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In this document, we provide more in-depth proofs
of the theorems and derive the Metropolis Hastings
acceptance probabilities presented in the main paper.

1. Theorem expanded proofs

Theorem 1 (Auxiliary variable representation for the
DPMM). We can re-write the generative process for a
DPMM as

D; ~DP (%H) ¢ ~ Dirichlet (%%) "
T ~ P, 0; ~ Dn,, x; ~ f(0;),

forj=1,...,P andi=1,...,N. The marginal dis-
tribution over the x; remains the same.

Proof. In the main paper, we proved the gen-
eral result, that if ¢ ~ Dirichlet(ay,...,ap) and
Dj ~ DP(O{j,Hj), then D = Zj ¢ij ~
DP(3_; oy, ZiajaHj) This result has been used by
authors including Rao & Teh (2009).

Here, we provide an explicit proof that shows the re-
sulting predictive distribution is that of the Dirichlet
process.

Let 01,605,... be a sequence of random variable dis-
tributed according to G ~ DP(a, Gp). Then the con-

ditional distribution of 6,1 given 6y,...,6, where G
has been integrated is given by
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If Dj ~ DP(a/P,Gqo), ¢ ~ Dir(%,...,%), 7% ~ ¢
and 0; ~ Dy, then the conditional distribution of 6,11
given 01,...,0, where D;,Vj and ¢ have been inte-

grated is given by
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Theorem 2 (Auxiliary variable representation for the
HDP). If we incorporate the requirement that the
concentration parameter vy for the bottom level DPs
{Dj}j”il depends on the concentration parameter o
for the top level DP Dy as v ~ Gamma(«), then we
can rewrite the generative process for the HDP as:

¢; ~ Gamma(a/P),
Dy; ~DP(a/P,H),

U ~ Dirichlet((y, .. .
Dinj ~ DP(¢j, Doj)

Tmi ™~ Vm s
emi NDmﬂ'mi s
7CP) s Tmi Nf(omi) )

(4)
forj=1,...,P,m=1,....,M,andi=1,...,N,,.

Proof. Let (; ~ Gamma(e/P) and Dy; ~
DP(«a/P,H), 5 = 1,...,P. This implies that
Goj = (;Do; ~ GaP((a/P)H) and v = 3/, 5 ~
Gamma(a).
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By superposition of gamma processes,

Go:=» _ Go; ~ GaP(aH)

as required by the HDP.

Now, form =1,...,M and j = 1,..., P, let n,; ~
I'(¢;) and D,,; ~ DP((j, Dy;). This implies that

ij = nmijJ ~ GaP(CjDOJ)
= G&P(Goj).

Superposition of the gamma processes gives

P
G = Gmj ~GaP(} _ Gy;)
J j=1

:= GaP(Gy) = GaP(yDy).

The total mass of G,, is given by Zle Mmj» SO

Gm(’)
Dp(l) = —22 — ~ DP(v,D 5
() S (7, Do) (5)

as required by the HDP.

If we let vy = Nmj/ kazl Tmk, then we can rewrite
Equation 5 as

P
Di(-) = Z VmjDimj ~ DP(v, Do), (6)
j=1
where (Vn1,...,Vmp) ~ Dirichlet((y,...,(p). O

2. Metropolis Hastings acceptance
probabilities

In both algorithms, the Metropolis Hastings proposal
probabilities satisfy ¢({m;} — {7’}) = ¢({=}} —
{mi}), so we need only consider the likelihood ratios.

2.1. Dirichlet process

In the Dirichlet process case, the likelihood ratio is
given by:

p{mi})
p({mi})

_ p{zi}|m)p({m Ha, P)
-~ p({@itm)p({mitle, P)
_ p{z}m)p({n }Ha, P)
-~ p({zi}mi)p({mitle, P) (7)

P ma‘x( ]7Nj) |

, : arl’
j=1 =1

)

where NV; is the number of data points on processor j,
and a;; is the number of clusters of size ¢ on processor
7.

