization problem, for which the algorithm is not scalable
as network size enlarges. In this paper, we also wish to address
the sensor selection problem in our proposed framework.

A. Main Contributions

In this subsection, we summarize our main contributions.
1. We incorporate a novel weighted kernel into the risk mini-

mization framework proposed in [9] for nonparametric de-
centralized detection. In this way, the fusion center’s de-
cision rule is optimized over the Hilbert space (i.e., the
RKHS) associated with the weighted kernel, and thus can
selectively incorporate information from sensors based on
the quality of these information sources. We derive per-
formance bounds based on Rademacher complexity over
the union of all weighted RKHSs. We characterize con-
ditions on the sample complexity to guarantee asymptoti-
cally small estimation error. We also establish the connec-
tion between the probability of error and the risk function
in our optimization problem.

2. Using the weighted kernel, we incorporate the sensor se-
lection function into the framework by introducing an
regularization on weight parameters to the risk function
so that the resulting optimal decision rule contains sparse
nonzero weight parameters, i.e., only the most contributive
sensors are selected. Thus, the kernel weight parameters
(i.e., sensor selection strategy) and decision rules for sen-
sors and the fusion center are jointly optimized in order to
achieve the best performance. The advantages and proper-
ties of such an approach are described as follows.
• The sensor selection problem can now be solved via re-
cent celebrating techniques of Lasso and compressed

sensing [13]–[16], which significantly reduces compu-
tational complexity;

• The regularization parameter of can flexibly control
sparsity of sensor selection and its trade-off with the per-
formance of decision making;

• This sensor selection approach preferably selects sen-
sors with independent observations, and removes highly
correlated (and hence redundant) observations, thus
achieving dimension reduction as well.

The sensor selection problem can be very challenging oth-
erwise in the context of nonparametric decentralized de-
tection.

3. We develop a gradient projection algorithm and a Gauss-
Seidel algorithm to optimize the regularized non-convex
risk minimization problem with differentiable loss func-
tions. We show that both algorithms converge to critical
points. We also provide a Gauss-Seidel algorithm to opti-
mize the risk function with non-differentiable hinge loss
function.

B. Related Work on Sensor Selection

Sensor selection problem (not necessarily in the context of
decentralized detection) has been intensively studied previously
(see, e.g., a review [17] on sensor selection in wireless sensor
networks). In general, sensor selection is a difficult problem,
because it is challenging to design efficient algorithms that
overcome exhaustive search over all possible subsets of sensors
for optimizing the performance. Majority of previous work
studied sensor selection under parametric/semi-parametric
models (e.g., [18]–[22]), in which the statistical distribution of
event states and observations or the relationship of system pa-
rameters and observations is known fully or partially. A number
of approaches for sensor selection have been proposed. The
work [23] and [24] considered scenarios that only one sensor
is selected at a time, hence complexity of exhaustive search is
reduced. The work [25] provided more efficient algorithms than
exhaustive search based on bounds on objective functions. The
work [26] utilized specific structures of performance metric
to design efficient algorithms that have low computational
complexity. In general, these algorithms may perform well
for specific problems, but did not provide a systematic way of
treating the problem. More recently, an interesting approach
based on convex relaxation of sensor selection problem was
proposed in [19], in which sensor selection is formulated as
a Boolean-convex problem. Relaxation is then taken to allow
discrete Boolean variables to take continuous values. However,
their approach is not applicable to our problem, because our
sensor selection parameters (i.e., kernel weight parameters)
have physical meanings in the decision rule and are not discrete
valued.

II. BACKGROUND ON KERNELS

In this section, we briefly introduce the basic concepts, def-
initions and results on learning with kernels. This is the major
technique that this paper applies. A reader can refer to [27] for
more details. We let be a nonempty set, and define a kernel
function as follows.
Definition 1: A function is called a

kernel if for all positive integer and all ,
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the matrix with elements for
is positive semidefinite.

Given a kernel function , we define a feature mapping
, which maps an element to a

function . We then define a vector space containing

where is any positive integer, , and
are arbitrary. For this vector space, we define an inner product
between and another function as

In particular, this implies . It can
be shown that after completing such a vector space, we obtain a
Hilbert space, referred to as a reproducing kernel Hilbert space
(RKHS) associated with the kernel . We next formally define
the RKHS as follows.
Definition 2: Consider a Hilbert space containing func-

tions . It is called a reproducing kernel Hilbert space
(RKHS) if there exists a kernel with the
following properties:
— has the reproducing property:

— spans , i.e., is the completion of a vector space
spanned by for .

