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Abstract

Real world networks exhibit a complex set of phenomena such as underlying hier-

archical organization, multiscale interaction, and varying topologies of communities.

Most existing methods do not adequately capture the intrinsic interplay among such
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phenomena. We propose a nonparametric Multiscale Community Blockmodel (MSCB)

to model the generation of hierarchies in social communities, selective membership of

actors to subsets of these communities, and the resultant networks due to within-

and cross- community interactions. By using the nested Chinese Restaurant Process,

our model automatically infers the hierarchy structure from the data. We develop a

collapsed Gibbs sampling algorithm for posterior inference, conduct extensive valida-

tion using synthetic networks, and demonstrate the utility of our model in real-world

datasets such as predator-prey networks and citation networks.

Keywords: Hierarchical network analysis, Latent space model, Bayesian nonparametrics,

Gibbs sampler

1. INTRODUCTION

How do complex networks and their self-organization arise from coordinated interactions and

information sharing among the actors? One way to tap into this question is to understand the

latent structures over actors which lead to the formation and organization of these networks.

In particular, we are interested in uncovering the functional/sociological communities of

network actors, and their influence on network connections. We consider a community to

be a group of actors that share a common theme, like a clique of football fans in a social

network, or an ecosystem of dependent organisms in a biological food web. Our objective is

to gain a deeper understanding of the relationships within and among these communities,

so as to shed insight into the network topology.

More specifically, we seek to address three critical aspects of network modeling and

community discovery:

1. Hierarchy — not all communities are equal: a community can contain sub-communities,

or be contained by super-communities. This is a natural way to structure the latent

space of actors.

2. Multiscale Granularity — we must distinguish between coarse or generic associa-
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tions that may occur in a large super-community, as opposed to fine grained interactions

that occur within or among small, closely-interconnected sub-communities.

3. Assortativity/Disassortativity — some communities have strong within-community

interactions and weak cross-community interactions (assortativity), yet others may ex-

hibit the reverse (disassortativity).

These aspects are not independent, but are strongly interrelated. As an example, consider

an oceanic food web (Figure 1), a directed network with species as actors and predator-prey

relationships as edges. This network exhibits hierarchy: cold-blooded animals and mammals

are large super-communities that can be sub-divided into smaller sub-communities, such as

sharks and squid, or toothed whales and pinnipeds. These sub-communities can in turn be

divided into even smaller communities (not shown). The ideas of hierarchy and network

should not be confused with each other. The hierarchy is an organization of actors in some

latent space learned from the observed network.

Next, the predator-prey relationships in the ocean are multiscale. Consider a sperm

whale: it occasionally eats fish, which are common prey for many oceanic animals. Hence,

this “sperm whale, fish” interaction is generic. Moreover, sperm whales usually eat giant

squid, which are prey specific to them (making this interaction fine-grained). It is important

to differentiate between such interactions of different scale.

Finally, the toothed whale sub-community demonstrates both assortative and disas-

sortative behavior. Many toothed whales feed on small fish and seals, which are cross-

community interactions. However, whales such as orcas feed on other whales, which are

within-community interactions.

We propose a nonparametric Multiscale Community Blockmodel (MSCB) that presents

a unified approach to address these three concerns. Using the nested Chinese Restaurant

Process (Blei, Griffiths and Jordan 2010) as a nonparametric structural prior, our model

infers the appropriate hierarchy from the data, without requiring the user to pre-specify the

branching factor at each node. Moreover, by exploiting latent space ideas from Blei et al.
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(2003) and Airoldi et al. (2008), we uncover the coarse/fine-grained interactions that underlie

the network. Finally, our model builds upon the blockmodel concept (Wang and Wong 1987;

Airoldi, Blei, Fienberg and Xing 2008) to integrate assortativity and disassortativity into our

hierarchy. In order to use our model, we develop an MCMC algorithm for posterior inference

and hyperparameter estimation, and study its performance on simulated and real datasets.

In particular, our qualitative studies are centered on two networks: a 75-species food

web of grass-feeding wasps and their parasites (Dawah, Hawkins and Claridge 1995), and

a subset of the arXiv High-Energy Physics (Theory) citation network (KDD 2010). The

latter network originally contains 27,770 papers, but due to algorithmic limitations, we focus

on a 1,000-paper subset published from Jan 2002 through May 20031. Using our MCMC

algorithm, we uncover hierarchies from both networks, and analyze these in the context of

nodal attributes such as species’ trophic levels (i.e. parasite, herbivore or plant) and journal

paper titles. On the food web, we recover a hierarchy that, at a high level, follows intuitive

trophic divisions: parasites are grouped together, and similarly for herbivores or plants.

This is in contrast to the hierarchy-finding model of Clauset et al. (2008), whose recovered

hierarchy is centered around highly-connected species rather than trophic levels. On the

arXiv citation network, our recovered hierarchy splits the papers into specific research topics,

which corresponds to the perception that most scientific research is conducted by highly-

specialized communities of researchers. Finally, we support our qualitative studies with

simulations that reveal conditions under which our algorithm outperforms other statistical

and non-statistical network models.

1.1 Comparison to Existing Work

Existing methods for graph clustering and inferring community structure may address one

or two of the aspects we have described, yet none capture all three aspects simultaneously.

1Due to the short window of time, this 1,000-paper subnetwork has a lower citation density than the

original network. We acknowledge that this subnetwork is not ideal for hierarchy learning, since papers that

share only older citations will have no network paths between them. Nevertheless, this subnetwork retains

enough structure for our algorithm to recover a 2-level hierarchy, which we report in our experiments.
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To begin, methods such as Girvan and Newman (2002), Hoff et al. (2002), Handcock et

al. (2007), Krause et al. (2003) and Guimera and Amaral (2005) cannot discover disassor-

tative communities characterized by weak within-community and strong cross-community

interactions. Furthermore, they do not explicitly model organizational structure — and by

extension, multiscale granularity of interactions. These methods do not meet any of our

criteria, and are therefore unsuited for our purposes.

A common strategy for learning hierarchies is divisive or top-down: begin by learning

first level clusters using a non-hierarchical network clustering algorithm, and then recursively

apply the same algorithm to the subgraphs corresponding to each cluster. Spectral meth-

ods (Chung 1997) are a popular choice for top-down network clustering, not least because

they approximate a graph cut objective function, making them a natural fit for networks.

However, the biggest issue with divisive strategies is that deeper divisions cannot retroac-

tively influence shallower ones, leading to situations in which poor choices made early in

the algorithm doom the final outcome. In contrast, our hierarchical model specifies a prob-

ability distribution over the space of all possible K-level hierarchies, making it immune to

such issues in principle — though its effectiveness in practice will admittedly depend on the

particular inference algorithm used.

The counterpart to divisive clustering is agglomerative or bottom-up clustering, in which

network entities are repeatedly merged to form larger an larger clusters. One popular version

of this strategy, as adopted in the software program Pajek (Batagelj and Mrvar 1998), is to

generate a dissimilarity matrix from the network, such as the corrected Euclidean-like dis-

similarity of Batagelj et al. (1992), and then perform agglomerative clustering using Ward’s

criterion (Ward 1963). As with top-down clustering, bottom-up clustering suffers from an

inability to retroactively apply information gleaned from later merges, highlighting the need

for probabilistic models that consider all possible hierarchies at once. In our experiments,

we shall compare our method to the top-down spectral clustering strategy, as well as the

bottom-up Pajek strategy.

The Mixed Membership Stochastic Blockmodel (MMSB) (Airoldi et al. 2008) is a “mix-
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ture of features” model, in that it aims to discover the multiple latent “roles” played by each

actor in the network; additionally, it employs a blockmodel to accommodate both disassor-

tative and assortative types of interactions. While the multi-role memberships discovered

by MMSB are similar to our notion of coarse/fine-grained interactions, they are not iden-

tical; furthermore, MMSB does not induce a hierarchical structure over the actors. These

considerations prevent MMSB from modeling the organized network phenomena that our

model is designed to explore. Another “mixture of features” latent space model is that of

Miller et al. (2009), which allows each actor to take on multiple binary features in an infinite-

dimensional space. Like MMSB, this model does not learn a structure over its latent space,

and therefore cannot replicate our model’s ability to discover community hierarchies.

Finally, methods such as Clauset et al. (2004), Radicchi et al. (2004) and Kemp et

al. (2008) explicitly model some form of organizational structure, but do not permit actors to

have multiple kinds of interactions, which precludes them from learning the kind of multiscale

interactions we have described. Our MSCB model is perhaps most closely related to the

Infinite Relational Model (IRM) (Kemp, Tenenbaum, Griffiths, Yamada and Ueda 2006),

which is a special case of MSCB. More specifically, the IRM is equivalent to MSCB with a

hierarchy depth of one (i.e. a flat hierarchy with no multiscale membership), an unsurprising

fact given that the IRM is a nonparametric generalization of the stochastic blockmodel (Wang

and Wong 1987), from which MSCB inherits some of its key attributes. Roy et al. (2007) have

generalized the IRM in a different way for hierarchical group discovery, and further extended

their work to the nonparametric setting with Mondrian Processes (Teh and Roy 2009).

However, these two models are limited to binary hierarchies, and furthermore, they adopt a

notion of multi-community membership that is not directly comparable to ours. In contrast,

our model assumes no limit on the hierarchy’s branching factor, which is more realistic for

certain networks.
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Figure 1: Illustration of an oceanic food web as a set of nested communities (Left), and the corresponding

hierarchy of communities (Right). Vertices in the network represent individual species, and directed edges

represent predator-prey relationships (not all shown). Solid edges are fine-grained, specific interactions, while

dashed edges are coarse-grained and generic to a large community.

2. MULTISCALE COMMUNITY BLOCKMODEL (MSCB)

We now describe aspects of our model, beginning with the hierarchy and ending with network

generation. Throughout, we adopt an oceanic food web as a running example (Figure 1).

2.1 The Community Hierarchy

Our model organizes network actors into a depth-K tree-shaped hierarchy, where each node

in the tree represents a community. The tree contains a single root node at level 0, followed

by K levels of nodes; parent nodes can have any number of child nodes. Nodes closer to the

root represent large super-communities, (e.g. the “cold-blooded animals” and “mammals” in

Figure 1), while nodes closer to the terminal leaves represent finer-grained sub-communities

(e.g. “toothed whales” or “sharks”).

