
Supplemental Material
Online Inference for the Infinite Topic-Cluster Model:

Storylines from Streaming Text
Amr Ahmed , Qirong Ho , Choon Hui Teo , Jacob Eisenstein , Alex J. Smola , Eric P. Xing

A Inference
We use C to denote a generic count of co-occurrences, for example, Ctdk is the number of words in document d at
epoch t that are generated from topic k. We might remove a dimension to denote summation, for example, Ctd. is
the total number of words in document d at epoch t and Ct.k is the total number of words generated from topic k
at epoch t. Finally, we use a negative sign in the superscript to denote exclusion, for example, C−tditdk is the same
quantity as Ctdk without the contribution of word i, although sometimes we abuse notation and use i if the meaning
is clear from the context.

Sampling ztdi:

P (ztdi = k|wtdi = w, std = s, rest) = Ep(πs|rest)

[
Ep(θtd|rest)[θtdk|πs]

]
Ep(φk|rest)

[
φkw

]
= Ep(πs|rest)

[C−itdk + απsk

C−itd. + α

] C−ikw + φ0

C−ik. + φ0W

=
Ctdk + α′sEp(πs|rest)[πsk]

C−itd. + α

C−ikw + φ0

C−ik. + φ0W

=
C−itdk + α

C−i
sk

+π0,k

C−is. +
∑K+1

k=1
π0,k

C−itd. + α

C−ikw + φ0

C−ik. + φ0W
(1)

Where, rest denotes all other variables not mentioned explicitly . The iterated expectation arises because the
structure of the hierarchal prior, and each expectation is just the mean of the corresponding Dirichlet posterior.

Sampling std:

P (std|s−tdt−∆:t, ztd, etd,wK+1
td , rest) =

P (std|s−tdt−∆:t)︸ ︷︷ ︸
Prior

P (ztd|std, rest)P (etd|std, rest)P (wK+1
td |std, rest)︸ ︷︷ ︸

Emission

(2)

We begin with the prior:

P (std|s−tdt−∆:t) ∝
{
m′st +m−tdst s is an already existing story
γ s is a new story (3)

For the emission term P (etd|std, rest):

Let Ctd,e be the number of times entity e appears in document d, then the above probability is just the ratio
between two partition functions.

1

P (etd|std = s, rest) =
∫
P (etd|Ωs)p(Ωs|Ω0, rest)dΩs

=

∏E
e=1 Γ

(
Ctd,e + C−tdse + Ω0

)
Γ
(∑E

e=1 [Ctd,e + C−tdse + Ω0]
) Γ
(∑E

e=1 [C−tdse + Ω0]
)

∏E
e=1 Γ

(
C−tdse + Ω0

) (4)

The above equation is valid for both the cases that s is an exisiting story or s is a new story. However, when s
is a new story, C−tdse is zero for all entities e.

For the emission term P (wK+1
td |std, rest):

wK+1
td is the set of words in document td generated from topic K+1, where topic K+1 denotes the story-specific

topic φstd . Let CK+1
td,w be the number of times word w was generated from topic K+1 in document d, then the above

probability is again just the ratio between two partition functions.

P (wK+1
td |std = s, rest) =

∫
P (wK+1

td |φs)p(φs|Φ0, rest)dφs

=

∏W
w=1 Γ

(
CK+1
td,w + C−tdsw + φ0

)
Γ
(∑W

w=1 [CK+1
td,w + C−tdsw + φ0]

) Γ
(∑W

w=1 [C−tdsw + φ0]
)

∏W
w=1 Γ

(
C−tdsw + φ0

) (5)

Again, the above equation works for both the cases when s is an exisiting or if s is a new story. However, when
s is a new story, C−tdsw is zero for all words w.

For the emission term P (ztd|std = s, rest):

Unfortunately, we can not express this probability as the ratio of two partition functions. However, we note that
ztd is exchangeable, hence we can evaluate this expression using a left-right calculation similar to Wallach (2008):

P (ztd|std = s, rest) =
ntd∏
i=1

P (ztdi|std = s, z−td,(n≥i)td , rest)

=
ntd∏
i=1

C−td,(n≥i)tdk + α
C
−td,(n≥i)
sk

+π0,k

C
−td,(n≥i)
s. +

∑K+1
k=1

π0,k

C−td,(n≥i)td. + α
(6)

,where the superscript −td, (n ≥ i) means excluding all words in document td that came after position i. The
second line in the above equation follows from (1). Moreover,the above equation is valid for a new story except
that C−tdsk = 0.