We next introduce the important kernel Representer Theorem
[27], which is useful for characterizing the optimal solution in
empirical risk minimization.
Theorem 1. [27]: Let be a strictly mono-

tonic increasing function, be a nonempty set,
be an arbitrary risk function, and be

the RKHS associated with a kernel . Then each minimizer
of the regularized risk function

admits a representation of the form

III. PROBLEM FORMULATION

A. System Model and Notations
We study the nonparametric decentralized detection over a

sensor network. The systemmodel is depicted in Fig. 1. In such a
system, let denote the state of an environmental event, which
can take binary values and . Suppose there are sen-
sors in the network, which can receive observations about .
We use to denote the observation received by sensor for

, and use to denote the ob-
servations of all sensors. Each sensor quantizes its observation
based on its own local decision rule (i.e., quantization rule). We
denote as the quantized value of by sensor . We let

denote quantized symbols from all sensors.
We assume that both and have finite alphabets ,

Fig. 1. Illustration of decentralized detection.

correspondingly. Therefore, and have finite alphabet sets,
i.e., and . We
note that although sensor observations are often continuous
variables in practice, sensors typically digitize their measure-
ments to improve robustness of further processing and reduce
processing complexity. The decision rule of a sensor can be gen-
erally characterized by a probability distribution ,
which implies that sensor quantizes into with the prob-
ability . Thus, random decision rules for sensors are
allowed. All sensors then forward their quantized information to
a fusion center, which combines all received information from
sensors, and makes a decision about the state of the environ-
mental event . The fusion center’s decision rule can be written
as a function .
We note that this paper implicitly assumes that sensing envi-

ronment is static. In practice, as quality of sensors changes over
time, the training techniques developed in this paper can be per-
formed every a certain period in order to adapt decision rules
to the change. In fact, treatment of such an issue can lead to a
number of research topics such as how to exploit similarity of
decision rules across time to reduce computation complexity of
training process, which is left for future work.

B. Weighted Kernel
In this paper, we search decision rules for the fusion center

over the RKHS associated with a kernel function
. Thus, we can express the fusion center’s decision

rule as:

where and .
It is clear that the performance of the fusion center’s de-

cision rule critically depends on the RKHS over which it is
chosen and its associated kernel function. In [9], the adopted
kernel functions are uniform across sensor’s information, i.e.,
uniform across for . Thus, the corresponding
Hilbert space contains functions (i.e., decision rules of the fu-
sion center) that treat the information across sensors equally.
However, these decision rules may not perform well enough for
scenarios, where the sensors’ information have different quality.
In such cases, it is desirable that the fusion center’s decision rule
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weigh the sensors’ information selectively based on the quality
of their observations.
Therefore, we propose to use weighted kernels so that their

associated RKHS allows decision rules of the fusion center to
selectively incorporate sensors’ information using weight pa-
rameters. We further introduce the kernel weight parameters
into the risk minimization framework so that these weight pa-
rameters (and hence its associated RKHS) are jointly selected
with the decision rules for the fusion center and sensors to op-
timize the performance. Thus, the impact of the heterogeneous
features of the network are naturally incorporated into the fusion
center’s decision rules via selecting the optimal weight param-
eters (i.e., the RKHS that these decision rules lie in).
As an example weighted kernel, the weighted first-order

count kernel is given by

(1)

where is an indicator (characteristic) function, and
for are weight parameters. We collect these

parameters into a vector . It can be shown
that the weighted count kernel satisfy the definition of kernel.
It can be seen that each weight parameter in (1) represents

the contribution of sensor to the decision rule of the fusion
center. Thus, the Hilbert space over which the decision rule
of the fusion center is chosen is spanned by the weighted count
kernel .
Remark 1: Our study uses the weighted count kernel as an

example kernel. In fact, weight parameters can be introduced to
more general types of kernels for selectively counting informa-
tion with unequal quality in decision making. Our problem for-
mulation, algorithm design, and performance analysis are gen-
erally applicable to these cases as well.

C. Problem Formulation With Sensor Selection

In this paper, we consider nonparametric decentralized de-
tection, and assume that the joint distribution is un-
known. Instead, a set of training data are available, i.e.,
for . We adopt the framework of the empirical
risk minimization for decentralized detection as in [9] and fur-
ther introduce weighted kernel and incorporate regularization
for kernel weight parameters in order for sparse sensor selec-
tion. More specifically, we jointly find optimal weight parame-
ters , decision rule for fusion center, and decision rules

for all sensors that minimize the fol-
lowing regularized empirical risk function:

(2)

where is a convex loss function such as the logistic or
hinge loss functions, denotes the Hilbert space associated
with the weighted count kernel ,
and is the set that includes all possible conditional probabil-
ities that decompose as .

Such decomposability is because sensors follow independent
local decision rules. The set is formally defined as follows.

(3)

We note that it is computationally complex to solve the above
optimization problem due to the expectation of taken over

. Hence, as in [9], we consider the following lower
bound as a relaxation of (2) due to Jensen’s inequality

(4)

where . In Section IV.D,
we study how close the above empirical risk function is to the
true risk function. We also show that the above empirical risk
function provides an upper bound on the probability of detection
error, which justifies using this function as an approximation.
In the above problem, regularization for kernel weight pa-

rameters encourages sparse weight (i.e., sensor) selection. The
coefficient controls the sparsity level of sensor selection,
and thus controls the trade-off between sensor selection and the
overall system performance. For systems with stringent com-
munication constraints on sensors’ transmissions to the fusion
center, needs to be large so that only a small fraction of sen-
sors are selected to participate in decision making. Given the
sparsity level, the risk minimization guarantees that selected
sensors are those with good quality of observations and can
hence contribute best to decision making.
Our goal is to jointly design decision rule for the fusion

center, decision rules for sensors, and sensor selec-
tion strategy in order to achieve the best system performance.