The most important aspect of our hierarchy is that each actor is associated with not just

one community, but with an entire path of super- through sub-communities, starting from a

level-1 node and ending with a level-K terminal leaf. In our food web example, the sperm

7



Sea Creatures

Cold-blooded Mammals

Sh
ar

ks

Fi
sh

To
o

th
e

d
 

W
h

al
e

s

P
in

n
ip

e
d

s

Sperm Whale, path c3 = [2,1]

Bottlenose Dolphin, path c2 = [2,1]

Sq
u

id

Root

Level 1

Level 2

Level 0

Tuna, path c1 = [1,2]

1

1 2 3 1 2

2

Figure 2: Oceanic food web from Figure 1, annotated with three species’ path vectors ci.

whale follows the path [mammal, toothed whale]. More formally, we represent actor i’s path

by a random-valued, K-length path vector ci, where the k-th element of ci represents the

branch choice taken at level k. Referring to our oceanic food web in Figure 2, we see that

“mammals” are the 2nd branch from the root “sea creatures”, while “toothed whales” are

the 1st branch from ”mammals” — hence the sperm whale has a path vector of c3 = [2, 1]

in this hierarchy. Henceforth, we shall use the term path to refer to path vectors ci.

It is important to note that we never represent our hierarchy explicity; it is implicit

from the set of all actor paths {c1, . . . , cN}. For example, given c1 = [1, 1], c2 = [1, 2], and

c3 = [2, 1], we can recover a hierarchy with two level-1 nodes, carrying 2 and 1 child nodes

respectively at level 2. This implict representation is convenient for probabilistic inference,

as we shall demonstrate later.

2.2 A Measure over Hierarchies

Because the number of actor paths N is finite, the space of meaningful hierarchies is also

finite. Unfortunately, this space is still very large, which makes model selection (i.e. hierarchy

selection) an inherently difficult task. In order to solve this problem, we make use of a

measure over sets of actor paths {c1, . . . , cN} (recall that these paths implicitly define a
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depth-K hierarchy), the Nested Chinese Restaurant Process (nCRP) (Blei et al. 2010).

As its name suggests, the nCRP is a recursive version of the Chinese Restaurant Process

(CRP) (Aldous 1985; Teh, Jordan, Beal and Blei 2006), the latter being an exchangeable

distribution over partitions of a finite set of objects (i.e. ways to divide up the objects).

To clearly present the nCRP, a brief overview of the CRP and the Dirichlet Process

(DP) (Ferguson 1973) is in order. In Bayesian nonparametric mixture modeling, the DP

is employed as a prior over a countably infinite number of mixture components (Escobar

and West 1995; MacEachern and Müller 1998). However, the DP can only model flat (i.e.

without hierarchy) nonparametric mixture models, which represent an extreme case of our

model when the hierarchy has only K = 1 level. One particularly useful view of the DP

is given by the Pólya urn scheme (Blackwell and MacQueen 1973), which provides a closed

form for the i-th data point’s mixture component, given the mixture components of the

previous i − 1 data points. If we disregard the locations of the mixture components and

simply focus on their identities, the Pólya urn scheme becomes the CRP. Recall that the

CRP is an exchangeable distribution over partitions of objects: in the context of the DP,

the objects are data points, which are placed into parts (i.e. divisions of the partition) that

represent mixture components.

In essence, the CRP allows us to separate the identities of the DP mixture components

from their locations in the data domain (as drawn from a base measure). By exploiting

this separation, Blei et al. (2010) generalize the CRP to the nCRP, transforming the flatly-

organized mixture components of the former into the tree-shaped hierarchy of the latter.

Nested Chinese Restaurant Process The nCRP, as defined by Blei et al. (2010), is a

measure over sets of tree paths {c1, . . . , cN} of infinite length, though for our purposes we

shall restrict the nCRP to paths of length K. The nCRP is most intuitive when described

generatively: beginning with actor 1, each actor chooses its tree path in turn, conditioned

on the existing paths chosen by previous actors. Consider the i-th actor: he begins at the

root, and needs to choose which level-1 branch to take. With probability n
(1)
x,i−1/(i−1+γ) he
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selects branch x already in the tree, or with probability γ/(i− 1 + γ) he starts a completely

new branch. Here, n
(1)
x,i−1 is the number of actors before i that chose branch x at level 1, and

γ is a hyperparameter dictating the probability that an actor will start a new branch.

Actor i continues this process as he descends the tree. When picking a branch at level k,

with probability n
(k)
y,i−1/(n

(k−1)
i−1 + γ) he selects branch y, and with probability γ/(n

(k−1)
i−1 + γ)

he starts a new branch. Here, n
(k−1)
i−1 counts the number of actors 1, . . . , i − 1 having the

same path as actor i up to (and including) level k − 1. Out of these actors, n
(k)
y,i−1 is the

number that picked branch y (at level k). This sequence of branch choices defines the path

ci of actor i, and as we have explained previously, the set of all actor paths implicitly defines

the hierarchy. Note that our model limits the hierarchy to a maximum depth of K.

We now provide a more formal definition of the nCRP. In order to do so, we must first

introduce the (original) Chinese Restaurant Process (CRP), an exchangeable distribution

over partitions (of a set of objects) (Aldous 1985; Teh et al. 2006). For concreteness, we shall

represent an object’s assigned part by a positive integer — as an example, suppose there

are three random variables X1, X2, X3 corresponding to a partition of three objects, then

X1 = 1, X2 = 1, X3 = 2 represents a partition where objects 1 and 2 are in one part, and

object 3 is in another part. Note that this scheme allows every partition to be represented

by infinitely many assignments, e.g. X1 = 3, X2 = 3, X3 = 2 represents the same partition

as the earlier assignment. Despite this non-identifiability, the positive-integer representation

turns out to be convenient for describing and implementing our Gibbs sampling inference

procedure.

Let cik denote the k-th element of the i-th actor path, i.e. the branch taken at level k

by actor i. In our model, the collection of all actor path first-level branch choices, which we

denote as {ci1}, forms a partition distributed according to a CRP prior:

P(ci1 = x | c1:(i−1),1) =


|{j<i | cj1=x}|

i−1+γ x ∈ {c1:(i−1),1}

γ
i−1+γ x is the smallest positive integer not in {c1:(i−1),1}

(1)

where γ > 0 is a “concentration” parameter that controls the probability of drawing new
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integers, and c1:(i−1),1 = (c11, . . . , c(i−1)1) denotes the set of 1st-level elements from paths c1

through ci−1. Again, we stress that different assignments to {ci1} can correspond to the

same partition. High values of γ imply that partitions with more parts are more likely.

The nCRP (Blei et al. 2010) extends the CRP to recursively nested partitions. The nCRP

can be thought of as a hierarchy of CRPs, beginning with a single CRP at the top level. To

each unique integer x seen at the top-level prior, we associate a child CRP with |{i | ci1 = x}|

observations, resulting in a two-level tree of CRPs. We can repeat this process ad infinitum

on the newly-created child CRPs, resulting in an infinite-level tree of CRPs; however, we only

use a K-level nCRP (denoted as nCRPK) as we have limited the maximum hierarchy depth

to K. In our model, all child CRPs of the nCRP share the same concentration parameter γ,

and high values of γ make “branchier” trees more likely. We note that one could easily have

different γ’s for different tree levels, but do not discuss this modification.

Our model treats the collection of all actor paths {ci} as a recursively nested partition

(of depth K), distributed according to an nCRPK(γ) prior:

P(cik = x | c1:(i−1) , ci,1:(k−1)) = (2)
|{j<i | cj,1:(k−1)=ci,1:(k−1) , cjk=x}|
|{j<i | cj,1:(k−1)=ci,1:(k−1)}|+γ x ∈ {cjk | (j < i) , cj,1:(k−1) = ci,1:(k−1)}

γ

|{j<i | cj,1:(k−1)=ci,1:(k−1)}|+γ x is the smallest positive integer not in the above set,

where in the first line, c1:(i−1) = {c1, . . . , ci−1} is the set of complete paths c1 through ci−1,

and ci,1:(k−1) = {ci,1, . . . , ci,k−1} contains the 1st through (k−1)-th elements of path ci. Each

actor path ci is represented by a length-K vector of positive integers, and the distribution

above enables us to draw their elements one at a time: c11, . . . , c1K , c21, . . . , c2K , and so on.

As with the original CRP, different assignments to {ci} can correspond to the same set of

(nested) partitions.

2.3 Multiscale Membership

In conjunction with the actor paths, MSCB’s notion of Multiscale Membership (MM) distin-

guishes it from other hierarchical clustering methods. Briefly, each actor i is endowed with
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a probability distribution over the hierarchy nodes in its path. We denote this distribution

by a Multiscale Membership (MM) vector θi, a K-dimensional multinomial that encodes an

actor’s tendencies to interact as a member of the different super- and sub-communities along

its K-length path. Specifically, θik, the k-th element of θi, is the probability that actor i will

interact as a member of the k-th community along its path from the root. Through MM,

our model is able to accomodate multiscale granularity on interactions, i.e. the notion that

some interactions are finer or coarser than others.

To use our food web example (Figure 2), consider two species of toothed whales: dolphins

and sperm whales. Although both share the same hierarchy path, [mammal, toothed whale],

they behave quite dissimilarly. A dolphin’s diet consists mainly of fish, which are common

prey for many mammals. Thus, we would say it typically interacts as a member of the

mammal super-community, though it occasionally chooses prey that are more specific to its

species. On the other hand, a sperm whale barely eats fish, so it rarely interacts as a member

of its super-community; instead, it prefers giant squid, a more specific prey uncommon to

most mammals. Thus, the sperm whale has a higher probability of participating in fine-

grained interactions (say, θ = [0.1, 0.9]) unlike the dolphin, which is more likely to pursue

coarse-grained interactions (for example, θ = [0.8, 0.2]).

At this juncture, it is worth comparing our Multiscale Membership to the Mixed-Membership

Stochastic Blockmodel (MMSB) (Airoldi et al. 2008). The latter model endows each actor

with a distribution over latent roles, just as our Multiscale Membership vector provides each

actor with a distribution over communities. There is a key difference, however: MMSB’s

Mixed Membership vectors permit each actor to have a distribution over all latent roles,

whereas our model’s Multiscale Membership vectors constrain each actor to distributions

only over super- and sub-communities on its path. This restriction is crucial: if actors were

allowed to have distributions over all hierarchy communities, the hierarchy could be ren-

dered virtually meaningless — for instance, we could say that dolphins are simultaneously

members of the shark and toothed whale communities, which is plainly unrealistic.

