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Abstract

We develop a penalized kernel smoothing
method for the problem of selecting non-
zero elements of the conditional precision ma-
trix, known as conditional covariance selec-
tion. This problem has a key role in many
modern applications such as finance and com-
putational biology. However, it has not been
properly addressed. Our estimator is derived
under minimal assumptions on the underly-
ing probability distribution and works well
in the high-dimensional setting. The effi-
ciency of the algorithm is demonstrated on
both simulation studies and the analysis of
the stock market.

1. Introduction

In recent years, with the advancement of large-scale
data acquisition technology in various engineering, sci-
entific, and socio-economical domains, the problem
of estimating latent dependency structures underly-
ing high-dimensional attributes has become a prob-
lem of remarkable algorithmic and theoretical inter-
est in the machine learning and statistics commu-
nity. Although a vast and rich body of work on the
so-called covariance selection problem can be found
in the recent literature (Meinshausen & Bühlmann,
2006; Friedman et al., 2008b; Ravikumar et al., 2008;
Banerjee et al., 2008), current focus and progress
seems to be restricted to simple scenarios where the
data-likelihood function belongs to well-known para-
metric families, such as discrete Markov random fields
or Gaussian Graphical Models, and the precision ma-
trix is analyzed in isolation, without considering ef-
fects of other covariates that represent environmental
factors. In this paper, we investigate the problem of
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covariance selection under situations where such as-
sumptions are violated.

Consider the problem of gene network inference in
systems biology, which is of increasing importance in
drug development and disease treatment. A gene net-
work is commonly represented as a fixed network, with
edge weights denoting strength of associations between
genes. Realistically, the strength of associations be-
tween genes can depend on many covariates such as
blood pressure, sugar levels, and other body indica-
tors; however, biologists have very little knowledge on
how various factors affect strength of associations. Ig-
noring the influence of different factors leads to esti-
mation procedures that overlook important subtleties
of the regulatory networks. Consider another problem
in quantitative finance, for which one wants to un-
derstand how different stocks are associated and how
these associations vary with respect to external factors
to help investors construct a diversified portfolio. The
rule of Diversification, formalized by Modern Portfo-
lio Theory (Markowitz, 1952), dictates that risk can be
reduced by constructing a portfolio out of uncorrelated
assets. However, it also assumes that the associations
between assets are fixed (which is highly unrealistic)
and a more robust approach to modeling assets would
take into account how their associations change with
respect to economic indicators, such as, gross domes-
tic product (GDP), oil price or inflation rate. Unfor-
tunately, there is very little domain knowledge on the
exact relationship between economic indicators and as-
sociations between assets, which motivates the prob-
lem of conditional covariance selection we intend to
investigate in this paper.

Let X ∈ R
p denote a p-dimensional random vector

representing genes or stock values, and Z ∈ R de-
note an index random variable representing some body
factor or economic indicator of interest. Both of the
above mentioned problems in biology and finance can
be modeled as inferring non-zero partial correlations
between different components of the random vector X
conditioned on a particular value of the index variable
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Z = z. We assume that the value of partial corre-
lations change with z, however, the set of non-zero
partial correlations is constant with respect to z. Let
Σ(z) := Cov(X|Z = z) denote the conditional covari-
ance of X given Z, which we assume to be positive def-
inite, and let Ω(z) := Σ(z)−1 denote the conditional
precision matrix. The structure of non-zero compo-
nents of the matrix Ω(z) tells us a lot about associ-
ations between different components of the vector X,
since the elements of Ω(z) correspond to partial cor-
relation coefficients. One of the challenges we address
in this paper is how to select non-zero components of
Ω(z) from noisy samples. Usually, very little is known
about the relationship between the index variable Z
and associations between components of the random
variable X; so, in this paper, we develop a nonpara-
metric method for estimating the non-zero elements of
Ω(z). Specifically, we develop a new method based on
ℓ1/ℓ2 penalized kernel smoothing, that is able to esti-
mate the functional relationship between the index Z
and components of Ω(z) with minimal assumptions on
the distribution (X, Z) and only smoothness assump-
tion on z 7→ Ω(z). In addition to developing an estima-
tion procedure that works with minimal assumptions,
we also focus on statistical properties of the estima-
tor in the high-dimensional setting, where the number
of dimensions p is comparable or even larger than the
sample size. Ubiquity of high-dimensionality in many
real world data forces us to carefully analyze statisti-
cal properties of the estimator, that would otherwise
be apparent in a low-dimensional setting.