For the future term P (st+1:t+δ|s−tdt−∆:t+δ, std = s):

This factor is only multiplied to (Eq2) during the resampling phase. This factor represents the transition
probability which measures the likelihood of the table assignments at future epochs if we choose to assign std = s.
Now we focus on computing one of these probabilities at epoch t + δ. With reference to the RCRP construction
and considering that documents are exchangeable within each epoch, similar to Antoniak (1974), we have:

P(st+δ|s−td→st+δ−∆:t+δ−1) = γS
born
t+δ

∏
v∈Sborn

t+δ
[1]mv,t+δ

∏
v/∈Sborn

t+δ
[m′,−td→sv,t+δ]mv,t+δ∏m.,t+δ

i=1 (m′,−td→v.,t+δ + γ + i)
(7)

where Sbornt+δ is the number of stories born at epoch t+ δ,m.,t+δ is the summation of mk,t+δ over the first dimension
(stories), and m′.,t+δ is defined similarly. Finally, [a]c = a(a+ 1) · · · (a+ c− 1).

2

A.1 Particle Importance Weight
The unnormalized importance weight for particle f at time t, ωft , can be calculated recursively as follows. Let xt
denote the words and named entities of the documents at time t, then:

ωft = ωft−1

P (xt|zf1:t, sf1:t,x1:t−1)P (zft , sft |z
f
1:t−1, sf1:t−1,x1:t−1)

Q(zft , sft |zf1:t−1, sf1:t−1,x1:t)

= ωft−1

P (xt|zf1:t, sf1:t,x1:t−1)P (zft , sft |z
f
1:t−1, sf1:t−1,x1:t−1)

P (zft , sft |zf1:t−1, sf1:t−1,x1:t)
(8)

Using Bayes rule P (A|B,D) = P (D|B,A)P (A|B)
P (D|B) , we can re-write the denominator as:

P (zft , sft |zf1:t−1, sf1:t−1,x1:t−1,xt) = P (xt|zf1:t−1, zft , s
f
1:t−1, sft ,x1:t−1)P (zft , sft |z

f
1:t−1, sf1:t−1,x1:t−1)

P (xt|zf1:t−1, sf1:t−1,x1:t−1)

= P (xt|zf1:t, sf1:t,x1:t−1)P (zft , sft |z
f
1:t−1, sf1:t−1,x1:t−1)

P (xt|zf1:t−1, sf1:t−1,x1:t−1)
(9)

Combining Eq. (8) and Eq. (9), we get:

ωft = ωft−1P (xt|zf1:t−1, sf1:t−1,x1:t−1) (10)

The marginal probability in Eq.(10) can be computed using the last 10 samples from the document-localized
MCMC loop in Algorithm 2.

A.2 Implementation and Storage
Implementing our parallel SMC algorithm for large datasets poses runtime and memory challenges. While our
algorithm mostly works on single particles by spawning one computational thread per particle filter, it also has to
copy entire particles during particle resampling (done via a master thread). Hence we require a thread-safe data
structure that supports fast updates of individual particles’ data, and fast copying of particles.

It should be obvious that the naive implementation, where each particle has its own set of arrays for storage, is
very inefficient when it comes to particle resampling — in the worst case, we would have to duplicate all particle
arrays element-by-element. Worse, our memory requirements would grow linearly in the number of particles, making
large data streams impractical even for modest numbers of particles.

Inheritance trees Instead, we employ an idea from Canini et al. Canini et al. (2009), in which particles maintain
a memory-efficient representation called an “inheritance tree”. In this representation, each particle is associated
with a tree vertex, which stores the actual data. The key idea is that child vertices inherit their ancestors’ data, so
they need only store changes relative to their ancestors, in the form of a dictionary or hash map. To save memory,
data elements with value 0 are not explictly represented unless necessary (e.g. when a parent has nonzero value).
New vertices are created only when writing data, and only under two circumstances: first, when the particle to be
changed shares a vertex with other particles, and second, when the particle to be changed is associated with an
interior vertex. In both cases, a new leaf vertex is created for the particle in question.

This representation dramatically reduces memory usage for large numbers of particles, and also makes particle
replication a constant runtime operation. The tradeoff however, is that data retrieval becomes linear time in the
depth of the tree, although writing data remains (amortized) constant time. This disadvantage can be mitigated
via tree maintenance operations, in which we prune branches without particles and then collapse unnecessary long
branches — refer to Figure 1 for an example. With tree maintenance, data retrieval becomes a practically constant
time operation.

3

Filter threads update particles

Root

1

games: 1
officials: 3
league: 4

2

3

(empty) league: 5

minister: 1

games: 0
season: 2

Initial tree
(ready for threads)

Root

1

games: 1
officials: 3
league: 4

2

3

(empty) league: 5
games: 3

minister: 7

games: 0
season: 2

0 = get(1,’games’) set(2,’games’,3)

set(3,’minister’,7)

Resampling copies particles

Root

games: 1
officials: 3
league: 4

2,1

3

(empty) league: 5
games: 3

minister: 7

games: 0
season: 2

copy(2,1)

Prune unused branches

Root

games: 1
officials: 3
league: 4

2,1

3

(empty) league: 5
games: 3

minister: 7

games: 0
season: 2

Collapse long branches

Root

games: 1
officials: 3
league: 4

2,1

3

league: 5
games: 3

minister: 7

2,1games: 3
season: 2
league: 5

maintain_prune()maintain_collapse()

Create new leaves

Root

games: 1
officials: 3
league: 4

3

minister: 7

games: 3
season: 2
league: 5

branch(1)

branch(2)

1 2

(empty) (empty)

New initial tree
(ready for threads)

Root

games: 1
officials: 3
league: 4

3

minister: 7

games: 3
season: 2
league: 5

1 2

(empty) (empty)

Figure 1: Inheritance tree operations in the context of our SMC algorithm. Numbers within a vertex represent
associated particles. Each vertex’s hash map is represented by a table, connected by a dotted line.

