
Appendix
More Effective Distributed ML via a Stale Synchronous Parallel

Parameter Server

A Additional Experimental Details

A.1 Data Partitioning
For all three ML algorithms (topic modeling, matrix factorization and Lasso regression), we partition data statically and
equally over worker threads. In other words, if there are N data points and P threads, then every thread gets N/P data points.
For topic modeling, a data point is one document. For matrix factorization, a data point is one row of the input matrix. Lasso
is an exception — since it is a coordinate-parallel algorithm, we partition over input dimensions (columns) rather than data
samples (rows). Note that SSP does not require static partitioning; dynamic strategies for load balancing are possible, and will
likely improve algorithm performance further. We use static partitioning only to limit the number of experimental factors.

A.2 Scalability with N machines
Figure 1 shows how SSP scales with the number of machines used, on the topic modeling problem with a fixed dataset
(NYtimes) and staleness (10). By using more machines, the algorithm reaches a given log-likelihood value (i.e. solution
quality) more quickly; this can be seen by looking at the horizontal gridlines. For the specific settings mentioned, using 32
machines causes the algorithm to reach a given log-likelihood about 10 times as quickly as a single machine.

-1.4E+09

-1.3E+09

-1.2E+09

-1.1E+09

-1E+09

-9E+08

-8E+08

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Lo
g-

Li
ke

lih
o

o
d

Time

Topic Modeling: 1-32 machine scalability
(NYtimes dataset, staleness = 10, 1k docs per core per iteration)

32 machines (256 cores)

16 machines (128 cores)

8 machines (64 cores)

4 machines (32 cores)

2 machines (16 cores)

1 machine (8 cores)

Figure 1: SSP scalability plot

1

B Proof of Theorem 1
We use slightly different definitions from the main paper, specifically:

f(x) :=

T∑
t=1

ft(x)

R[X] :=

T∑
t=1

ft(x̃t)− f(x∗).

We also define D (x‖x′) := 1
2 ‖x− x

′‖2. Compared to the main paper, f(x) and R[X] have no 1/T factor (this does not
materially affect our results). We now re-state Theorem 1:

Theorem 1 (SGD under SSP): Suppose we want to find the minimizer x∗ of a convex function f(x) =
∑T
t=1 ft(x), via

gradient descent on one component ∇ft at a time. We assume the components ft are also convex. Let ut := −ηt∇ft(x̃t),
where ηt = σ√

t
with σ = F

L
√

2(s+1)P
for certain constants F,L. Then, assuming that ‖∇ft (x)‖ ≤ L for all t (i.e. ft are

L-Lipschitz), and that maxx,x′∈X D (x‖x′) ≤ F 2 (the optimization problem has bounded diameter), we claim that

R[X] :=

T∑
t=1

ft(x̃t)− f(x∗) ≤ 4FL
√
2(s+ 1)PT

Proof: The analysis follows Langford et al. (2009), except where the Lemma 1 from the main paper is involved. First,

R [X] :=

T∑
t=1

ft (x̃t)− ft (x∗)

≤
T∑
t=1

〈∇ft (x̃t) , x̃t − x∗〉 (ft are convex)

=

T∑
t=1

〈g̃t, x̃t − x∗〉 .

where we have defined g̃t := ∇ft (x̃t). The high-level idea is to show thatR [X] ≤ o (T), which implies Et [ft (x̃t)− ft (x∗)]→
0 and thus convergence. First, we shall say something about each term 〈g̃t, x̃t − x∗〉.

Lemma 2: If X = Rn, then for all x∗,

〈x̃t − x∗, g̃t〉 =
1

2
ηt ‖g̃t‖2 +

D (x∗‖xt)−D (x∗‖xt+1)

ηt
+

[∑
i∈At

ηi 〈g̃i, g̃t〉 −
∑
i∈Bt

ηi 〈g̃i, g̃t〉

]

Proof:

D (x∗‖xt+1)−D (x∗‖xt) =
1

2
‖x∗ − xt + xt − xt+1‖2 −

1

2
‖x∗ − xt‖2

=
1

2
‖x∗ − xt + ηtg̃t‖2 −

1

2
‖x∗ − xt‖2

=
1

2
η2t ‖g̃t‖

2 − ηt 〈xt − x∗, g̃t〉

=
1

2
η2t ‖g̃t‖

2 − ηt 〈x̃t − x∗, g̃t〉 − ηt 〈xt − x̃t, g̃t〉

2

Expand the last term:

〈xt − x̃t, g̃t〉 =

〈[
−
∑
i∈At

ηig̃i +
∑
i∈Bt

ηig̃i

]
, g̃t

〉
= −

∑
i∈At

ηi 〈g̃i, g̃t〉+
∑
i∈Bt

ηi 〈g̃i, g̃t〉

Therefore

D (x∗‖xt+1)−D (x∗‖xt) =
1

2
η2t ‖g̃t‖

2 − ηt 〈x̃t − x∗, g̃t〉 − ηt

[
−
∑
i∈At

ηi 〈g̃i, g̃t〉+
∑
i∈Bt

ηi 〈g̃i, g̃t〉

]
D (x∗‖xt+1)−D (x∗‖xt)

ηt
=

1

2
ηt ‖g̃t‖2 − 〈x̃t − x∗, g̃t〉+

[∑
i∈At

ηi 〈g̃i, g̃t〉 −
∑
i∈Bt

ηi 〈g̃i, g̃t〉

]

〈x̃t − x∗, g̃t〉 =
1

2
ηt ‖g̃t‖2 +

D (x∗‖xt)−D (x∗‖xt+1)

ηt
+

[∑
i∈At

ηi 〈g̃i, g̃t〉 −
∑
i∈Bt

ηi 〈g̃i, g̃t〉

]
.