Our problem setting, as stated above, should be
distinguished from the classical problem of covari-
ance selection, introduced in the seminal paper by
Dempster (Dempster, 1972). In the classical setting,
the main goal is to select non-zero elements of the
precision matrix; however, the precision matrix does
not vary with respect to the index variables. As
mentioned before, non-zero elements of the precision
matrix correspond to partial correlation coefficients,
which encode associations among sets of random
variables. Due to its importance, the problem of
covariance selection has drawn lots of attention from
both the machine learning and statistical community,
which has led to remarkable progress in both compu-
tational (Friedman et al., 2008b; Banerjee et al., 2008;
Duchi et al., 2008) and statistical issues (Yuan & Lin,
2007; Ravikumar et al., 2008; Peng et al., 2009;
Rothman et al., 2008; Meinshausen & Bühlmann,
2006). However, almost all of these work have been
driven by the simplifying assumption of an invariant
covariance structure.

Perhaps closest to the scenario we investigate

in this paper, are the recent work on estimat-
ing high-dimensional time-varying graphical models
(Zhou et al., 2008; Kolar et al., 2009). While their
work could fit into our framework, there are a few
mayor differences. In both of the papers, the distribu-
tion of X was explicitly given, either as a multivariate
Gaussian distribution or a discrete distribution follow-
ing an Ising model. Furthermore, time, which is con-
sidered to be an index variable in their work, is not
random. Finally, the focus of (Zhou et al., 2008) was
on point-wise estimation of covariance and precision
matrices, where the loss was measured in Frobenius
norm, while the correct selection of non-zero elements
of the precision matrix was not investigated.

To the best of our knowledge, there are only few ref-
erences for work on nonparametric models for con-
ditional covariance and precision matrices. Yin et
al., (2008) develop a kernel estimator of the condi-
tional covariance matrix based on the local-likelihood
approach. Since their approach does not perform es-
timation of non-zero elements in the precision ma-
trix, it is suitable in low-dimensions. Other related
work includes nonparametric estimation of the con-
ditional variance function in longitudinal studies (see
Ruppert et al., 1997; Fan & Yao, 1998, and references
within). Our paper intends to fill this void in the lit-
erature.

In summary, here are the highlights of our paper. Our
main contribution is a new nonparametric model for
sparse conditional precision matrices, and the ℓ1/ℓ2 pe-
nalized kernel estimator for the proposed model. The
estimation procedure was developed under minimal as-
sumptions, with the focus on the high-dimensional set-
ting, where the number of dimensions is potentially
larger than the sample size. A modified Bayesian In-
formation Criterion (BIC) is given that can be used
to correctly identify the set of non-zero partial corre-
lations. Finally, we demonstrate the performance of
the algorithm on synthetic data and analyze the asso-
ciations between the set of stocks in the S&P 500 as a
function of oil price.

2. The Model

Let X = (X1, . . . , Xp)
T ∈ R

p be a p-dimensional ran-
dom vector (representing gene expressions or stock val-
ues) and let random variable Z ∈ [0, 1] be an associ-
ated univariate index (representing a body factor or
an economy index). We will estimate associations be-
tween different components of X conditionally on Z.
For simplicity of presentation, we assume that the in-
dex variable can be scaled into the interval [0, 1] and,
furthermore, we assume that it is a scalar variable.
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The kernel smoothing method, to be introduced, can
be easily extended to multivariate Z. However, such
an extension may only be practical in limited cases,
due to the curse of dimensionality (Li & Liang, 2008).
Throughout the paper, we assume that E[X|Z = z] =
0 for all z ∈ [0, 1]. In practice, one can easily estimate
the conditional mean of X given Z using local polyno-
mial fitting (Fan, 1993) and subtract it from X. We
denote the conditional covariance matrix of X given
Z as Σ(z) := Cov(X|Z = z) = (σuv(z))u,v∈[p], where

we use [p] to denote the set {1, . . . , p}. Assuming that
Σ(z) is positive definite, for all z ∈ [0, 1], the condi-
tional precision matrix is given as Ω(z) := Σ(z)−1 =
(ωuv(z))u,v∈[p]. Elements (ωuv(z))u,v∈[p] are smooth,
but unknown functions of z.