IV. MAIN RESULTS

A. Algorithm Design

In this section, we develop algorithms to solve the risk min-
imization problem (4), in which the minimization is taken over
three types of variables and . It is clear that the risk func-
tion is not convex jointly over these variables. In general, de-
signing algorithms that converge to a global optimal solution
for non-convex optimization is challenging. Inmany cases, even
convergence to a critical point can be difficult. Moreover, the
regularization term in (4) is a non-smooth function, which fur-
ther complicates the problem. In this section, we first develop
two algorithms for the case where is a differentiable loss
function such as logistic and exponential loss functions, and
then address the case where is a non-differentiable loss
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function such as hinge loss function. We study convergence of
these algorithms in Section IV.C.
For the case with differentiable , we first note that since
is a function belonging to a given RKHS associated with ,

it is not possible to optimize over (i.e., the corresponding
RKHS) but keeping in a particular RKHS fixed. In another
word, and are not independent parameters that can be al-
ternatively optimized. To solve this problem, we note that fol-
lowing an argument similar to the kernel Representer Theorem
[27], the minimizer of the problem given in (4) with fixed and
takes the form

(5)

for some parameters , which are projection
parameters of along kernel functions in . It is then clear
that and are independent parameters, and the optimiza-
tion problem (4) can be solved equivalently by optimizing over
these three types of parameters. Therefore, problem (4) is equiv-
alent to the following optimization problem:

(6)

where

(7)

In Algorithm 1, we develop a gradient projection algorithm to
solve the non-convex risk minimization problem (6) with a con-
tinuous loss function. Here, we combine three types of parame-
ters together as one multi-dimensional vector , and up-
date the entire vector at each step.We note that the non-differen-
tiable term can be changed to by exploiting the
constraints . In this way, the risk function becomes dif-
ferentiable and hencemuch easier to handle. Thus, the algorithm
performs a two-step update. Step 1 takes the gradient of the ob-
jective function over to generate as
in (8), where denotes the Lipschitz constant of the objective
function . Then step 2 projects and into
the corresponding constraint sets and , respec-
tively. The projection of vector is to keep all non-negative
entries and set all negative entries to be 0. The projection of
can be performed by solving a constrained convex optimiza-

tion problem (10). Using the KKT conditions, the close-form
expression of the optimizer can be derived. Due to the fact that
the projections can be performed with exact close-form solu-
tions, the convergence of the algorithm can be further shown in
Section IV.C.

Algorithm 1: Decentralized Detection via Gradient
Projection-Based Method

Input: .

Step 0: Initialize where for

Step k:
• Gradient step: for ,

(8)
• Projection of

(9)

• Projection of
(10)

Output: Sensor decision rules for ,
and fusion center decision rule .

Algorithm 2 provides an alternativemethod (referred to as the
Gauss-Seidel method) for solving the non-convex optimization
problem (6) with a continuous loss function. Instead of taking

as one vector and optimizing over all variables to-
gether, this algorithm optimizes three types of variables
and alternately and recursively. More specifically, with and
fixed, is updated by gradient descent approach as the objec-

tive function is differentiable over and there is no constraint
on . With and fixed, is updated by gradient projection
method with a close-form expression as in Algorithm 1. Sim-
ilarly, with and fixed, can also be updated by gradient
projection method with a close-form expression as explained
in Algorithm 1. The convergence of this algorithm is shown in
Section IV.C.

Algorithm 2: Decentralized Detection via Regularized
Gauss-Seidel Method

Input: .

Step 0: Initialize where for

Step k:
• Fix and , for , update

(11)

• Fix and , for update

(12)

• Fix and , for , update

(13)

Output: Sensor decision rules for
, and fusion center decision rule .
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We now consider the problem (6) with a non-differentiable
loss function such as the hinge loss function. In this case, the
gradient-based Algorithms 1 and 2 are not applicable any more.
As such, we develop a coordinate descent algorithm (as de-
scribed in Algorithm 3) for solving the problem (6) with
being hinge loss function. We note that the inner loop of Algo-
rithm 3 follows the idea of conjugate duality provided in [9].
Our new ingredient here lies in the outer loop of the algorithm
for optimizing the weight parameters . We describe our algo-
rithm in detail as follows.

(1) Inner loop: is fixed (i.e., the RKHS is fixed), and the
decision rules and are alternatively optimized.
(1a) Optimization over with fixed. As we argue be-
fore, the optimal . For the hinge
loss function, it is convenient to apply the conjugate du-
ality argument (i.e., Fenchel Duality) and find the optimal
in the dual domain. The dual problem turns out to be

a constrained quadratic optimization problem that is easy
to solve, and the optimal solution takes the following
form:

(14)

where [see the equation at the bottom of the page].
(1b) Optimization over with fixed. The subgradient
method is used to alternatively update for each
sensor and each value of at a step keeping all other

values fixed. An element in the subdifferential of the
objective function with respect to is given as
follows.