Just as with the paths ci, we place a suitable prior on the MM vectors θi, a truncated
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two-parameter stick breaking2 process (Blei et al. 2010), denoted by StickK(m,π) where

0 < m < 1 and π > 0. This prior is conjugate to the K-dimensional multinomial distribution,

which will be important when deriving our Gibbs sampler inference algorithm. Furthermore,

unlike the Dirichlet distribution (which is also conjugate to the multinomial), the stick

breaking process makes it easy to bias the posterior of θi towards coarser interactions (i.e.

elements θik have more probability mass for k closer to 1) or finer interactions (more mass for

k closer to K). In contrast, a single-parameter Dirichlet prior cannot accomodate coarse/fine

biases, while a full K-parameter Dirichlet prior may be too expressive — for instance, we do

not anticipate needing a bimodal prior on θik for our applications.

Truncated Two-parameter Stick Breaking Process As its name suggests, the StickK(m,π)

distribution generates multinomial parameters θi via the analogy of breaking sticks into

pieces. Beginning with a stick of length 1, draw the first stick fraction Vi1 ∼ Beta(mπ, (1−

m)π) and let the first stick length be θi1 = Vi1, leaving 1− θi1 as the remainder of the stick.

To get the second stick length θi2, draw Vi2 ∼ Beta(mπ, (1 −m)π) and break this fraction

off from the remainder, giving θi2 = Vi2(1 − Vi1). We repeat this process until we have K

sticks, after which we discard the remainder and renormalize the sticks to get θi.

Formally, let Vik be the k-th fraction to break off from the stick’s remainder, and let θik

be the length of the k-th stick. To draw θi ∼ StickK(m,π), we first draw Vik ∼ Beta(mπ, (1−

m)π) for k ∈ {1, . . . , K} and define θik to be

θik ∝ Vik

k−1∏
u=1

(1− Viu) (3)

with normalization factor
∑K

k=1 θik. We note that Blei et al. (2010) called this distribution

a “two-parameter GEM distribution”, and let K →∞ to get an infinte-dimensional prior.

Intuitively, the parameter 0 < m < 1 influences the posterior mean of θi; m→ 1 results

in elements θik having more mass for k closer to 1, while m→ 0 results in more mass for k

2Note that our use of the stick-breaking process is unrelated to the stick-breaking construction for the

Dirichlet Process. We use the stick-breaking process to produce a mixture over the mixture components

induced by the nCRP, not to define the mixture components themselves.
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closer to K. The other parameter π > 0 indicates our confidence in the stick breaking prior;

π → ∞ indicates more confidence, causing the posterior mean of θi to approach the prior

mean, and the posterior variance of θi to approach zero.

2.4 Network Edge Generation

We now explain how the paths ci and MM vectors θi generate edges in the network. At

this point, we must introduce additional notation: let E be the N × N adjacency matrix

of observed network edges, where element Eij corresponds to the directed edge or inter-

action/relationship from actor i to j. In the context of our food web, the actors are sea

creatures such as dolphins and sperm whales, and the edges represent predator-prey inter-

actions. A value of Eij = 1 indicates that the interaction is present, while Eij = 0 indicates

absence, and we ignore self-edges Eii. Because we are modeling a directed network, E is not

necessarily symmetric. If we need to model symmetric relationships such as friendship, we

can let Eij = Eji for all i, j.

To begin, we shall introduce MSCB’s generative process for network edges:

• For each actor i ∈ {1, . . . , N}:

– Sample i’s hierarchy path ci ∼ nCRPK(γ).

– Sample i’s Multiscale Membership (MM) vector θi ∼ StickK(m,π). Note that θi and ci are

drawn independently.

• To generate the network, for each possible directed edge Eij :

– Sample donor level z→ij ∼ Multinomial(θi), and let h = ci[z→ij ]. Formally, h represents the

community at level z→ij on path ci, i.e. the z→ij-th element of ci.

– Sample receiver level z←ij ∼ Multinomial(θj), and let h′ = cj [z←ij ].

– Sample the edge Eij ∼ Bernoulli(SB(h, h′)). We shall define SB() later.

The basic idea is as follows: for every directed edge Eij, both actor i (the donor) and actor

j (the receiver) pick communities h and h′ from their respective paths ci, cj, according to

the levels drawn from their MM vectors θi, θj. The communities h, h′ are then used to select

a community compatibility parameter via the function SB(h, h′), which in turn generates
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Figure 3: Graphical model representation of our MSCB model. Diamonds represent model parameters,

hollow circles represent hidden random variables, and filled circles represent observed random variables.

Variables inside a numbered rectangle are duplicated by that number, e.g. there are N variables θi, numbered

from θ1 through θN . Arrows denote probabilistic dependencies, and these are annotated with the probability

distribution they represent: for instance, θi ∼ StickK(m,π), z→ij ∼ Multinomial(θi), etc..

Eij ∼ Bernoulli(SB(h, h′)). Note that the arrow in z→ij or z←ij indicates whether the variable

belongs to the donor actor (i for z→ij) or receiver actor (j for z←ij), with respect to the edge

Eij from i to j. The arrow does not indicate the edge direction between i and j.

2.5 Community Compatibility Matrices B

We turn our discussion to the community compatibility parameters that define edge prob-

abilities between communities, as well as how the SB() function selects them during edge

generation. Intuitively, the compatibility from community h to h′ is high if actors from h

often interact with actors from h′. Conversely, a low compatibility indicates that actors from

h rarely interact with actors from h′. Thus, it is natural that we define compatibility to be a

Bernoulli parameter in [0, 1], where 1 indicates perfect compatibility. This notion of compat-
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ibility is what allows our model to account for both assortative and disassortative behavior,

in similar fashion to stochastic blockmodels (Wang and Wong 1987) — for example, strongly

assortative networks correspond to high compatibility parameters when h = h′, i.e. when

the source and destination communities are the same.

There are many ways to associate compatibility parameters with pairs of communities

h, h′, and the challenge is to find a scheme that tightly integrates compatibility parameters

with the hierarchy and multiscale interactions over communities. A first attempt might be

to ignore the hierarchy, and place a full H × H compatibility matrix over all community

pairs h, h′ (where H is the total number of nodes in the hierarchy); this is analogous to the

role-compatibility matrix used in MMSB (Airoldi et al. 2008). However, this formulation

fails to capture the multiscale nature of interactions, because there is simply no connection

between the compatibility parameter for h, h′ and those communities’ levels in the hierarchy.

In order to connect the community parameters with the hierarchy levels, we must restrict

them in some meaningful way. First, we need to define the notion of a sibling group. Formally,

a sibling group is a largest possible set of communities such that (1) all communities are at

the same level, and (2) have the same immediate parent community. To put it another way,

every parent (including the level-0 root) contains a sibling group comprised of its immediate

children (but not grandchildren, or great-grandchildren, etc.). Hence, if there are P parent

nodes, there are P sibling groups, and all sibling groups are disjoint from one another. To

give a concrete example, if we have three paths, c1 = [1, 1], c2 = [1, 2], and c3 = [2, 1], then

the hierarchy contains 3 sibling groups: one at level 1 with communities {[1], [2]}, and two

at level 2 with communities {[1, 1], [1, 2]} and {[2, 1]} respectively.

Each sibling group is associated with its own compatibility matrix B, which contains

the compatibility parameters for every pair of communities within that sibling group; refer

to Figure 4 for an example illustration. This scheme restricts the community parameters

— notice that communities from different sibling groups do not have explicit community

parameters between them; we shall discuss how this affects edge generation shortly. Also,

since MSCB infers the number of hierarchy nodes from the data by way of the nCRP prior,
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Sibling group under community 1 Sibling group under community 2 Sibling group under community 3

Figure 4: Four sibling groups in an example hierarchy, and the sizes of their compatibility matrices B.

we cannot know a priori the number and sizes of the sibling group compatibility matrices.

We will return to this issue when we discuss our inference procedure.

Now that we have defined the sibling group compatibility matrices, we can describe how

network edges are generated from them. Recall that the edge generative process picks two

interacting communities h, h′ according to paths ci, cj and MM vectors θi, θj. When h, h′ are

at the same level and share the same immediate parent, we simply pick their community

compatibility parameter3 Bh,h′ from their associated sibling group matrix, and draw the edge

Eij ∼ Bernoulli(Bh,h′). However, if h, h′ do not share the same parent, then we invoke the

following coarsening procedure:

1. Recall that h = ci[z→ij ] and h′ = cj [z←ij ].

2. Set zmin := min(z→ij , z←ij), i.e. the smaller interaction level from h or h′.

3. If the coarsened communities hcoarse = ci[zmin] and h′coarse = cj [zmin] are in the same sibling

group, then we look up their compatibility matrix entry Bhcoarse,h′coarse . We then generate

3A word on notation: Bh,h′ is used as shorthand to (1) first select the community-compatibility matrix

B associated with the parent of communities h, h′, and then (2) select the element of that B corresponding

to h interacting with h′. Because our inference procedure integrates out the B matrices, a precise, long-form

notation for them is unnecessary.
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Eij ∼ Bernoulli(Bhcoarse,h′coarse).

4. Otherwise, set zmin := zmin−1 and repeat step 3. This effectively sets hcoarse to its immediate

parent (and likewise for h′coarse).

To put it another way, the coarsening procedure finds the deepest common hierarchy node

(which could be the root node) shared by the paths ci and cj and whose level is strictly

shallower than min(z→ij, z←ij). Supposing that this deepest common node has level zmin−1,

we then draw the compatibility parameter Bci[zmin],cj [zmin] and generate Eij according to

it. Notice that the hierarchy nodes ci[zmin], cj[zmin] are part of the same sibling group by

construction, thus the compatibility parameter Bci[zmin],cj [zmin] always exists. Now, we can

formally define our SB() function from the previous section:

SB(h, h′) = Bhcoarse,h′coarse , where h = ci[z→ij ], h′ = cj [z←ij ], (4)

hcoarse = ci[zmin], h′coarse = cj [zmin], zmin = 1 + max
z: 0≤z<min(z→ij ,z←ij), ci[z]=cj [z]

z,

and where we adopt the convention ci[0] = cj[0], to represent the fact that all paths implicitly

share the root node. In future, we shall employ the shorthand SijB := SB(h, h′) for brevity.

Finally, in keeping with our use of Bayesian inference, we place a Beta(λ1, λ2) prior over

every element Bx,y of every sibling group compatibility matrix. This adds the following step

to our generative process:

• For each element x, y of each sibling group compatibility matrix:

– Sample Bx,y ∼ Beta(λ1, λ2).

This step comes after generating paths ci, but before generating edges Eij. A graphical

model representation of our full generative process can be found in Figure 3. In summary,

our use of sibling group compatibility matrices enforces the role of the hierarchy during edge

generation, thus distinguishing MSCB from “flat” blockmodels such as Wang et al. (1987)

and Airoldi et al. (2008).
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3. A DISCUSSION ON MODEL IDENTIFIABILITY

In general, MSCB is not identifiable for hierarchy depths K > 1; the lack of identifiability

implies that, for a given observed network Eij, there will be multiple hierarchies that produce

the same model likelihood. However, the degree to which MSCB is non-identifiable can be

compared to two other models, the Infinite Relational Model (IRM) (Kemp et al. 2006) and

the Mixed Membership Stochastic Blockmodel (MMSB) (Airoldi et al. 2008).