With the notation introduced above, the problem of
conditional covariance selection, e.g., recovering the
strength of association between stocks as a function of
oil price, or association between gene expressions as a
function of blood pressure, can be formulated as esti-
mating the non-zero elements in the conditional pre-
cision matrix Ω(z). As mentioned before, association
between different components of X can be expressed
using the partial correlation coefficients, which are di-
rectly related to the elements of precision matrix as
follows; the partial correlation ρuv(z) between Xu and
Xv (u, v ∈ [p]) given Z = z can be computed as

ρuv(z) = −
ωuv(z)√

ωuu(z)ωvv(z)
. (1)

The above equation confirms that the non-zero par-
tial correlation coefficients can be selected by estimat-
ing non-zero elements of the precision matrix. Let
S := {(u, v) :

∫
[0,1]

ω2
uv(z)dz > 0, u 6= v} denote the

set of non-zero partial correlation coefficients, which
we assume to be constant with respect to z, i.e., we as-
sume that the associations are fixed, but their strength
can vary with respect to the index z. Furthermore, we
assume that the number of non-zero partial correla-
tion coefficients, s := |S|, is small. This is a reason-
able assumption for many problems, e.g., in biological
systems a gene usually interacts with only a handful
of other genes. In the following paragraphs, we relate
the partial correlation coefficients to a regression prob-
lem, and present a computationally efficient method
for estimating non-zero elements of the precision ma-
trix based on this insight.

For each component Xu (u ∈ [p]) we set up a re-
gression model, where Xu is the response variable,
and all the other components are the covariates. Let
X\u := {Xv : v 6= u, v ∈ [p]}. It is a well known
result (e.g., Lauritzen, 1996) that the partial correla-
tion coefficients can be related to a regression model

as follows

Xu =
∑

v 6=u

Xvbuv(z) + ǫu(z), u ∈ [p], (2)

with ǫu(z) being uncorrelated with X\u if and only if

buv(z) = −
ωuv(z)

ωuu(z)
= ρuv(z)

√
ωvv(z)

ωuu(z)
. (3)

Observe that ρuv(z) = sign(buv(z))
√

buv(z)bvu(z),
which relates selection of the non-zero partial cor-
relations to selection of covariates in the regression
model (2). The relationship given in Eq. (3) has
been used for estimation of high-dimensional Gaus-
sian graphical models in (Meinshausen & Bühlmann,
2006), however, Eq. (3) holds for any distribution of
(X, Z) and can be used for estimation of non-zero el-
ements of the conditional precision matrix.

Based on the above discussion, we propose a locally
weighted kernel estimator of the non-zero partial cor-
relations. Let Dn = {(xi, zi)}i∈[n] be an independent
sample of n realizations of (X, Z). For each u ∈ [p],
we define the loss function

Lu(Bu;Dn) :=
∑

z∈{zj}j∈[n]

∑

i∈[n]

(
xi
u −

∑

v 6=u

xi
vbuv(z)

)2
Kh(z − zi)

+ 2λ
∑

v 6=u

||buv(·)||2

(4)
where Bu = (bu(z

1), . . . ,bu(z
n)), bu(z

j) ∈ R
p−1,

Kh(z − zi) = K( |z−zi|
h ) is a symmetric density func-

tion with bounded support that defines local weights,
h denotes the bandwidth, λ is the penalty parameter

and ||buv(·)||2 :=
√∑

z∈{zj}j∈[n]
buv(z)2. Define B̂u as

a minimizer of the loss

B̂u := argmin
B∈Rp−1×n

Lu(B;Dn). (5)

Combing {B̂u}u∈[p] gives an estimator

Ŝ := {(u, v) : max{||b̂uv(·)||2, ||b̂vu(·)||2} > 0} (6)

of the non-zero elements of the precision matrix.

In Eq. (4), the ℓ1/ℓ2 norm is used to penalize model pa-
rameters. This norm is commonly used in the Group
Lasso (Yuan & Lin, 2006). In our case, since we as-
sume the set of non-zero elements S, of the precision
matrix, to be fixed with respect to z, the ℓ2 norm is a
natural way to shrink the whole group of coefficients
{buv(zi)}i∈[n] to zero. Note that the group consists
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of the same element, say (u, v), of the precision ma-
trix for different values of z. Our approach should
be contrasted to the approach in (Zhou et al., 2008;
Kolar et al., 2009), where the set of non-zero elements
of the precision matrix changes with respect to time,
in which case one cannot use the ℓ2 norm, which would
make the set of non-zero elements constant over time.
Instead, the use of ℓ1 norm is necessary. Under our
assumptions, usage of the ℓ2 norm results in a more
efficient procedure.