(15)

Furthermore, since this is a constrained optimiza-
tion problem subject to linear constraints on , i.e.,

for and for all pos-
sible values of , conditional (sub)gradient method for
simplex problems in ([28], Section 2.2.2) can be applied.
Alternatively, a projection step as in Algorithms 1 and 2
can be taken to update in order to satisfy the constraints.
(2) Outer loop: are fixed, and the regularized risk
function is optimized over in order to find the best weight
parameters (i.e., to perform sensor selection).

We apply alternating direction method of multipliers
(ADMM) [29]. Since and are fixed, we treat them as

constants and reformulate our objective function with only the
argument as follows.

(16)

where is an -dimensional vector with the -th entry
equals and

with . Our
goal is to optimize the following function using ADMM:

(17)
where

, and .
To apply ADMM, it is desirable that the proximity of each term
in is easy to derive, where the proximity of a function
is defined as follows:

It can be shown that the proximity of each term for
is given by

(18)

and the proximity of takes a close-form expression with
the -th component given by:

(19)

Then applying ADMM, we initialize
for and provide the iteration steps for opti-
mizing over as follows:

(20)

where in the second step of updating
and . When the above algorithm ter-
minates, we set .
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Algorithm 3:Decentralized Detection for Hinge Loss Function

Input: .

Step 0: Initialize where for

Step k:
• Inner loop: fix , optimize alternatively over and
— Fix all functions, compute the optimal by solving

optimal parameters following (14);
— Fix , compute the optimal using the

subgradient method by exploiting (15);
— Repeat until inner loop converges;

• Outer loop: fix and functions, and compute the
optimal following (20);

• Repeat inner and outer loops until converge.

Output: Sensor decision rules for ,
and fusion center decision rule .

B. Preliminary on Convergence Analysis of Non-Convex
Problems

Although it is in general difficult to design algorithms that
converge to a global minimizer of a non-convex function, recent
results in [30], [31] establish convergence to critical points in
non-convex optimization. In this subsection, we introduce the
results in [30]–[32] together with necessary definitions, which
are useful for studying our algorithms in the next subsection.
We first note that the subdifferential plays an impor-

tant role in convergence analysis for non-convex optimization
problems, which can be defined based on Fréchet subdifferen-
tial . We refer a reader to [30] for those definitions. We
next define critical points based on Fréchet subdifferential.
Definition 3: A point is referred to as a critical point

of a function if .
We note that the subdifferential in the above definition

is for non-convex functions based on Fréchet subdifferential
, which is different from the subdifferential for convex

functions. We further note that the set of all critical points
includes all local optimal solutions of an objective function.
Hence, is a critical point of is a necessary but not sufficient
condition for to be a minimizer of .
In [30], convergence to critical points in non-convex

optimization is established for Kurdyka-Łojasiewicz (KL)
functions, the definition of which is given below.
Definition 4:
a) The function is said to have

Kurdyka-Łojasiewicz (KL) property at if
there exists , a neighborhood of , and a
continuous concave function such that:

i) ,
ii) is a function on ,
iii) for all ,
iv) for all in ,

the KL inequality holds

where denotes the distance from the
origin to the set .

b) Proper lower semicontinuous functions that satisfy KL
inequality at each point of are referred to as KL
function.

We further define the type of function, which appears in
the above definition.
Definition 5: The function is a function if

all partial derivatives of (i.e., for all ) are continuous
at each point in the set , where is the domain of the
function.
In [30], the convergence of the gradient projection algorithm

for constrained non-convex optimization problems is estab-
lished, which is summarized as follows.
Theorem 2. [30]: Let be a differentiable func-

tion whose gradient is L-Lipschitz continuous, and let be a
nonempty closed subset of . Suppose and a se-
quence of stepsize satisfy . Consider a
sequence that complies with

(21)

If the function is a KL function and if is
bounded, then the sequence converges to a point in
and is a critical point of .
In [30], the convergence of an inexact regularized Gauss-

Seidel method is also established, which is summarized as fol-
lows.
Theorem 3. [30]: Consider minimization of a function

having the following structure

(22)

where is a function with locally Lipschitz continuous gra-
dient, and is a proper lower semicontin-
uous function for . Assume that defined in (22)
is a KL function which is bounded from below. Let be
a sequence generated by the following steps:

Step 0: Take and in
.

Step k: Find and in such that

(23)
(24)

(25)

where , and the sequence of symmetric posi-
tive definite matrices of size have eigenvalues lie
in . If is bounded, then it converges to some
critical point of .