There are two ways in which MSCB is non-identifiable, and it is important to distinguish

between them. First, observe that the communities can be permuted without changing the

model likelihood. This issue is common to practically all clustering models and algorithms;

even the regular stochastic blockmodel (Wang and Wong 1987) suffers from this. Neverthe-

less, this type of non-identifiability is rarely a problem: in most clustering applications, the

clusters are meant to be inspected by humans, or else further criteria can be applied post-hoc

to select clusters of interest. The second, and more critical form of non-identifiability, arises

because the MM vectors θi are mixtures. We shall discuss this further when we compare

MSCB to the MMSB.

Observe that when K = 1 or m→ 1, the MM vectors θi are reduced to point masses at the

first element θi1, which eliminates the second non-identifiability (mixture non-identifiability).

In this form, MSCB reduces to a nonparametric stochastic blockmodel (by nonparametric,

we mean that the number of roles/clusters is automatically selected), identical to the IRM,

and with only permutation non-identifiability to worry about. Although these limiting cases

do not produce meaningful hierarchies and are thus uninteresting from an application per-

spective, they remain useful as a kind of lower bound on MSCB’s non-identifiability.

For the general case in which the MM vectors θi are nonzero in more than one dimension,

we can gain insight by comparing MSCB to the MMSB. The latter is essentially a stochastic

blockmodel with L communities/roles, but unlike the stochastic blockmodel, network entities

are not restricted to just one role. Instead, each network entity i has a distribution φi

over all L roles, from which every edge-touching entity i draws its own (possibly different)
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role assignment; this process is similar to how our MSCB allows edges to draw different

level assignments. Because of the entity role mixtures φi, MMSB suffers from mixture non-

identifiability, though it has been successfully applied to various datasets (Airoldi et al. 2008).

Formally, the MMSB marginal likelihood of Eij = 1 conditioned on the role mixtures (but

not the edge role assignments) is φ>i Bφj, where B is the blockmatrix. Observe that for any

orthonormal matrix U , we have φ>i (UU>)B(UU>)φj = φ>i Bφj. Assuming a permutation-

unbiased prior on the φi, this implies that the MMSB model likelihood remains the same

if we transform B to U>BU and all φi to U>φi. In short, MMSB is non-identifiable up to

orthonormal transformations.

To see how MSCB relates to MMSB, imagine that the MSCB sibling group matrices are

sub-matrices along the diagonal of some large H ×H blockmatrix B, where H is the total

number of hierarchy nodes. Elements of this blockmatrix that do not correspond to some

sibling group matrix represent community-community interaction parameters eliminated by

coarsening, and thus are absent from the model. In this new representation, the MM vectors

θi can be represented as H-dimensional vectors ψi, but with support on at most K elements,

where K is the hierarchy depth. If we disregard coarsening, the marginal likelihood of

Eij = 1 is simply ψ>i Bψj, just like MMSB. The difference is that the vectors ψi have

support on at most K � H elements, making MSCB significantly more constrained, and

thus more identifiable, than a H-role MMSB. Specifically, we can only transform B and

ψi using orthonormal matrices U that preserve ψi having at most K elements of support,

otherwise the resulting model no longer corresponds to a K-level MSCB. As for coarsening,

its effect is to force parameter sharing — think of it as remapping the “eliminated” elements

of B onto elements corresponding to some sibling group matrix. This further constrains

MSCB, making it in fact more identifiable than our comparison to MMSB implies.

In summary, the fixed-depth hierarchy and coarsening rules make MSCB significantly

more identifiable than the closely-related MMSB. However, as we increase the maximum hier-

archy depth K, the degree of model non-identifiability also increases. We recommend using a

maximum hierarchy depth of K = 2 or 3, noting that for a fixed depth K, MSCB can instead
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learn wider, highly-branched hiearchies without increasing the model non-identifiability.

4. COLLAPSED GIBBS SAMPLER INFERENCE

Given a directed network adjacency matrix E, our model’s primary purpose is to estimate

(1) a hierarchy over the network actors (implictly given by the paths c), and (2) the actors’

Multiscale Membership (MM) vectors θ indicating their propensities to interact at different

levels of the hierarchy. As secondary goals, we might also estimate (3) the sibling group

compatibility matrices B so as to learn the communities’ propensities to interact with one

another, or (4) the donor/receiver link interaction levels z in order to discover the granu-

larity of each interaction. To be precise, since our model is Bayesian, we seek the posterior

distributions of c, θ, B and z given E.

Unfortunately, finding the exact posteriors is infeasible — the number of possible as-

signments to the discrete random variables c and z is exponentially large, while analytic

solutions to the posteriors of the continuous random variables θ and B do not even exist.

We must therefore resort to approximating the posteriors, via some approximate inference al-

gorithm. Two general strategies exist for approximate inference: Markov Chain Monte Carlo

(MCMC) methods (Robert and Casella 2004) that take random samples from the posterior,

and variational approximations (Jordan, Ghahramani, Jaakkola and Saul 1999; Wainwright

and Jordan 2008) that find the closest approximation to the posterior in some space of

“simpler”, analytically tractable distributions.

The literature contains many examples of variational approximations being applied to

variants of the stochastic blockmodel (Airoldi et al. 2008; Xing, Fu and Song 2010; Nallap-

ati, Ahmed, Xing and Cohen 2008). Variational approximations tend to be computationally

faster than comparable MCMC methods, but lack guarantees on the quality of their approx-

imation. In addition, nonparametric priors like the Nested Chinese Restaurant Process can

have an unbounded number of parameters, hence they pose special difficulties for variational

inference. This unbounded parameter issue can be solved by truncating the variational dis-

tribution (Blei and Jordan 2004), at the cost of introducing a new parameter that specifies
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the degree of truncation. Wang and Blei (2009) have developed a variational approximation

specifically for the nCRP, in which special techniques are introducted to handle truncation

adaptively. In general however, variational inference in the nonparametric case remains more

difficult to derive and implement than in the parametric case.

We have chosen an MCMC method for posterior inference in our model: specifically,

a collapsed Gibbs sampling scheme (Liu 1994), in which the continuous random variables

B and θ are integrated out with the goal of simplifying the sampling equations. Gibbs

sampling on discrete random variables is guaranteed to converge to the true posterior, though

there are no general guarantees on how many samples are required for convergence. Unlike

nonparametric variational inference, the unbounded number of parameters is not an issue

for collapsed Gibbs samplers, hence we need not worry about truncation issues. In addition,

the MCMC literature for nonparametric priors is mature; Gibbs sampling schemes have been

derived for a variety of priors (Teh et al. 2006), including the nCRP itself (Blei et al. 2010).

4.1 Gibbs Sampling Equations

Approximate posterior inference in our model is conducted via a collapsed Gibbs sampling

scheme (Liu 1994), in which some of the random variables are integrated out. Specifically, we

integrate out two types of random variables: the first type are the community-compatibility

matrices B, which we integrate by exploiting conjugacy between the Beta and Bernoulli

distributions. This adds conditional dependencies among interactions Eij — specifically, all

Eij that use the same compatibility parameter Bhcoarse,h′coarse (by way of the levels z and

paths c) become dependent on each other when conditioned on z, c. However, Eij that use

different compatibility parameters remain conditionally independent given all other variables.

The second type of random variable that we integrate are the MM vectors θi, by exploiting

conjugacy between the multinomial distribution and the truncated stick breaking process;

note that this adds dependence between levels z that share the same θi.

The point of integrating B,θ is that it may lead to faster convergence of the Gibbs

sampler, and this technique is widely used in the latent space modelling community (Blei
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et al. 2010; Mimno and McCallum 2007; Newman, Chemudugunta and Smyth 2006). More-

over, the resulting sampler is easier to implement because the remaining latent and observed

variables z, c,E are all discrete. The reader might ask why we do not integrate z, c; our

answer is that there are no known techniques for integrating these variables, and to the best

of our knowledge, there is no evidence suggesting this will have any benefit over integrat-

ing B,θ. Note that, given a sample of the remaining hidden variables c, z, the posterior

distributions of B,θ are easily recovered using Bayes’ Rule.

With B,θ integrated out, the only variables that need to be explicitly sampled are the

levels z and the paths c. We shall derive their Gibbs sampling equations below.

Sampling Levels z To get the collapsed level sampling equations, we begin with the joint

distribution of z→ij,B,θ conditioned on all other variables, and then integrate out B,θ:∫ ∫
P(z→ij ,B,θ | c, z−(→ij),E; γ,m, π, λ1, λ2) dBdθ

= P(z→ij | c, z−(→ij),E; γ,m, π, λ1, λ2) (integration)

=
P(Eij , z→ij | c, z−(→ij),E−(ij); γ,m, π, λ1, λ2)

P(Eij | c, z−(→ij),E−(ij); γ,m, π, λ1, λ2)
(conditional probability definition)

∝ P(Eij , z→ij | c, z−(→ij),E−(ij); γ,m, π, λ1, λ2) (denominator does not depend on z→ij)

= P(Eij | c, z,E−(ij); γ,m, π, λ1, λ2)P(z→ij | c, z−(→ij),E−(ij); γ,m, π, λ1, λ2) (chain rule)

= P(Eij | c, z,E−(ij);λ1, λ2)P(z→ij | zi,(−j);m,π) (conditional independence) (5)

where E−(ij) is the set of all edges E except Eij, and z−(→ij) is the set of all level indicators

z except z→ij, and finally zi,(−j) = {z→i·, z←·i} \ z→ij is the set of all z’s that are drawn from

θi except z→ij.

Two aspects of Eq. (5) are worth explaining. First, our goal is to Gibbs sample from

the conditional distribution of z→ij (with B,θ integrated out), i.e. line 2. Consequently,

we can discard proportionality factors that do not depend on z→ij, such as the denominator

P(Eij | . . . ) from line 3 to 4. Second, from line 5 to 6, we can change the 2nd P() term’s

conditioning variables from z−(→ij) to zi,(−j) because (1) we are not conditioning on Eij,
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and (2) we are conditioning on m,π. Hence, z→ij is d-separated and thus conditionally

independent from all z’s not drawn from θi.