The above described kernel smoothing procedure is
well justified under the assumption that the elements
of Ω(z) are smooth but unknown functions of z. The
loss function in Eq. (4), without the penalty term, is
common in varying coefficient regression models, how-
ever, relevant coefficients are selected using a gener-
alized likelihood ratio test, (Li & Liang, 2008). We
point out that the functions {buv(z)} are being esti-
mated only on {zi}i∈[n] and not on the whole support
of supp(Z) = [0, 1]. This is justified under the assump-
tions that {zi}i∈[n] are sufficiently dense on [0, 1]. For
example, if Z has the density, fZ(z), that is continu-
ous and bounded away from zero on [0, 1], then the
maximal distance between any two neighboring ob-
servations is Op(

logn
n ) (Janson, 1987). Together with

the assumption that {buv(z)} are smooth functions,
this implies that the approximation error, when esti-
mating the whole curve buv(z), z ∈ [0, 1] with points

{b̂uv(z), z ∈ {zi}i∈[n]}, is of smaller order than the op-

timal nonparametric rate of convergence, Op(n
−2/5).

Finally, we note that the statistical efficiency of our
procedure can be improved by exploiting the fact that
the precision matrix is symmetric and jointly optimiz-
ing for {Bu}u∈[n], (see Peng et al., 2009, for specific
details in estimation of multivariate Gaussian graphi-
cal models).

3. Optimization algorithm

In this section, we detail an efficient optimization al-
gorithm that can be used to solve the problem given
in Eq. (5). Given that the optimization problem is
convex, a variety of techniques can be used to solve
it. A particularly efficient optimization algorithm has
been devised for ℓ1/ℓ2 penalized problems, that is
based on the group-coordinate descent and is referred
to as the active-shooting algorithm (Peng et al., 2009;
Friedman et al., 2010). A modification of the proce-
dure, suitable for our objective, is outlined in Algo-
rithm 1, which we now explain.

We point out that the group coordinate descent
will converge to an optimum, since the loss func-
tion is smooth and the penalty term in Eq. (4)

Algorithm 1 Procedure for solving Eq. (5)

Input: Data Dn = {xi, zi}i∈[n], initial solution B̃
(0)
u

Output: Solution B̂u to Eq. (5)

1: A := {v ∈ [p] \ u : ||b̃(0)uv (·)||2 > 0}, t = 0
2: repeat
3: repeat {iterate over v ∈ A}
4: Compute {riuv(zj)}i,j∈[n] using Eq. (8)
5: if condition (9) is satisfied then
6: b̃uv(·)← 0
7: else
8: b̃uv(·)← argminLv

u

(
buv(·);Dn

)

9: end if
10: until convergence on A;
11: forall v ∈ [p]\u compute lines 4 through 9 once
12: A := {v ∈ [p] \ u : ||b̃uv(·)||2 > 0}
13: until A did not change
14: B̂u ← {b̃uv(·)}v∈[p]\u

decomposes across different rows of the matrix Bu

(Friedman et al., 2010). Now, we derive an update for
row v, while keeping all other rows of Bu fixed. Let
{b̃uv(zj)}j∈[n] be a minimizer of

Lv
u({buv(zj)}j∈[n];Dn) :=

∑

z∈{zj}j∈[n]

∑

i∈[n]

(
riuv(z)− xi

vbuv(z)
)2
Kh(z − zi)

+ 2λ ||buv(·)||2,
(7)

where
riuv(z) = xi

u −
∑

v′ 6=u,v

xi
v′ b̃uv′(z) (8)

and {b̃uv′(z)} denotes the current solution for all the
other variables. Solving Eq. (7) iteratively, by cycling
through rows v ∈ [p] \ u, will lead to an optimal solu-

tion B̂u of Eq. (5). By analyzing Karush-Kuhn-Tucker
conditions of the optimization problem in Eq. (7), we
can conclude that the necessary and sufficient condi-
tion for {b̃uv(zj)}j∈[n] ≡ 0 is

1

λ2

∑

z∈{zj}j∈[n]


∑

i∈[n]

xi
vr

i
uv(z)Kh(z − zi)




2

≤ 1. (9)

Eq. (9) gives a fast way to explicitly check if the row
v of a solution is identical to zero or not. If the con-
dition in Eq. (9) is not satisfied, only then we need to
find a minimizer of Eq. (7), which can be done by the
gradient descent, since the objective is differentiable
when {buv(zj)}j∈[n] 6≡ 0.