C. Convergence of Algorithms
In this subsection, we analyze convergence of the algorithms

that we propose in Section IV.A. It is clear that the risk func-
tion in our minimization problem is not jointly convex over the
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three types of variables and . By leveraging recent devel-
opments for non-convex optimization problems [30] (see The-
orems 2 and 3), we show that Algorithms 1 and 2 converge to
critical points of the objective function.
Based on Theorem 2, we can show that Algorithm 1 con-

verges to a critical point of the objective function .
Theorem 4: If the loss function is a real analytic func-

tion, is Lipshitz continuous with constant . Then
Algorithm 1 converges to some critical point of .

Outline of the Proof: We sketch the main idea of the proof
here with the detailed proof relegated to Appendix A.
Since Algorithm 1 adopts the same gradient projection

method as the algorithm (21) given in Theorem 2, it is sufficient
to show that the objective function

where is given in (7), satisfies the KL property de-
fined in Definition 4. This can be shown by requiring the loss
function in the objective function to be real analytic (as
assumed in the theorem).
Remark 2: A wide range of functions including both logistic

loss and exponential loss functions are real analytic. Thus, con-
vergence of Algorithm 1 established in Theorem 4 is applicable
to a large set of loss functions.
To understand the above remark, we introduce the definition

of real analytic functions, and a lemma that captures sufficient
conditions for a function to be real analytic.
Definition 6. [33]: A function , with domain on an open

subset and range , is called real analytic on , if
for each , the function may be represented by a
convergent power series in some neighborhood of .
Hence, a real analytic function is continuous and has contin-

uous and real analytic partial derivatives of all orders [33]. The
following lemma provides a simple way to verify real analytic
functions.
Lemma 1. [33]: Let be infinitely differentiable on some

open set . Then is real analytic on if and only
if, for each , there is an open ball with ,
and constants and such that the derivatives of

satisfy

(26)

where is any positive integer.
Following the above lemma, it is easy to check that a wide

range of functions including both logistic loss and exponential
loss functions are real analytic.
We next consider convergence of Algorithm 2. Since the ob-

jective function is uniformly bounded below by zero, Algorithm
2 based on Gauss-Seidel method must converge. Since the risk
function is not jointly convex over the three types of variables

and , Algorithm 2 may not converge to a global joint op-
timal solution. However, based on Theorem 3, we provide con-
vergence of Algorithm 2 to critical points as follows.
Theorem 5: Assume the loss function in (6) is a real ana-

lytic function and is bounded below, is Lipshitz con-
tinuous with constant . Let be a sequence

of variables generated by Algorithm 2. Then the sequence con-
verges to some critical point of given in (7).

Outline of the Proof: We sketch the main idea of the proof
here with the detailed proof relegated to Appendix B.
The requirement of real analytic property in Theorem 5 is

to guarantee that the objective function satisfies the KL prop-
erty as in Theorem 4. We further note that the algorithm used
in Theorem 3 is referred to as inexact regularized Gauss-Seidel
method in [30], which takes a general form and includes a set of
algorithms such as the standard Gauss-Seidel method in Algo-
rithm 2 as special cases. Then the major step to prove Theorem
5 lies in showing that the updating steps in Algorithm 2 satisfy
the conditions (23), (24), and (25).
We note that the convergence argument of Algorithm 2 ex-

ploits the fact that the objective function takes the structure (22)
[30], [34]. For Algorithm 3 developed for the case with the
non-differentiable loss function, the objective function cannot
be expressed in the form given in (22). Because the loss func-
tion including all three types of variables cannot be viewed as
the function in (22). In this case, it is difficult to establish
convergence to a critical point.

D. Performance Analysis
In this section, we study how close the empirical approximate

risk function given in (7) that we optimize is to the true risk
function. We also provide an upper bound on the probability of
decision error based on the risk function, which justifies using
such a function as the objective function.
We first define some notations. We let the alphabet sizes of

be bounded by , and let the alphabet sizes of
the quantized variables be bounded by . Let

denote one set of decision rules, where with
bounded norm in RKHS (i.e., ), with
bounded norm (i.e., ), and , which includes
all possible conditional probabilities that decompose as

. Here, the norm constraints on
and are justified by the regularization terms in (4). We also
let , and denote the corresponding components of

.
We let denote the set of all functions as

defined above, which is a subset of . In this
paper, we particularly consider two special but useful subsets
of : and . The set consists all functions with in
the set of deterministic conditional probability distributions.
In this case, sensors’ decision rules are deterministic. The set

consists of all functions with each component
having the following property: given any is uniformly
distributed among a subset or a full set of values it can take. For
example, suppose the alphabet set of is .
Given , both and

are valid in the
set . Clearly, such set allows randomized decision rules
for sensors. Many practically useful decision rules fall as spe-
cial cases of the above two sets. For example, quantization rules
and their randomized versions which are widely used in signal
processing fall into the above two sets, respectively.
Bounds on Rademacher Complexity: Rademacher com-

plexity [35] captures the richness of the function class over
which our decision rules are chosen, and plays an important
role in determining how close the empirical approximate risk
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function is to the true risk function. Thus, we first provide
bounds on this important quantity. We define the Rademacher
complexity of the set as follows:

(27)

where the Rademacher variables are independent
and uniformly distributed on and are
i.i.d samples generated based on the distribution .
We consider a subset associated with a of

functions. We have the following proposition for the case of the
weighted count kernel.
Proposition 1: An upper bound on the Rademacher com-

plexity for any associated with weighted count kernels
and with a of functions is given by

(28)

where denotes the size of the set . In particular, for
, the upper bound is given by

(29)

For , the upper bound is given by

(30)

The proof of Proposition 1 is provided in Appendix C.
Remark 3: Rademacher complexity as

if .
Bounds on True Risk Function: We define three risk functions

of interest as follows. Let

denote the empirical approximate risk, where the approximation
lies in taking the expected value over inside the loss function

(i.e., the relaxation in (4)). We further let denote its cor-
responding minimizer, i.e.,

(31)

Let denote the expected approximate risk, and let
denote its corresponding minimizer

The true risk function is ,
and we let denote its corresponding minimizer, i.e.,

Since we use the empirical approximate risk as the objective
function, our approximation lies in two parts: (1) data-de-
pendent objective function (estimation error) (2) taking the
expected value over inside the loss function (approx-
imation error). We first analyze the estimation error, i.e., we
analyze the gap

which suggests how close our optimal solution based on the
empirical risk is to the optimal solution based on the expected
risk.
Proposition 2: Suppose the logistic or hinge loss function is

used, and and are minimizers over . Then for any small
, with probability larger than ,

(32)

The proof of Proposition 2 is provided in Appendix D.
Remark 4: Following from Proposition 1, if as

, then as . In this case, Proposition
2 implies that the estimation error is asymptotically small with
high probability. Furthermore, for the cases with and

, the above condition becomes as .
Namely, if the number of sensors does not scale as fast as the
number of samples, the estimation error is asymptotically small
with high probability.
We next study the gap between the empirical approximate risk

and the true risk (including both estimation and approximation
errors). We let

which is the decision rule that optimizes the empirical approxi-
mate risk over the set . It can be shown (as in [9]) that with a
probability at least , the true risk is bounded by the em-
pirical approximate risk as follows:

(33)

where is the Lipschitz constant of , and is a uniform
bound on . It is clear that the bounds on the Rademacher
complexity characterize how close the empirical approximate
risk function is to the true risk.
Remark 5: Following Proposition 1 and Remark 3, the op-

timal empirical approximate risk serves as good lower and upper
bounds if as .
Bounds on Error Probability: The basic performance mea-

sure for the problem of decentralized detection is the probability
of decision error, which is not computable in the nonparametric
case. We next provide a connection between the probability of
decision error and the risk function.
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Fig. 2. Comparison of probabilities of error among four approaches.

Proposition 3: With a probability at least , the proba-
bility of error based on the weighted count kernel is respectively
bounded by the risk functions based on logistic loss and
hinge loss as follows:

(34)

(35)

where is bounded in (29) and .
Proof: Due to the property of the hinge loss function,

(36)

Then applying (33), we obtain the desired bound. If the logistic
loss is used, then we obtain the bound by following the above
steps except noticing that

(37)

The above Proposition implies that as the number of samples
becomes large (and if ), the true risk and the em-
pirical risk (or a scaled version of it) serve as upper bounds on
the probability of decision error. This connection justifies using
these risk functions as the objective function.

V. NUMERICAL RESULTS
In this section, we demonstrate the performance of our ap-

proach and its associated properties based on the following ex-
periments.
The joint distribution of the event and observations are

chosen as follows. (Such distribution is chosen for generating
data samples, and is not exploited in designing decision rules.)
In our experiment, the state of the event takes two values

and with equal probability, and the sensors’ measurements
for are noisy versions of , i.e.,
, where the noise variable can take three values

. It is clear that even if , there is only half
probability that the observation causes confusion about ,
because when , there is no confusion. The case when

is similar. In all numerical results, we assume that
, and introduce a quantity of

probability of uncertainty (POU) that equals
for representing the quality of sensor’s observations. For ex-
ample, if has the distribution such that

and , then
indicating the probabilities that observations

confuse about the event state.

A. Comparison With Other Approaches
In this subsection, we compare our approach with the fol-

lowing three competitive test methods.
• Likelihood-ratio majority voting (LrMV): each sensor
computes
for each value that can take based on training samples,
and then sends to the fusion center if the ratio is greater
than 1 for the received observation, and sends other-
wise. The fusion center’s decision rule is based on majority
voting of sensors’ decisions.

• Likelihood-ratio support vector machine (LrSVM): each
sensor performs the same likelihood-ratio test as in
LrMV and transmits the compressed to the fusion
center. The fusion center’s decision rule is based on
support vector machine method with training samples

.
• Uniform-weighted kernel (Uniform kernel): similar to our
weighted kernel method with weight parameters
for all sensors as in [9].

In this experiment, we choose logistic function as loss func-
tion and apply Algorithm 2. To compare our approach with
the above methods, we generate the same training and testing
samples for all approaches. We first perform the weighted
kernel method using, which produces the selected sensors. For
the LrMV, LrSVM, and Uniform kernel methods, the fusion
center collects decisions only from sensors that have already
been selected by the weighted kernel method for a fair compar-
ison. Fig. 2 plots the error probabilities for all approaches, and
clearly demonstrates that our weighted kernel based approach
outperforms all other competitive methods.