Moving on, let us now expand the first P() term:

P(Eij | c, z,E−(ij);λ1, λ2) =
Γ(a+ b+ λ1 + λ2)

Γ(a+ λ1)Γ(b+ λ2)
· Γ(a+ Eij + λ1)Γ(b+ (1− Eij) + λ2)

Γ(a+ b+ 1 + λ1 + λ2)
, (6)

a =
∣∣∣{(x, y) | (x, y) 6= (i, j),SxyB = SijB, Exy = 1

}∣∣∣ , b =
∣∣∣{(x, y) | (x, y) 6= (i, j),SxyB = SijB, Exy = 0

}∣∣∣ .
Eq. (6) results from integrating the compatibility matrices B via Beta-Bernoulli conjugacy;

notice that it is a function of z→ij through the condition SxyB = SijB within the sub-expressions

a, b. Because we have integrated B, the random variable z→ij is now dependent on all inter-

actions Exy that, for the current sample value of z, c, use the same compatibility parameter

SijB as Eij (by way of z, c and coarsening).

The second P() term can be computed using the law of total expectation, conditioned on

the stick-breaking lengths V1, . . . , VK associated with z→ij:

P(z→ij = k | zi,(−j),m, π) = E
[
I(z→ij = k) | zi,(−j),m, π

]
= E

[
E [I(z→ij = k) | Vi1, . . . , Vik] | zi,(−j),m, π

]
= E

[
Vik

k−1∏
u=1

(1− Viu) | zi,(−j),m, π

]
= E[Vik | zi,(−j),m, π]

k−1∏
u=1

E[(1− Viu) | zi,(−j),m, π]

∝
mπ + #[zi,(−j) = k]

π + #[zi,(−j) ≥ k]

k−1∏
u=1

(1−m)π + #[zi,(−j) > u]

π + #[zi,(−j) ≥ u]
, (7)

where #[A = x] is the number of elements in set A equal to x. The proportionality factor

arises from truncating the stick-breaking process at level K, and is equal to
∑K

k=1 P(z→ij =

k | zi,(−j),m, π). Overall, Eq. (7) is a consequence of integrating out θi using multinomial-

stick-breaking conjugacy, which makes z→ij dependent on zi,(−j).

For brevity, we omit the sampling equations for z←ij, as they are derived in similar

fashion. The computational complexity of sampling a single zij is O(K), where K is the

(fixed) depth of our hierarchy. Hence the total runtime required to sample all z is O(N2K).
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Sampling Paths c As with the levels, we start with the joint distribution of ci,B,θ

conditioned on all other variables:∫ ∫
P(ci | c−i, z,E; γ,m, π, λ1, λ2) dBdθ = P(ci | c−i, z,E; γ,m, π, λ1, λ2) (integration)

∝ P(ci,E(i·),(·i) | c−i, z,E−(i·),−(·i); γ,m, π, λ1, λ2) (cond. probability; discarding denominator)

= P(E(i,·),(·,i) | c, z,E−(i·),−(·i); γ,m, π, λ1, λ2)P(ci | c−i, z,E−(i·),−(·i); γ,m, π, λ1, λ2) (chain rule)

= P(E(i·),(·i) | c, z,E−(i·),−(·i);λ1, λ2)P(ci | c−i; γ) (conditional independence) (8)

where E(i·),(·i) = {Exy | x= i or y= i} is the set of incoming and outgoing edges from entity

i, and E−(i·),−(·i) is its complement. In line 2, we have implicitly discarded the denominator

P(E(i·),(·i) | . . . ) as it does not depend on ci.

The first term P(E(i·),(·i) | c, z,E−(i·),−(·i);λ1, λ2), as a function of ci, is

1st term =
∏

B∈B(i,·),(·,i)

Γ(gB + hB + λ1 + λ2)

Γ(gB + λ1)Γ(hB + λ2)
· Γ(gB + rB + λ1)Γ(hB + sB + λ2)

Γ(gB + hB + rB + sB + λ1 + λ2)
, (9)

B(i·),(·i) = {Bh,h′ | ∃(i, j)[Eij ∈E(i·),(·i),S
ij
B =Bh,h′ ]},

gB =
∣∣{(x, y) | Exy ∈ E−(i·),−(·i), Sxy

B = B,Exy = 1
}∣∣ , hB =

∣∣{(x, y) | Exy ∈ E−(i·),−(·i), Sxy
B = B,Exy = 0

}∣∣ ,
rB =

∣∣{(x, y) | Exy ∈ E(i·),(·i), Sxy
B = B,Exy = 1

}∣∣ , sB =
∣∣{(x, y) | Exy ∈ E(i·),(·i), Sxy

B = B,Exy = 0
}∣∣ .

Similar to Eq. (6), Eq. (9) is a consequence of integrating out B for all interactions E associ-

ated with actor i. In brief, the set B(i·),(·i) contains all sibling group community compatibility

matrix elements Bh,h′ that are associated with some edge in E(i·),(·i); note that these elements

may not necessarily be from the same sibling group matrix. More precisely, B(i·),(·i) is con-

structed as follows: (1) for each edge Exy ∈ E(i·),(·i), find Exy’s corresponding sibling group

matrix element Bh,h′ by applying the coarsening procedure to cx, cy, z→xy, z←xy, and then (2)

take the union over all matrix elements found this way. Because the sibling group matrices

B have been integrated out, the set B(i·),(·i) is only used to reference their sufficient statistics,

through the SB() function defined in Eq. (4). In particular, the four terms gB, hB, rB, sB are

functions of B from the product inside P(E(i·),(·i) | c, z,E−(i·),−(·i);λ1, λ2), and they represent

counts of 0/1 edges associated with each B ∈ B(i·),(·i).

As for the second term P(ci | c−i; γ), it can be directly computed using the nCRP
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definition Eq. (2). The computational complexity for a single ci is O(NH), where H is

the number of hierarchy nodes — hence the time to sample all c is O(N2H). Note that

H = O(NK), so the complexity of sampling all c is O(N3K).

4.2 Hyperparameter Selection Using Metropolis-Hastings

The MSCB model contains 6 hyperparameters that need to be set: the hierarchy depth

K, as well as the 5 prior hyperparameters γ,m, π, λ1, λ2. We will not discuss selection

of K, expecting that the user knows how deep a hierarchy he or she needs — bearing

in mind that model non-identifiability increases with increasing hierarchy depth. On the

other hand, selecting all 5 prior hyperparameters is not a trivial affair and requires some

attention. One could perform a gridsearch using the marginal likelihood of the network E

as the objective function, but the search would be over 5 dimensions and thus impractical.

Moreover, we would have to approximate the marginal likelihood as no analytic formula

exists for computing it.

Clearly, we need a different strategy for selecting prior hyperparameters γ,m, π, λ1, λ2,

and we choose to place hyper-priors on the hyperparameters, a common Bayesian technique

for data-driven hyperparameter selection:

γ ∼ Exponential(η1), m ∼ Beta(η2, η3), π ∼ Exponential(η4), λ1, λ2 ∼ Exponential(η5).

Although this introduces 5 new hyper-hyperparameters η1, . . . , η5, models with hyper-priors

are typically less sensitive to the choice of hyper-hyperparameters than the original models

were to the choice of hyperparameters (Bernardo, Smith and Berliner 2000). Thus, by setting

the hyper-hyperparameters to reasonable values — all our experiments use η1, . . . , η5 = 1 —

we allow the model to decide the best values for the hyperparameters.

All that remains is to derive an inference algorithm for the model with hyper-priors.

Because the hyper-priors are not conjugate to the other distributions in the model, we

cannot derive Gibbs sampling equations for the hyperparameters γ,m, π, λ1, λ2. We overcome

this via a general MCMC strategy, in which we alternate between sampling sweeps over

all model latent variables using our collapsed Gibbs sampling equations from Section 4.1,
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and sampling each hyperparameter using Independence Chain Metropolis-Hastings with the

hyper-prior distributions as the proposals. This new inference algorithm is still a valid

Markov Chain, although it may take longer to converge than our original model’s Gibbs

sampling equations (Robert and Casella 2004). In particular, using the hyper-priors as

proposal distributions greatly simplifies the Metropolis-Hastings acceptance probabilities,

reducing runtime complexity and making the algorithm easier to implement. The simplified

acceptance probabilities are:

Pa(γnew; γold) =
P(c; γnew)

P(c; γold)
, Pa(mnew, πnew;mold, πold) =

P(z;mnew, πnew)

P(z;mold, πold)
,

Pa(λ1,new, λ2,new;λ1,old, λ2,old) =
P(E | c, z;λ1,new, λ2,new)

P(E | c, z;λ1,old, λ2,old)
, (10)

noting that we sample m jointly with π and sample λ1 jointly with λ2, and where

P(c; γ) =

N∏
i=1

K∏
k=1

P(cik | c1:(i−1), ci,1:(k−1); γ), (11)

P(z;m,π) =

N∏
i=1

N∏
j 6=i

P(z→i,j | z→i,1:j−1;m,π)P(z←j,i | z→i,1:N , z←1:j−1,i;m,π), (12)

P(E | c, z;λ1, λ2) =
∏
B∈B

Γ(λ1 + λ2)

Γ(λ1)Γ(λ2)
· Γ(aB + λ1)Γ(bB + λ2)

Γ(aB + bB + λ1 + λ2)
, (13)

aB = |{(x, y) | Sxy
B = B,Exy = 1}| , bB = |{(x, y) | Sxy

B = B,Exy = 0}| ,

with B being the set of all sibling group compatibility matrix elements. Eq. (13) is similar

to Eq. (9), except that we now consider all network edges instead of just those incident

to some network entity i. As for Eq. (11,12), they result from applying the chain rule

to exchangeable distributions; in the case of Eq. (11), we have applied it to the nCRP

distribution over all paths c, whereas in Eq. (12), we have applied it to N compound-

stick-breaking-multinomial distributions, each corresponding to the set of level indicators zi

associated with some network entity i. The product terms in Eq. (11) are computed using

the nCRP definition Eq. (2), while the terms in Eq. (12) are:

P(zi,x = k | zi,subset;m,π) ∝
mπ + #[zi,subset = k]

π + #[zi,subset ≥ k]

k−1∏
u=1

(1−m)π + #[zi,subset > u]

π + #[zi,subset ≥ u]
,

where zi,x and zi,subset denote an element and a subset respectively of zi = {z→i·, z←·i}, and

where the normalization factor is
∑K

k=1 P(zi,x = k | zi,subset;m,π).
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By adopting this MCMC algorithm for simultaneous hyperparameter selection and pos-

terior inference, we have reduced user input to just the hierarchy depth K. This not only

makes our model easier to use, but also provides a data-driven means of choosing the hyper-

parameters γ,m, π, λ1, λ2. Finally, the computational complexity of drawing all 5 hyperpa-

rameters and testing their acceptance probabilities is O(N2K), which is asymptotically less

than a single O(N3K) Gibbs sampler sweep over all latent variables. In other words, using

our Metropolis-Hastings strategy for hyperparameter selection does not incur a significant

computational cost over Gibbs sampling the latent variables.