In practice, one needs to find a solution to (5) for
a large number of penalty parameters λ. Comput-
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ing solutions across a large set of possible λ values
can effectively be implemented using the warm start
technique (Friedman et al., 2008a). In this technique,
Eq. (5) is solved for a decreasing sequence of penalty

parameters λ1 > . . . > λN and the initial value B̃
(0)
u

provided to Algorithm 1 for λi is the final solution B̂u

for λi−1. This experimentally results in faster conver-
gence and a more stable algorithm.

4. Theoretical properties

In this section, we give some theoretical properties of
the estimation procedure given in Section 2. These
results are given for completeness and are presented
without proofs, which will be reported elsewhere. In
particular, we provide conditions under which there
exists a set Ŝ = Ŝ(λ) of selected non-zero partial corre-
lations, which consistently estimates S, the true set of
non-zero partial correlations. Observe that Ŝ depends
on the penalty parameter λ, so it is of practical im-
portance to correctly select the parameter λ for which
Ŝ consistently recovers S. We give conditions under
which the modified BIC criterion is able to identify
the correct penalty parameter λ. We start by giving
general regularity conditions.

The following regularity conditions are standard in the
literature (Fan & Huang, 2005; Wang & Xia, 2008):
(A1) There is an s > 2 such that E[||X||2s2 ] ≤ ∞;
(A2) The density function f(z) of the random vari-
able Z is bounded away from 0 on [0, 1] and has
bounded second order derivative; (A3) The matrix
Ω(z) is positive definite for all z ∈ [0, 1] and its ele-
ments (ωuv(z)) are functions that have bounded sec-
ond derivatives; (A4) The function E[||X||42

∣∣ Z = z] is
bounded; (A5) The kernelK(·) is a symmetric density
with compact support. In addition the standard reg-
ularity conditions, we need the following identifiabil-
ity condition, which allows us to correctly identify the
true model (A6) supz∈[0,1] maxu6=v |ωuv(z

i)| ≤ O( 1d ),
where d := maxu∈[p] |{v : (u, v) ∈ S}|

Theorem 1 Assume that the regularity conditions
(A1)-(A6) are satisfied. Furthermore, assume that
E[exp(tX)|Z = z] ≤ exp(σ2t2/2) for all z ∈
[0, 1], t ∈ R and some σ ∈ (0,∞). Let h =
O(n−1/5), λ = O(n7/10

√
log p) and n−9/5λ → 0. If

n11/10
√
log p

minu,v∈S ||buv(·)||2 →∞, then P[Ŝ = S]→ 1.

Assuming that X is a subgaussian random variable in
Theorem 1 is due to technical reasons. The assumption
is needed to establish exponential inequalities for the
probability that each solution B̂u of Eq. (5) correctly
identifies the set of non-zero rows of Bu. Then consis-
tency of Ŝ can be established by applying the union

bound over the events that estimators {B̂u}u∈[p] con-
sistently estimate non-zero rows of {Bu}u∈[p]. For the
last claim to be true when the dimension p is large,
e.g., p = O(exp(nα)), α > 0, we need a good tail be-
havior of the distribution of X. The statement of the
theorem still holds true, even if we do not establish ex-
ponential inequalities, but only for smaller dimensions.
Another commonly used regularity condition on X is
to assume that it is bounded with probability 1, which
would again allow us to establish exponential inequal-
ities needed in the proof. Finally, we need to assume
that for (u, v) ∈ S, ||buv(·)||2 does not decay to zero
too quickly. Otherwise, the element of the precision
matrix would be to hard to distinguish from 0.

Next, we show that the correct penalty parameter
λ can be chosen using the modified BIC criterion of
(Chen & Chen, 2008). Denote B̂u,λ as the solution
of Eq. (5) obtained for the penalty parameter λ. We
define the residual sum of squares as

RSSu(λ) := n−2
∑

z

∑

i∈[n]

(
xi
u−

∑

v 6=u

xi
v b̂uv,λ(z)

)2
Kh(z−zi)

and the BIC-type criterion

BICu(λ) = log(RSSu(λ)) +
d̂fu,λ(log(nh) + 2 log p)

nh
,

where d̂fu,λ denotes the number of non-zero rows of

B̂u,λ. We used the modified version of the BIC crite-
rion, since the ordinary BIC criterion tends to include
many spurious variables when the complexity of the
model space is large (Chen & Chen, 2008). Now, λ is
chosen by a minimization:

λ̂ = argmin
λ

∑

u∈[p]

BICu(λ), (10)

and the final estimator of the non-zero components of
the precision matrix Ŝ = Ŝ(λ̂) is obtained by combin-

ing {B̂u,λ̂}u∈[p]. We have the following theorem.