B. Performance on Sensor Selection
As described in the previous sections, sensor selection is per-

formed via kernel weight parameter selection, and is jointly
designed with the sensors’ local decision rules and the fusion
center’s decision rule . In this subsection, we study how sensor
selection affects the performance of the system in such joint de-
sign, i.e., the joint optimization over . In the following
experiments, we apply Algorithm 1.
We first study how the regularization parameter controls

the number of sensors selected, i.e., sparsity of sensor selection.
We study a network with sensors which have inde-
pendent observations. For each , we let the value of POU of
sensors gradually increase from sensors to as
the index increases. Hence, the sensors’ measurement quality
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Fig. 3. Impact of on sparsity of sensor selection.

Fig. 4. Impact of sparsity on error probability.

reduces as the index of sensors increases. Fig. 3 provides the op-
timal weight parameters versus POUs (i.e., versus sensors) for a
number of values of . It is clear for each value of , sensors
with smaller values of POU (i.e., better quality of observations)
are assigned higher weight parameters, suggesting these sen-
sors are more contributive in the fusion center’s decision rule.
In particular, nonzero weight parameters are assigned to sensors
with better quality. This is reasonable because if only limited
sensors are selected to participate in decision making, selected
sensors should have better observation quality. Furthermore, as
the value of increases, less sensors are chosen (with nonzero
weight parameters ) indicating that the regularization param-
eter indeed can control the sensor selection sparsity.
We next study the influence of sparsity of sensor selection on

the performance (i.e., the testing error probability). In Fig. 4, we
plot the testing error probability versus the number of sensors
selected. It can be seen that as more sensors are selected, the
error probability decreases, because more sensors better clarify
the fusion center’s decision. However, it is also clear from the
figure that even a small fraction of sensors already guarantee
small probability of error. For example, when , with 25%
of sensors selected, the error probability is already almost zero,

and furthermore, with only 10% of sensors selected, the error
probability is . This suggests that selecting only a small
fraction of sensors for decision making does not sacrifice much
performance but can save a large amount of communication re-
sources.
We are also interested in applying our approach to scenarios,

in which sensors are clustered into groups with sensors in the
same group having highly correlated observations. In our exper-
iment, sensors are divided into groups with the same size, and
each group has a representative sensor. Within each group, each
sensor has probability 0.8 to have the same observation with
the representative sensor, and probability 0.2 to have an inde-
pendent observation. Observations across different groups are
independent. We set respectively for groups with
sizes 2, 3, 4. In Fig. 5, we plot the weight parameters versus
sensor indices. Furthermore, group numbers such as and

are also marked below the sensor indices indicating which
group corresponding sensor belongs to. It can be seen that for
most groups, only one sensor has nonzero weight, and is hence
selected. This demonstrates that our sensor selection approach
based on the weighted kernel is very effective to remove redun-
dant data and achieve dimension reduction, thus significantly
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Fig. 5. Impact of sample correlation on sensor selection in clustered sensor networks.

saving resources for communication from sensors to the fusion
center. We further note that by adjusting values of , it is also
possible that entire groups are eliminated or more than one sen-
sors are selected in one group depending on the sparsity level
that we want to achieve.

VI. CONCLUSION
In this paper, we investigated the problem of nonparametric

decentralized detection. Adapting the kernel-based frame-
work [9] proposed by Nguyen, Wainwright, and Jordan, we
introduced the idea of using weighted kernel to generalize the
approach to heterogeneous networks. In particular, the kernel
weight parameters serve to selectively incorporate sensors’
information into the fusion center’s decision rule based on
quality of sensors’ observations. Furthermore, via regu-
larization, weight parameters also serve as sensor selection
parameters with nonzero parameters corresponding to sensors
being selected. We designed two algorithms to solve the joint
optimization of weight parameters and sensors’ and fusion
center’s decision rules, and showed the convergence of the
algorithms. We also demonstrated the performance of our
approach via numerical experiments.
Further generalization of this study can be along several di-

rections. Multi-level sensor networks is an interesting topic, and
it is expected that sensor selection is also related to network
structures in this case. The problems of multiple-event detec-
tion is also interesting to be explored in the nonparametric sce-
nario. The idea of using regularization for sensor selection
can also be applied to studying parametric models such as hy-
pothesis testing and parameter estimation.

APPENDIX A
PROOF OF THEOREM 4

Since Algorithm 1 uses the standard projection method as de-
scribed in Theorem 2, it suffices to show that

is a KL func-
tion, where is defined in (7).
It is shown in [36] that subanalytic functions have the KL

property. Hence, in order to prove that is a KL func-
tion, it suffices to show that it is a subanalytic function. It is also
shown in [37] that the sum of subanalytic functions is still a
subanalytic function. Hence, it suffices to show that each term
of is a subanalytic function.