The probability of the processor allocations is de-
scribed by the Dirichlet compound multinomial, or
multivariate Pélya, distribution,

N L(Y5, a/P)
H] 1N'F(N+Z _1a/P)

I'(N; +a/P)
H I'(«a/P)

p({mi}la,m) =

[(N; + o/P)
I(a/P) 7

where N = Z;ll N; is the total number of data
points. So,

N I( lp—[
Hle N;! I'(N + «a) e

I(N: +a/P)
“T(N; +a/P)’

Conditioned on the processor indicators, the probabil-
ity of the data can be written

p({zi}[{mi}) = Hp({njk}le%

where nj;, is the number of data points in the kth
on processor j. The distribution over cluster sizes in

the Chinese restaurant process is described by Ewen’s
sampling formula, which gives:

a\™ Ny r/P) 111
p({njk }IN;) = <P> 15, 0l T(N; + o/ P) 1;[1 aj!

where K is the total number of clusters on processor
j. Therefore,

max(N;,N)

I %
ar!’

i=1 vJ

p({nr}IN;) — 4 N F(N}”ra/P)
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so we get Equation 7.

2.2. Hierarchical Dirichlet processes

For the HDP, the likelihood ratio is given by

p{zmi {7, € a, P) p({m,: 47, &) p(€7 |, P)
p({mm’b}Hﬂ-m’L,}/vE)avp) p({wmz}h,ﬁ) p(£|Oé,P)()
8

We consider a Chinese restaurant franchise represen-
tation (Teh et al., 2006), where each data point is as-
sociated with a table (corresponding to clustering in
the lower-level DP), and each table is associated with
a dish (corresponding to clustering in the upper-level
DP).

Let t; be the count vector for the top-level DP on pro-
cessor j — in Chinese restaurant franchise terms, ¢;q4 is
the number of tables on processor j serving dish d. Let
n;,;, be the count vector for the mth bottom-level DP
on processor j —in Chinese restaurant franchise terms,
Njmk is the number of customers in the mth restau-
rant sat at the kth table of the jth processor. Let T}, ;
be the total number of occupied tables from the mth
restaurant on processor j, and let U; be the total num-
ber of unique dishes on processor j. Let a;m; be the
total number of tables in restaurant m on processor j
with exactly ¢ customers, and bj; be the total number
of dishes on processor j served at exactly ¢ tables. We
use the notation njm,. = >\ Njmk, T.j = >, Tmj, €tc.

Since the Metropolis-Hastings step does not change
the table and dish assignments of the data, the likeli-
hood ratio in Eq. 8 can be re-written as:

p({ta A i 7. €7, P)

p({tjats {njmi{mmi v, & o, P)
p({m: 7, €°) p(€7 |, P)
p({mmi}lr. & Pl P)

9)

The first term in the Eq. 9 is the ratio of the joint
probabilities of the topic- and table-allocations in the
local HDPs. This can be obtained by applying the
Ewen’s sampling formula to both top- and bottom-
level DPs.

p({njmk}h £€)
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The probability of the processor assignments is given
by:

M

p({mmitlr.€) = 1]

m=1

['(v)
(N +7)

nm'

—1 !

)

75] + Njm. )
-1;[ 'ij

p({mn ) A (r%))M
L(v€})
| (11)
M

P{mmi}|7, €) _.H

so the second term is given by
j=1
foi’ n;‘m' F(’yfj + lem.) '

The third term is given by
(6 |a, P)

D) (12)

-1(E)

Combining Equations 10, 11 and 12 gives an accep-
tance probability of min(1,r), where

P T* ita/P o M
H ) P T T (/P +T;) Hbﬂ' a],m
a/P * *

]=1 Tjte/P T, TT( (/P +T%) P il 2 Q!
(13)

2.3. Sampling ~

We sample the HDP parameter v using reversible ran-
dom walk Metropolis Hastings steps, giving an accep-
tance probability of

o ((5) [557]

M=

L(nm. +7) >

L(Mm. +7%)

m=1
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