Theorem 2 Assume that the conditions of Theorem 1
are satisfied. Then the tuning parameter λ̂ obtained by
minimizing criterion (10) asymptotically identifies the

correct model, i.e., P[Ŝ(λ̂) = S]→ 1.

5. Simulation results

5.1. Toy example

We first consider a small toy example in order to
demonstrate our algorithm’s performance. We draw
n samples, from the joint distribution of (X, Z) where
the conditional distribution of X given Z = z is a 5-
dimensional multivariate Gaussian with mean 0 and
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Figure 1. Toy example results. Each bar represents the
number of times the corresponding precision matrix ele-
ment was included in Ŝ. Performance of the ideal algorithm
is shown in Figure 1(a). Our algorithm (Figure 1(d)) gets
close to this, and far outperforms both the other methods.

precision matrix Ω(z), and Z is uniformly distributed
on [0, 1]. The set S = {(1, 2), (3, 4), (2, 4), (1, 5), (3, 5)}
denotes the non-zero elements of Ω(z). We set ele-
ments ωuv(z) = ωuv(z) = fuv(z) for all (u, v) ∈ S,
where the functions {fuv(z)} are defined as follows:
(1) f1,2 ≡ 1 (constant), (2) f3,4 ≡ 1 (constant),
(3) f2,4(z) = 1 if z ≤ .5 and −1 for z > .5 (piece-
wise constant), (4) f1,5(z) = 2z − 1 (linear), (5)
f3,5(z) = sin(2πz) (sinusoid). The diagonal elements
ωuu(z) (z ∈ [0, 1]) are set to a constant number such
that Ω(z) is diagonally dominant, and hence positive
definite.

We compared our method against the approach of
(Meinshausen & Bühlmann, 2006) (referred to as MB),
which assumes an invariant covariance matrix and ig-
nores z, and against a simpler variant of our algorithm
(called “kernel, ℓ1 penalty”), which replaces the group
ℓ1/ℓ2 penalty in Eq. (4) with the ℓ1 penalty. Recall
that the ℓ1 penalty does not encourage the set of non-
zero elements in the precision matrix to remain fixed
for all z ∈ [0, 1]. Our algorithm, developed in Section 2
is referred to as “kernel, group penalty”.

We average our results over 100 random trials. For
each trial, n = 300 samples are randomly generated
using the procedure described above. We counted the
number of times each of the

(
5
2

)
= 10 possible off-

diagonal elements of the precision matrix were selected
as non-zeros. Figure 1 displays results as histograms.
Bars 1-5 correspond to the true non-zero elements in
S, as enumerated above, while bars 6-10 correspond to
the elements that should be set to zero. Thus, in the
ideal case, bars 1-5 should be estimated as non-zero for
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Figure 2. Simulation results for 8x8 grid. See section 5.2
for details.

all 100 trials, while bars 6-10 should never be selected.
As we can see, all algorithms select the constant ele-
ments ω12(·) (bar 1) and ω34(·) (bar 2). However, the
MB approach fails to recover the three varying preci-
sion matrix elements and also recovers many false el-
ements. Just using the kernel + ℓ1 penalty, described
above, performs better, but still selects many elements
not in S. Our algorithm, on the other hand, selects all
the elements in S almost all of the time, and also ex-
cludes the elements not in S the vast majority of the
time. This higher precision is the result of our group
penalty, and gives superior performance to just using
an ℓ1 penalty (assuming that the set of non-zero par-
tial correlation coefficients is fixed with respect to z).

5.2. Large simulations

We next tested our algorithm on a larger problem
where X ∈ R

64. The components of X were arranged
into an 8x8 grid, so that only adjacent components
in the grid have has non-zero partial correlation. For
all adjacent (u, v), ωuv(z) = sin(2πz + cuv), where
cuv ∼ Unif([0, 1]) is a random offset. We measure how
well the algorithm recovers the true set of non-zero
precision matrix elements. Both MB and “kernel + ℓ1”
perform much worse than our estimator, so we do not
display their performance. Performance of the “ker-
nel + group penalty” estimator is shown in Figure 2.
Even though the problem is significantly harder, after
800 samples our algorithm achieves an F1 score above
0.9.