This completes the proof of Lemma 2. �

Back to Theorem 1: Returning to the proof of Theorem 1, we use Lemma 2 to expand the regret R[X]:

R [X] ≤
T∑
t=1

〈g̃t, x̃t − x∗〉 =

T∑
t=1

1

2
ηt ‖g̃t‖2 +

T∑
t=1

D (x∗‖xt)−D (x∗‖xt+1)

ηt

+

T∑
t=1

[∑
i∈At

ηi 〈g̃i, g̃t〉 −
∑
i∈Bt

ηi 〈g̃i, g̃t〉

]

=

T∑
t=1

[
1

2
ηt ‖g̃t‖2 +

∑
i∈At

ηi 〈g̃i, g̃t〉 −
∑
i∈Bt

ηi 〈g̃i, g̃t〉

]

+
D (x∗‖x1)

η1
− D (x∗‖xT+1)

ηT
+

T∑
t=2

[
D (x∗‖xt)

(
1

ηt
− 1

ηt−1

)]
We now upper-bound each of the terms:

T∑
t=1

1

2
ηt ‖g̃t‖2 ≤

T∑
t=1

1

2
ηtL

2 (Lipschitz assumption)

=

T∑
t=1

1

2

σ√
t
L2

≤ σL2
√
T ,

and

D (x∗‖x1)
η1

− D (x∗‖xT+1)

ηT
+

T∑
t=2

[
D (x∗‖xt)

(
1

ηt
− 1

ηt−1

)]

≤ F 2

σ
+ 0 +

F 2

σ

T∑
t=2

[√
t−
√
t− 1

]
(Bounded diameter)

=
F 2

σ
+
F 2

σ

[√
T − 1

]
=

F 2

σ

√
T ,

3

and

T∑
t=1

[∑
i∈At

ηi 〈g̃i, g̃t〉 −
∑
i∈Bt

ηi 〈g̃i, g̃t〉

]

≤
T∑
t=1

[|At|+ |Bt|] ηmax(1,t−(s+1)P)L
2 (from Lemma 1: min (At ∪ Bt) ≥ max (1, t− (s+ 1)P))

= L2

(s+1)P∑
t=1

[|At|+ |Bt|] η1 +
T∑

t=(s+1)P+1

[|At|+ |Bt|] ηt−(s+1)P

 (split the sum)

= L2

(s+1)P∑
t=1

[|At|+ |Bt|]σ +

T∑
t=(s+1)P+1

[|At|+ |Bt|]
σ√

t− (s+ 1)P

≤ σL2

(s+1)P∑
t=1

2s (P − 1) +

T∑
t=(s+1)P+1

2s (P − 1)
1√

t− (s+ 1)P

 (from Lemma 1: |At|+ |Bt| ≤ 2s(P − 1))

≤ 2σL2s (P − 1)
[
(s+ 1)P + 2

√
T − (s+ 1)P

] (
Note that

b∑
i=a

1

2
√
i
≤
√
b− a+ 1

)
≤ 2σL2s (P − 1)

[
(s+ 1)P + 2

√
T
]

≤ 2σL2 [(s+ 1)P]
2
+ 4σL2 (s+ 1)P

√
T .

Hence,

R [X] ≤
T∑
t=1

〈g̃t, x̃t − x∗〉 ≤ σL2
√
T + F 2

√
T

σ
+ 2σL2 [(s+ 1)P]

2
+ 4σL2 (s+ 1)P

√
T .

If we set the initial step size σ = F
L
√
2κ

where κ = (s+ 1)P , then

R [X] ≤ FL
√
T√

2κ
+ FL

√
2κT +

√
2FLκ3/2 + 2FL

√
2κT

= FL
√
2κT

[
3 +

1

2κ
+

κ√
T

]
.

Assuming T large enough that 1
2κ + κ√

T
≤ 1, we get

R [X] ≤ 4FL
√
2κT .

This completes the proof of Theorem 1. �
In Langford et al. the error between xt and x̃t consists of exactly τ terms, where τ is the fixed-delay parameter of their

system. In contrast, the same error under SSP contains at most 2(s+1)P terms, meaning that the actual convergence rate can
be improved (by up to a constant factor) with a good SSP implementation. We also note that Theorem 1 does not address the
other key feature of SSPtable, namely that workers spend less time waiting for the network, due to caching. In practice, while
increasing the staleness of SSPtable decreases the per-iteration convergence rate (as Theorem 1 suggests), it also increases the
number of iterations executed per unit time. The result is faster convergence with increased staleness, up to a point.

4