To initialize our MCMC algorithm, we first set the hyperparameters m,π, γ, λ1, λ2 to

user-provided initial values, and then randomly draw the latent variables c, z according to

the MSCB generative process (Section 2.4). Once done, we alternate between sampling the

latent variables and the hyperparameters, as described earlier.

5. SIMULATION

We now evaluate our inference algorithm’s ability to recover hierarchies from data simulated

from our model. Our goal is to examine how MSCB’s ability to model both assortative

(within-community) interactions and disassortative (cross-community) interactions differen-

tiates it from standard hierarchical clustering algorithms.

For all simulations, the number of actors N was 300. For K = 2, θ = (0.25, 0.75) for all

actors, meaning that actors interact at level 1 25% of the time and level 2 75% of the time.

For K = 3, θ = (0.1, 0.3, 0.6) for all actors.

Our experiments explore the effect of different compatibility matrices B. We first explore

networks generated from “on-diagonal” Bs, where the diagonal elements are much larger

than the off-diagonal elements (strong assortative interactions). We also investigate “off-

diagonal” Bs, where the off-diagonal elements are larger (strong disassortative interactions).

“Low noise” means the on/off diagonal element values are far apart, while “high noise”

means they are closer together. Specifically, the types of Bs explored are:

1. K=2, on-diagonal, low noise - Bon−diagonal = (0.4, 0.8), Boff−diagonal = (0.02, 0.02);
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2. K=2, off-diagonal, low noise - Bon−diagonal = (0.02, 0.02), Boff−diagonal = (0.4, 0.8);

3. K=2, on-diagonal, high noise - Bon−diagonal = (0.3, 0.6), Boff−diagonal = (0.1, 0.2);

4. K=2, off-diagonal, high noise - Bon−diagonal = (0.1, 0.2), Boff−diagonal = (0.3, 0.6);

5. K=3, on-diagonal, low noise -Bon−diagonal = (0.5, 0.7, 0.9), Boff−diagonal = (0.02, 0.02, 0.02);

6. K=3, off-diagonal, low noise - Bon−diagonal = (0.02, 0.02, 0.02), Boff−diagonal =

(0.5, 0.7, 0.9).

7. K=3, on-diagonal, high noise -Bon−diagonal = (0.4, 0.6, 0.8), Boff−diagonal = (0.1, 0.1, 0.2);

8. K=3, off-diagonal, high noise -Bon−diagonal = (0.1, 0.1, 0.2), Boff−diagonal = (0.4, 0.6, 0.8).

Bon−diagonal = (a, b) means that actors interacting in the same level-1 community do so with

probability a, while actors interacting in the same level 2 community do so with probability

b (and analogously for Boff−diagonal).

We compare our approach to two baselines. The first is hierarchical spectral clustering, an

adaptation of spectral clustering (Chung 1997) to top-down hierarchical clustering. Because

spectral clustering does not specify how to select the number of clusters at each hierarchy

node, we shall explore two variants that represent worst- and best-case scenarios respectively.

The first variant, Spectral-Binary, does binary splits at every level. For the second variant,

Spectral-Oracle, we give it the number of 1st level branches as an advantage, and

then perform binary splits at deeper levels. We also compare to agglomerative clustering

with Ward’s criterion (Ward 1963) with the dissimilarity measure used in Pajek (Batagelj

and Mrvar 1998), (Batagelj and Ferligoj Patrick 1992). Like spectral clustering, we also have

two variants: Ward-Binary) and Ward-Oracle. Ward-Binary does binary splits at all levels,

while Ward-Oracle is given the true number of first level clusters as an advantage, but does

binary splits for deeper levels.

For our approach, we intialize m = π = λ1 = λ2 = .5 and γ = 0.1. We run our

collapsed gibbs sampler for 10,000 burn-in iterations, and then draw 10 samples with 100
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Figure 5: Simulation Results for on/off diagonal compatibility matrices in low/high noise settings for depth

of 2 and 3. We compare our method, MSCB (blue) against both hierarchical spectral clustering (red/pink,

see text for details), and Ward’s method as implemented in Pajek (green/black) (Batagelj and Mrvar 1998).

lag in-between. We calculate the F1 score at each level k, F1k = 2∗Precision∗Recall
Recall+Precision

where

Recall = TP
TP+FN

, and Precision = TP
TP+FP

. TP is true positive count (actors that should be

in the same cluster, up to depth k), FP is false positive count, TN is true negative count,

and FN is false negative count. The total F1 score is computed by averaging the F1k scores

for each level. For our approach, we average the F1 score over all the samples.

Figure 5 shows the F1 scores for all algorithms, as a function of the number of size

≥ 10 branches at the true hierarchy’s 1st level. To ensure a fair comparison, this was

also the number of 1st level branches given to the Oracle variants of both baselines. From

Figure 5(a), 5(c), 5(e), and 5(g), we see that when B is strongly on-diagonal, our method

generally performs better than or comparable to all other methods when there are more than

3 first level branches, (except Spectral-Oracle), demonstrating its ability to determine the

correct number of clusters from the data. In these on-diagonal experiments, Ward’s method

tends to perform the worst while MSCB and Spectral perform better.
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However, once B is strongly off-diagonal (implying strong cross-community interactions),

Spectral performs poorly. This is to be expected — by formulation, spectral clustering

cannot recover disassortative communities. On the other hand, our method continues to

yield good results (Figures 5(b), 5(d), 5(f), and 5(h)) comparable to the on-diagonal B case.

Ward’s method can also recover dissassortative communities, but for K=2, we outperform

the binary variant and perform comparably to the oracle variant. For the K=3 off-diagonal

results (Figures 5(f) and 5(h)), Ward’s tends to perform a little better until the number

of branches gets very large. However, Ward’s does not perform as well on the assortative

simulations.

As a result, our method performs consistently well in all settings, and we note that for

larger numbers of branches it outperforms both the binary variants of Ward and Spectral

in most scenarios. The oracle variants sometimes perform better, but these require a priori

knowledge of the number of first level branches, which our method does not.

6. HELD-OUT EVALUATION

Previously, we evaluated our MCMC algorithm’s performance against non-probabilistic hier-

archical clustering schemes. One might then ask how our algorithm compares to probabilistic

network models that do not model hierarchical structure. In particular, does MSCB’s hierar-

chy assumption permit a better statistical fit to real-world networks, in terms of the network

marginal log-likelihood P(E)?

In this section, we compare our MSCB inference algorithm to the inference algorithms

of two other probabilistic models: the Infinite Relational Model (IRM) (Kemp et al. 2006),

essentially a nonparametric version of the stochastic blockmodel (Wang and Wong 1987),

and the Mixed Membership Stochastic Blockmodel (Airoldi et al. 2008), a variant of the

stochastic blockmodel that permits network entities to come from multiple communities

(which Airoldi et al. call “roles”). Since the IRM is a special case of MSCB when K = 1,

we reused our full MCMC algorithm (Gibbs sampler plus Metropolis-Hastings) for posterior

inference and hyperparameter selection. As for MMSB, we used the variational EM algorithm
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Figure 6: Average held-out marginal likelihoods P(Etest; Θ̂) and standard deviations for our MSCB in-

ference algorithm with hierarchy depth K = 1 (equivalent to IRM), 2 and 3, versus the MMSB variational

inference algorithm for R ∈ {2, . . . , 20} roles.

in Airoldi et al. (2008), which also performs both posterior inference and hyperparameter

selection. In Section 3, we discussed how MSCB relates to IRM and MMSB: recall that the

IRM is a special case of MSCB with hierarchy depth K = 1, while MSCB in turn is a highly-

constrained version of MMSB. Particularly, we noted that MMSB is highly non-identifiable,

and that MSCB, while also non-identifiable, is much less so than MMSB. On this point, we

expect our MSCB inference/selection algorithm to perform better than MMSB’s.

Our experiments use two real-world datasets: a 75-species food web of grass-feeding

wasps (Dawah et al. 1995; Clauset, Moore and Newman 2008), and the 62-actor September

11th, 2001 hijacker terrorist network (Krebs 2002; Clauset et al. 2008). These networks

reflect common real-world modes of interaction: edges in the food web denote predator-prey

relationships, while edges in the terrorist network reflect social cohesion. The food web

could be represented as a hierarchy where different branches reflect different trophic levels

(e.g. parasite, predator or prey), while the terrorist network could be interpreted as an

organization chart.

At a high level, we conducted our held-out evaluation as follows: for each model, we (1)
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used the corresponding inference/selection algorithm to estimate model hyperparameters Θ̂

for a training network Etrain (ignoring the latent variable posteriors), and then (2) esti-

mated the test network marginal log-likelihood P(Etest; Θ̂), so as to evaluate how well each

inference/selection algorithm estimates parameters for its model. More specifically, for both

datasets, we generated 5 pairs of training and test subgraphs; each pair was obtained by

randomly partitioning the actors into two equal sets, and keeping only the edges within each

partition. Then, for each of the 3 models on each of the 5 training graphs, we selected the

model hyperparameters Θ̂ using the appropriate inference/selection algorithm4. Finally, we

estimated the corresponding test network’s marginal log-likelihood P(Etest; Θ̂) using 10,000

importance samples, and averaged the results over all 5 train-test network pairs. The initial

hyperparameter values for this experiment were m,π = 0.5 and γ, λ1, λ2 = 1.

Figure 6 displays the results for this experiment. On both datasets, observe that our

MSCB algorithm achieves greater held-out marginal log-likelihoods P(Etest; Θ̂) than MMSB,

regardless of the MSCB hierarchy depth K or MMSB number of roles R. We believe this

is related to MSCB being significantly more constrained than MMSB, and thus more iden-

tifiable. Moreover, MMSB’s likelihood peaks at R = 2 on both datasets, suggesting that

we should choose just 2 roles, too few to provide anything but an extremely coarse network

analysis. In contrast, our MSCB inference algorithm uses model hyperparameters to auto-

matically select a suitable size and shape for its hierarchy — for example, the grass dataset

training network posteriors for K = 2 had an average of 10.0 hierarchy nodes, a reasonable

number considering that the training networks have 38 actors each. This illustrates one

of the advantages of nonparametric models like MSCB and IRM over parametric models

4Algorithm details: for the IRM/MSCB MCMC algorithm, we took 10,000 samples as burn-in, and

then estimated each hyperparameter γ,m, π, λ1, λ2 by its average over the next 1,000 samples. This was

repeated for hierarchy depths K = 1 (i.e. IRM), 2 and 3. For the MMSB variational EM algorithm, we ran

100 random restarts until convergence, and then took hyperparameter estimates from the restart with the

highest variational lower bound (with respect to the true likelihood). Because MMSB requires the number

of latent roles R to be specified, we repeated this experiment for each 2 ≤ R ≤ 20.
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such as MMSB. Finally, we note that the differences of heldout likelihoods between K = 1

(IRM), 2 and 3 for MSCB are negligible and within error, suggesting that the increased

non-identifiability from larger K has minimal negative impact on model fit.