Thread safety Thus far, we have only described Canini et al.’s version of the inheritance tree, which is not
thread-safe. To see why, consider what happens when particle 1 is associated with the parent vertex of particle 2.
If a thread writes to particle 1 while another is reading from particle 2, it may happen that the second thread needs
to read from the parent vertex. This creates a race condition, which is unacceptable for our parallel algorithm.

To ensure thread safety, we augment the inheritance tree by requiring every particle to have its own leaf in the
tree. This makes particle writes thread-safe, because no particle is ever an ancestor of another, and writes only go to
the particle itself, never to ancestors. Furthermore, every particle is associated with only one computational thread,
so there will never be simultaneous writes to the same particle. On the other hand, data reads, even to ancestors, are
inherently thread-safe and present no issue. To maintain this requirement, observe that particle-vertex associations
can only change during particle resampling, which is handled by a a master thread. Immediately after resampling,
we branch off a new leaf for every particle at an interior node. Once this is done, the individual filter threads may
be run safely in parallel.

In summary, the inheritance tree has four operations, detailed in Figure 1:

1. branch(f): creates a new leaf for particle f .
2. get(f,i), set(f,i,value): retrieve/write data elements i for particle f .
3. copy(f,g): replicate particle f to g.
4. maintain(): prune particle-less branches and collapse unnecessary long branches.

Extended inheritance trees Our thread-safe inheritance tree supports most of our data storage needs. However,
parts of our algorithm require storage of sets of objects, rather than integer values. For example, our story sampling
equation needs the set of stories associated with each named entity, as well as the number of times each story-to-

4

Root

1

India: [(I-P tension,3),(Tax bills,1)]
Pakistan: [(I-P tension,2),(Tax bills,1)]
Congress: [(I-P tension,1),(Tax bills,1)]

2

3

(empty) Congress: [(I-P tension,0),(Tax bills,2)]

Bush: [(I-P tension,1),(Tax bills,2)]
India: [(Tax bills,0)]

India: [(I-P tension,2)]
US: [(I-P tension,1),[Tax bills,1)]

Extended Inheritance Tree

[(I-P tension,2),(Tax bills,1)] = get_list(1,’India’)

set_entry(3,’India’,’Tax bills’,0)

Note: “I-P tension” is short for “India-Pakistan tension”

Figure 2: Operations on an extended inheritance tree, which stores sets of objects in particles, shown as lists in
tables connected to particle-numbered tree nodes. Our algorithm requires particles to store some data as sets of
objects instead of arrays, and this data structure allows (a) the particles to be replicated in constant-time, and (b)
the object sets to be retrieved in amortized linear time.

entity association occurs.
We extend the basic inheritance tree by making its hash maps store other hash maps as values. These second-level

hash maps then store objects as key-value pairs. Using the story sampling equation as an example, the first-level
hash map uses named entities as keys, and the second-level hash map uses stories as keys and association counts as
values (Figure 2 has an example). Observe that the count for a particular story-entity association can be retrieved
or updated in amortized constant time.

Like the first-level hash maps, second-level hash maps only store changes relative to ancestor vertices, which
keeps memory requirements to a minimum while facilitating constant-time particle replication. Obtaining the object
set for a first-level entry i (a named entity in the previous example) thus requires going through second-level hash
maps for entry i, over the current vertex and all its ancestors. This has runtime linear in the size of all relevant
second-level hash maps.

Purging unnecessary data Because the RCRP prior only looks at a finite time window from t − ∆ to t, we
only need particle data from that window in memory, while antecedent data can be safely purged to disk. The
same observation applies to the incoming word and entity streams; we only need data from that window in memory.
These features keep our algorithm’s memory usage constant if ∆ is assumed constant, which is critical for on-
line execution. Moreover, our bounded memory requirements allow us to handle datasets of the scale seen in our
experiments.

References
Antoniak, C. E. (1974). Mixtures of dirichlet processes with applications to bayesian nonparametric problems. The

Annals of Statistics 2 (6), 1152–1174.

5

Canini, K. R., L. Shi, and T. L. Griffiths (2009). Online inference of topics with latent dirichlet allocation. In
Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics (AISTATS).

Wallach, H. (2008). Structured topic models for language. Technical report, PhD. Cambridge.

6

	Inference
	Particle Importance Weight
	Implementation and Storage