We next introduce the definition of subanalytic functions and
special cases of such functions, which are useful in proof.
Definition 7. [38] (Subanalytic Function): A subset

is called subanalytic if each point of admits a neighborhood
for which can be represented as

where is a bounded semi-analytic subset of for
some . A function is called
subanalytic if its graph is a
subanalytic set.
Definition 8. [30] (Semi-Algebraic Function): A subset

is called semi-algebraic if it can be represented as

where are real polynomial functions for
. A function is

called semi-algebraic if its graph
is a semi-algebraic subset of .
Definition 9. [38] (Semi-Analytic Function): A subset
is called semi-analytic if each point of admits a neighbor-

hood for which can be represented as

where are real analytic functions (see Def-
inition 6) for . A function

is called semi-analytic if its graph
is a semi-analytic set.

We note that a real polynomial functionmust be a real analytic
function and hence a semi-algebraic function is semi-analytic.
It is also clear from Definition 9 that a real-analytic function
is also semi-analytic. It is shown in [39] that any semi-analytic
function is subanalytic. Thus any real analytic, semi-algebraic,
or semi-analytic function is subanalytic.
Based on the above property, it suffices to show that each term

of is real analytic, semi-algebraic or semi-analytic.
The first term given below
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is composition of a real analytic loss function and a poly-
nomial function, which is also real analytic. It has been shown
in [33] that the composition of real analytic functions is also
real analytic. Therefore the above term is real analytic. It is also
clear that the term and the term

are both real polynomial, and hence are both real analytic.
Furthermore, it is also clear that the indicator function

is semi-algebraic, because its graph is
. Similarly, is

also semi-algebraic. Therefore, each term of is a
subanalytic function, which implies that is a KL
function. This concludes the proof.

APPENDIX B
PROOF OF THEOREM 5

The proof apply the convergence result on proximal regular-
ization of Gauss-Seidel method (see Theorem 3). It has been
shown that is a KL function in Appendix A and it
is clear that the function is bounded below. It is also clear that

is a function. It is then sufficient to check that the
conditions (23), (24), and (25) in Theorem 3 are satisfied when
updating , and .
We first note that in the context of Theorem 3,

with ,
and , and

.
We then introduce the following lemma to help our proof.
Lemma 2: Let be a function and Lipschitz

continuous over a set with the constant . Then for any two
points in ,

(38)

Verifying the Conditions for Updating : Step (11) implies
that

(39)

Therefore,

which implies that (25) is satisfied by setting . It is
also clear that such satisfies (24) with .
Using Lemma 2, we can show that

(40)

Substituting in (39) into (40), we obtain

(41)

Since , the coefficient is a positive constant
when varies, which guarantees that (23) holds with

.
Verifying the Conditions for Updating : Following (12), we

obtain

(42)

Hence,

(43)

Using Lemma 2, we can show that

(44)

Combining with (43), we obtain

(45)

By choosing , the update on satisfies the condition
(23) with .
We define the feasible space of as

. The updating step (12) can be equiv-
alently written as

(46)

The problem (46) implies that the solution satisfies
the following property:

(47)

Hence, there exists such that

We hence have

(48)
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We further derive

(49)

where the last step follows from (48) and the fact that
is Lipshitz continuous with constant . Therefore,

the updating step on satisfies the conditions (24) and (25).
Verifying the conditions for updating follows the steps sim-

ilar to those for . This concludes the proof.

APPENDIX C
PROOF OF PROPOSITION 1

We note that , and obtain the
following upper bound.

(50)

where the step (a) follows from the Cauchy-Schwartz inequality,
and (b) follows from the Jensen’s inequality.
For the first term in (50), we have the following bound for

any realization of

(51)

For the second term in (50), we follow the arguments in the
proof of Proposition 4 in Appendix in [9] and use the property
of the weighted count kernel, and obtain

(52)

Combining (51) and (52), we obtain

(53)

For the case when , (29) follows from (53) by setting
and noticing that .

For the case when , (30) follows from (53) by setting
and noticing that the number of possible conditional

distributions is bounded by

(54)

APPENDIX D
PROOF OF PROPOSITION 2

We apply the following well-known result, which provides
a uniform bound on the difference between empirical and ex-
pected risk functions over a function class.
Lemma 3. [40]: Let the loss function be Lipschitz con-

tinuous with constant , and let be a uniform bound on
. Further assume that . Then, for any small

, with probability larger than ,

(55)
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Applying Lemma 3, we have the following bound for our
problem:

(56)

where the last step follows because for the logistic and
hinge loss functions.
Next we derive a bound for . We first show that both the

logistic and hinge loss functions satisfy

(57)

It is clear that (57) holds for the hinge loss function
. For the logistic loss function ,

if , then

(58)

Now, if , then , because
for all . This implies that

(59)

Hence, (57) holds for all for the logistic loss function.
We now bound of the two loss functions with decision

rules using the weighted count kernel as follows.

(60)

where (a) follows from the Cauchy-Schwartz inequality, and (b)
follows from the steps in (51). This concludes the proof.
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