7. EFFECTS OF HYPERPARAMETER INITIALIZATION

Apart from latent variable inference for c, z, our MCMC algorithm also performs hyper-

parameter selection for γ,m, π, λ1, λ2. Given that the final hyperparameter estimates may

depend on their initial settings, it is only natural that we study how the former changes with

the latter. In this section, we conducted experiments on the grass-feeding wasps and terrorist

networks, repeating our MCMC algorithm over different initial hyperparameter values. We

studied one out of the five hyperparameters at a time, while initializing the four remaining

hyperparameters to the following default values: m = 0.5 and π, γ, λ1, λ2 = 1. The hierarchy

depth was fixed to K = 2 throughout. For the hyperparameter under study, we ran our

algorithm for five different initializations of that hyperparameter: m ∈ {0.1, 0.3, 0.5, 0.7, 0.9}

or π, γ, λ1, λ2 ∈ {0.01, 0.1, 1, 10, 100}. Thus, we studied 25 different hyperparameter settings

in total: 5 for each of the five hyperparameters. For each of these 25 settings, we took 5

repeat trials of 1,000 samples, with 10,000 iterations of burn-in prior to taking samples. In

each trial, we estimated the hyperparameter under study by its mean value over the 1,000

samples, and we present each estimate’s average and standard deviation over the 5 trials in

Tables 1 and 2.

For either dataset, our MCMC algorithm’s final estimates of λ1, λ2 have low variance,

and are highly invariant to the choice of initial values. Since λ1, λ2 influence the posterior of

the community-compatibility matrices B, this suggests that our MCMC algorithm reliably

estimates the posterior of B. The low values of λ1 compared to λ2 reflect the fact that both

networks have more 0-edges than 1-edges.

The situation for m,π, is more nuanced. Recall that these hyperparameters respectively

control the posterior mean and variance of the Multiscale Membership vectors θ. In Section

3, we argued that the MM vectors lead to some non-identifiability in the MSCB model, and
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Table 1: Grass-feeding wasps network: Final hyperparameter estimates under different initializations.

Initial m 0.1 0.3 0.5 0.7 0.9

Final m 0.878± 0.126 0.833± 0.111 0.842± 0.130 0.832± 0.171 0.849± 0.0454

Initial π, γ, λ1, λ2 0.01 0.1 1 10 100

Final π 2.22± 2.08 2.11± 0.953 1.25± 0.927 9.75± 2.09 100± 0

Final γ 1.64± 0.395 1.66± 0.587 2.67± 0.950 3.08± 2.29 21.8± 43.8

Final λ1 0.0869± 0.0338 0.0641± 0.0172 0.0516± 0.0149 0.0645± 0.0366 0.0656± 0.0218

Final λ2 1.08± 0.394 1.26± 0.453 1.19± 0.465 0.840± 0.265 1.24± 0.532

Table 2: Terrorist network: Final hyperparameter estimates under different initializations.

Initial m 0.1 0.3 0.5 0.7 0.9

Final m 0.0801± 0.0692 0.0982± 0.0518 0.144± 0.0708 0.0695± 0.0227 0.116± 0.126

Initial π, γ, λ1, λ2 0.01 0.1 1 10 100

Final π 0.406± 0.296 0.937± 0.545 1.64± 1.01 6.31± 5.06 100± 0

Final γ 2.15± 0.683 2.71± 1.97 2.63± 1.83 2.75± 0.678 3.49± 0.785

Final λ1 0.0656± 0.0140 0.0805± 0.0239 0.0776± 0.0381 0.0877± 0.0188 0.0921± 0.0143

Final λ2 0.252± 0.00766 0.221± 0.0931 0.292± 0.0602 0.287± 0.0843 0.248± 0.0348

it is therefore not surprising that m,π are more difficult to estimate reliably. On either

dataset, the estimates of m ∈ (0, 1) generally have low variance and are reasonably constant

across initial values, implying that the posterior mean estimates of θ are fairly reliable. We

can even interpret these estimates: for the grass dataset, the estimates of m ≈ 0.85 imply

that the MM vectors θ place almost all mass at the first level of the hierarchy, whereas the

terrorist dataset estimates of m ≈ 0.1 imply that the MM vector mass is evenly distributed

over the first and second levels. On the other hand, the estimates of π tend to vary with

initialization (particularly when π = 100), and exhibit high variance over trials with the

same initial value. Despite this, we note that π only controls the posterior variance of the
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MM vectors θ. Hence, if we only desire good mean estimates of θ, we may not necessarily

need accurate estimates of π.

Lastly, we observe that γ’s final estimate tends to increase with its initial setting. This

is a consequence of our MCMC algorithm, which initializes the actor paths c using the

MSCB generative model. A high initial γ creates a starting tree with many branches, and

the MCMC algorithm is unable to merge5 all the superfluous branches within the 10,000

burn-in iteration limit, causing the final estimate of γ to be higher than it would have been

otherwise. Thus, care should be taken when choosing an initial value for γ, for high values

will lead to more highly-branched hierarchies.

8. REAL-DATA QUALITATIVE ANALYSIS

In this section, we apply the MSCB inference/selection algorithm to interpret two real-world

networks: (1) a 75-species food web of grass-feeding wasps and their parasitoids, and (2)

a citation network containing 1,000 papers from the High-Energy Physics (Theory) portion

of arXiv, an open-access archive of scientific paper preprints. Our objective is to study

how the three network aspects we seek — hierarchy, multiscale granularity, and assortativ-

ity/disassortativity — manifest in real-world networks.

For both networks, we ran our algorithm with K = 2 levels, and initialized the hyper-

parameters to m,π = 0.5 and γ, λ1, λ2 = 1. We discarded 10,000 iterations as burn-in,

and then took 1,000 samples to estimate the posterior distribution over actor levels z and

paths c. One issue we faced was the lack of an obvious way to visualize the posterior hier-

archy; the posterior mean or mode of c do not represent intelligible hierarchies because of

permutation non-identifiability6. In order to represent the posterior hierarchy meaningfully,

5One could address this by a Metropolis-Hastings scheme that splits and merges hierarchy branches, but

the development of such a scheme is out of the scope of this work.
6This issue is not unique to MSCB, but occurs when naively applying MCMC methods to models with

permutation non-identifiability, such as stochastic blockmodels or models meant for clustering. In many such

models, permuting the communities/clusters has no effect on the model likelihood, so the posterior mean

must be an average over all permutations — which is usually uninterpretable.
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we constructed a “consensus” hierarchy from the samples: for each level 1 ≤ k ≤ K and

each pair of actors i, j, we computed the fraction of samples Sijk in which i, j had the same

level-k hierarchy position. If i, j shared the same level-k position in at least τ of all samples,

i.e. Sijk ≥ τ , then we assigned them identical level-k positions in the consensus. Higher

threshold values τ produce wider, more detailed consensus hierarchies, whereas lower values

give rise to simpler hierarchies. We use τ = 0.35 in our analyses, as it provides a good middle

ground between detail and interpretability.7

As for interaction levels z, we represent each z→ij’s or z←ij’s posterior by taking its K-bin

histogram over all its samples (recall that the z are discrete with K possibilities). Note that

our ultimate goal is really the MM vectors θ; we obtain the posterior mean of actor i’s MM

θi by averaging the histograms of all zs that, according to the generative model, are drawn

from θi (that is to say, {z→i·, z←·i}).

8.1 Grass-Feeding Wasp Parasitoids Food Web

We first consider theN = 75 species grass-feeding wasps food web. In this network, the actors

are species in a food web, and the 113 directed edges represent predator-prey relationships.

Each species in the network is annotated with its position or “trophic level” in the food

web: grass, herbivore, parasitoid, hyper-parasitoid (parasites that prey on other parasites),

or hyper-hyper parasitoid. We stress that these trophic levels are not the hierarchy levels in

our model, but are nodal attributes of the species.

The inference/selection algorithm took 9 minutes on a 2.83GHz Intel Core 2 processor,

and the average hyperparameters were γ = 1.49,m = 0.915, π = 2.30, λ1 = 0.0774, λ2 = 1.50.

The high value of m suggests that most interactions were shallow (occurring at level 1),

while the large ratio λ2/λ1 is expected since the number of edges is � N2. We report the

posterior “consensus” hierarchy and mean Multiscale Membership (MM) vectors in Figure

7A more thorough analysis would include consensus hierarchies over multiple values of τ ∈ [0, 1], so as

to present a fuller complete picture of hierarchy posterior variation. Alternatively, one could analyze the

“closeness” of pairs of network actors by their number of shared path samples.
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7. In the same Figure, we also show the original network, where each interaction Eij = 1

has been colored according to the 2nd-level communities involved (missing links Eij = 0 are

not shown). The trophic level annotations are shown in the network by node shapes, and

summarized as counts in the hierarchy.

Generally speaking, the first-level super-communities separate the trophic levels. For

instance, all grass species are found in community 3, while community 2 contains all but one

of the herbivores, and community 1 contains most of the parasitoids. Notice that the trophic

levels form a set of disassortative communities, e.g. we see that herbivores feed on grasses,

but not on other herbivores. We contrast our results with those of Clauset et al. (2008), who

did not recover this structure because their method assumes all communities are assortative.

On the other hand, our model is able to learn disassortative network structures by virtue of

its stochastic blockmodel assumption.

Let us analyze the sub-communities in detail. We begin with super-community 4, which

is separated from the rest of the network by just one edge — from species 20 (Tetramesa

petiolata) to 6 (Deschampsia cespitosa) — and therefore represents an isolated sub-web.

Observe that species 20, a herbivore, is unexpectedly found in sub-community 4.2 rather

than 2.1. We explain this by noting that species 20 is the only herbivore that the parasitoids

in sub-communities 4.1, 4.3 and 4.4 prey on. Additionally, the sub-communities within

super-community 4 are topologically ordered, which reflects their food web trophic levels.

To be precise, the species in 4.1 prey on 4.2−4, while 4.4 preys only on 4.2−3, and 4.3 preys

only on 4.2. Next, consider super-communities 1 and 5. While the bulk of the parasitoids are

in super-community 1, the apex parasitoids that prey on them are all in super-community 5.

The distinction between apex parasitoids in sub-communities 5.1 and 5.2 appears to be driven

by the number of parasitoids they prey upon: species 67 (Macroneura vesicularis) from 5.2

preys on more parasitoids (specifically, 8), whereas species 65 (Eupelmus atropurpureus) and

75 (Mesopolopus graminum) from 5.1 prey on fewer (4 and 5 parasitoids respectively).

Finally, we inspect the posterior mean of the MM vectors θ, shown in Figure 7. Intuitively,

the MM vector θi shows how often species i interacts at the generic super-community level,
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shapes represent annotated trophic levels (see legend in bottom right).
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versus the more specific sub-community level. In this network, all species interact primarily

at the super-community level, with occasional interaction at the sub-community level. This

suggests that the network structure is mostly explained by the hierarchy’s first level, while

the second level is responsible for local structural details. Most second level interactions

are found in super-communities 1, 2 and 3, corresponding to the majority of parasitoids,

herbivores and grass species respectively. Because second-level interactions are used by the

MSCB model to account for atypical behavior within super-communities, species with many

such interactions are likely to have specialized roles in the food web, and thus make good

targets for further investigation.

8.2 High-Energy Physics Citation Network

For our final experiment, we consider an N = 1, 000-paper subgraph of the arXiv high-

energy physics citation network, taken from the 2003 KDD Cup (2010). This subgraph was

constructed by subsampling papers involved in citations from Jan 2002 through May 2003.

The average hyperparameters from the inference/selection algorithm were γ = 7.76,m =

0.851, π = 0.492, λ1 = 0.0169, λ2 = 0.976, and the algorithm took 12.4 days to run on a

2.83GHz Intel Core 2 processor. This high runtime is a consequence of two things: the

O(N3K) runtime complexity per Gibbs sampler sweep, as well as the large value of γ, which

reflects a high branching factor in the posterior hierarchy.

Figure 8 shows part of the posterior consensus hierarchy, where each displayed community

has been annotated with the number of papers associated with it, as well as the most frequent

title words from those papers8. We stress that the hierarchy is learnt only from the citation

network adjacency matrix, without knowledge of the paper texts. In addition, we reveal the

network community structure in Figure 9, by permuting the original adjacency matrix to

match the order of inferred communities. The same figure also shows the posterior mean of

8We note that this output is reminiscent of text models from Natural Language Processing, particularly

the Latent Dirichlet Allocation (Blei, Ng and Jordan 2003). However, we stress that MSCB is not a text

model; the title words are determined post hoc, after hierarchy inference.
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Figure 8: HEP network: Inferred community hierarchy. Each hierarchy node is annotated with its number

of associated papers, and the most common title words from those papers. Due to space contraints, we

only show the largest 8 1st-level communities, as well as the largest 8 2nd-level sub-communities under 1st-

level community 1. Regarding the other 1st-level communities, all their sub-communities contain only one

document, thus they are uninteresting and have been hidden to save space.

the MM vectors, as a histogram over 2nd-level elements θi,2.

The consensus hierarchy reflects strong assortative organization, and we expect most

communities to correspond to specific areas of study. The giant community 1 contains 725

papers, and is clearly visible as the sparse diagonal block convering indices 1 to 725 in the

adjacency matrix of Figure 9. Its top title words are general physics terms such as ”theory”,

”quantum” and ”field”, implying that, as a whole, this community does not represent any

specific subfield of theoretical physics. This observation is further supported by the fact that

papers in community 1 have few citations among themselves or to the rest of the network.

The remaining 1st-level communities exhibit denser within-community citations than

community 1. We hypothesize that they are associated with small groups of researchers that

work on specific subfields, and who are highly likely to cite each others’ work. For instance,

community 2 (26 papers) corresponds to the dense diagonal block between indices 726 and

751 in Figure 9, and its top title keywords suggest it is predominantly about research in

supergravity and string theory. In similar fashion, observe that community 3 (23 papers)

corresponds to indices 752 through 774, and is focused on pp-waves and Penrose limits. The
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Figure 9: HEP network: Left: Adjacency matrix, permuted to match the order of communities in Figure

8. The blue dots represent citations from row i to column j. Right: Histogram of Multiscale-Membership

vectors. The x-axis represents the value of θi,2, i.e. the 2nd-level component of the MM vectors.

remaining 45 1st-level communities contain < 20 papers each, but still feature the dense

within-community citations and specific jargon characteristic of specialized research.

At the 2nd level, the consensus hierarchy contains mostly singleton (one-member) sub-

communities. This indicates that, past the 1st hierarchy level, our MCMC algorithm found

little evidence to further group the papers. There are only 10 sub-communities with size

> 1, all of which are found in super-community 1. The largest 8 are shown in Figure 8,

and correspond to the diagonal block from index 1 through 39 in the adjacency matrix of

Figure 9. These sub-communities contain either fewer or more within/between-community

citations than is average for super-community 1, hence they are justified under a blockmodel

assumption. For example, sub-community 1.3 contains 7 citations between 5 papers, while

4 of those papers contain the word ”radion” (a hypothetical particle) in their titles. This

suggests a tightly-knit community of researchers focused on a specific object.

Finally, the Multiscale Membership distribution (Figure 9) tells a similar story to the

grass-feeding wasps network: most interactions occur at the 1st level; over 75% of MM

vectors θi have less than 0.05 of their mass at the 2nd level. This observation, coupled with
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the small number of meaningful 2nd-level sub-communities, suggests that the 1st hierarchy

level suffices to explain most of the network. Because of this, the few non-singleton 2nd-level

sub-communities are in fact significant, and merit further investigation.

8.3 Posterior Sample Analysis for Both Datasets

To complete our analysis, we need to inspect the quality of the posterior samples returned

by our MSCB algorithm. It is well-known that adjacent samples in an MCMC sequence

tend to be highly correlated, which inflates the variance of the samples by decreasing the

effective sample size. Consequently, any estimator will require more samples to achieve the

same level of precision, compared to an uncorrelated sequence of samples.

We quantify the degree of sample correlation in MSCB via the autocorrelation function

RX(k). For a particular random variable X, this is defined as

RX(k) =

∑n−k
t=1

(
Xt − X̄

) (
Xt+k − X̄

)∑n−k
t=1

(
Xt − X̄

)2 ,

where n is the total number of samples, Xt is the t-th sample of X, and X̄ is the sample

mean of X. The question then, is which random variable to inspect. Recall that the MSCB

algorithm samples the discrete random variables c (paths) and z (level indicators); however,

the autocorrelation function is not well-defined for discrete domains. As a proxy, we shall

instead consider ` = log (P(E, c, z)), the complete log-likelihood of a particular sample of

c, z (after integrating out B,θ). We expect the autocorrelation R`(k) of ` to provide a good

picture of sample correlation in c, z.

Figure 10 shows the log-likelihood autocorrelation R`(k) for the grass-feeding wasps and

High Energy Physics networks, as computed on the 1,000 posterior samples. Using first-order

autoregressive process theory, we can compute the posterior’s sample size inflation factor or

SSIF s = (1+ρ)/(1−ρ), where ρ = R`(1) is the first-order autocorrelation. Intuitively, if we

have n samples, then the effective sample size is given by n/s, because the autocorrelation

ρ increases the standard error of the mean of ` by a factor of
√
s. For the grass-feeding

wasps network, ρ = 0.985 with SSIF s = 135, while for the High Energy Physics network,
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Figure 10: Autocorrelation function of the complete log-likelihood from the 1,000 posterior samples, for

both the grass-feeding wasp parasitoids food web (Left) and the High-Energy Physics citation network

(Right).

ρ = 0.991 with SSIF s = 210. This implies an effective posterior sample size of 7.4 and 4.8

for the grass-feeding wasps and High Energy Physics networks respectively.

Regarding the grass-feeding wasps network, we note that the MSCB algorithm took only

9 minutes to perform burn-in (10,000 samples) and to take 1,000 samples from the posterior,

for a total of 11,000 samples. Hence, it is computationally feasible to increase the effective

sample size by taking 10,000 or even 100,000 samples from the posterior, and keeping only

every 10th or 100th sample to save memory. However, the same cannot be said of the

High-Energy Physics network, on which the MSCB algorithm took nearly 2 weeks to obtain

the same number of samples (11,000 including burn-in). This dramatic increase in runtime

directly results from MSCB’sO(N3K) computational complexity, which makes it impractical

to take many samples from larger networks.

An alternative to taking more samples is to supplement the MSCB Gibbs sampling al-

gorithm with Metropolis-Hastings moves, so as to decrease the autocorrelation between ad-

jacent samples. Our inspection reveals that the MSCB Gibbs sampler has difficulty when

trying to change many actor paths c quickly. To illustrate this problem, suppose the sampler
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is initialized with 100 actors in the same path, but the true posterior requires these actors

to be split 50-50 in two different paths. The Gibbs sampler must first split off a single actor

to form a new path, and then move the remaining 49 actors to the new path. However,

because of the nCRP prior’s “rich-get-richer” property, the latter events tend to have low

Gibbs sampler probabilities, and it may take many samples before the true 50-50 split is

established. One solution to this problem is a split-merge strategy, similar to that used

by Jain and Neal (2004) for the vanilla Chinese Restaurant Process. Briefly, a split-merge

strategy for the nCRP will involve Metropolis-Hastings proposal moves that (1) split actors

in a single path into two paths, and (2) merge actors from two paths into a single path. By

interleaving these moves with the regular Gibbs sampler, we can make large jumps in the

state space of c, and thus reduce autocorrelation. We expect this split-merge strategy to be

a fairly simple extension of Jain and Neal (2004), though its implementation and derivation

are out of the scope of this paper.

9. CONCLUSION

We have developed a nonparametric Multiscale Community Blockmodel (MSCB) that mod-

els networks in terms of hierarchical community memberships, which actors selectively un-

dertake during interactions. To apply our model, we derived an MCMC algorithm that

combines collapsed Gibbs sampling for latent variable posterior inference, and Metropolis-

Hastings proposals for hyperparameter learning. Our algorithm automatically infers the

structure of the hierarchy while simultaneously recovering the Multiscale Memberships of

every actor, setting it apart from hierarchy-discovering methods that are restricted to bi-

nary hierarchies and/or single-community-memberships for actors. Moreover, because MSCB

integrates aspects of stochastic blockmodels, it is expressive enough to account for both as-

sortative (within-community) and disassortative (cross-community) interactions, as our sim-

ulation and real data experiments have demonstrated. These aspects of MSCB allow us to

explore hierarchical network phenomena in a principled, statistical manner.
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