6. Analyzing the stock market

We next apply our method to analyzing relationships
among stocks in the S&P 500. Such an analysis would
be useful to an economist studying the effect of various
indicators on the market, or an investor who is seeking
to minimize his risk by constructing a diverse portfo-
lio according to Modern Portfolio Theory (Markowitz,
1952). Rather than assume static associations among
stocks we believe it is more realistic to model them as
a function of an economic indicator, such as oil price.
We acquired closing stock prices from all stocks in the
S&P 5001 and oil prices2 for all the days that the mar-

1http://www.finance.yahoo.com
2http://tonto.eia.doe.gov/



On Sparse Nonparametric Conditional Covariance Selection

ket was open from Jan 1, 2003 through Dec 31, 2005.
This gave us 750 samples of 469 stocks (we only con-
sidered stocks that remained in the S&P 500 during
the entire time period). Instead of considering the
raw prices, which often are a reflection of other fac-
tors, such as number of shares, we used the logarithm
of the ratio of the price at time t to the price at time
t − 1 and subtracted the mean value and divided by
the standard deviation for each stock.

Our data consists of pairs {xi, zi}, the vector of stan-
dardized stock prices and the oil price, respectively,
obtained over a period of time. We analyze the data
to recover the strength of associations between differ-
ent stocks as a function of the oil price. Our belief is
that each stock is associated with a small number of
other stocks and that the set of associations is fixed
over a time-period of interest, although the strengths
may change. We believe this is justified since we are
looking for long-term trends among stocks and want
to ignore transient effects. Figure 3 illustrates the esti-
mated network, where an edge between two nodes cor-
respond to a non-zero element in the precision matrix.
Note that the presented network is not a representa-
tion of an undirected probabilistic graphical model.

Clusters of related stocks are circled in Figure 3, and
these largely confirm our intuition. Here are some
of the stocks in a few of the clusters: (1) Technol-
ogy/semiconductors - Hewlett Packard, Intel, Tera-
dyne, Analog Devices etc.; (2) Oil/drilling/energy -
Diamond Offshore Drilling, Baker Hughes, Hallibur-
ton, etc.; (3) Manufacturing - Alcoa, PPG Industries
(coating products), International Paper Co. etc.; (4)
Financial - American Express, Wells Fargo, Franklin
Resources etc. It is also interesting that there exist
coherent subgroups inside these clusters. For exam-
ple, the “Retail stores” sector could be further divided
into companies that specialize in clothes, like Gap and
Limited, and those that are more general purpose de-
partment stores, like Wal-Mart and Target.

Another point of interest are two hubs (enlarged and
highlighted in green in Figure 3), that connect a set of
diverse stocks that do not easily categorize into an in-
dustrial sector. They correspond to JPMorgan Chase
and Citigroup (two prominent financial institutions).
It possible that these stocks are good indicators of the
status of the market or have certain investment port-
folios that contribute to their central positions in the
network.

Finally, we explore the evolving nature of our edge
weights as a function of oil price to demonstrate the
advantages over simply assuming static partial correla-
tions. Recall that the edge weights vary with oil price

Figure 3. Overall stock market network that was recovered
by the algorithm. Edges in the graph correspond to non-
zero elements in the precision matrix. As one can see, the
recovered network contains many clusters of related stocks.
The green (and enlarged) hubs are described in the text.

and are proportional to the estimated partial correla-
tion coefficients. Consider the two stocks Analog De-
vices (ADI), which makes signal processing solutions,
and NVIDIA (NVDA), which makes graphics process-
ing units. Ignoring the effect of the oil price, both of
these companies are highly related since they belong
to the semiconductor sector. However, if one analyzes
the edge weights as a function of oil price, as shown
in Figure 4 (a) and (b), both behave quite differently.
This changing relationship is reflected by the varying
strength of the edge weight between NVIDIA and Ana-
log Devices (shown in Figure 4 (c) ). Note that when
oil prices are low, the edge weight is high since Ana-
log Devices and NVIDIA are both rising as a function
of oil price. However, as oil prices increase, Analog
Devices stabilizes while NVIDIA is more erratic (al-
though it is mostly rising), so the edge weight sharply
decreases. Thus, if an investor is aiming for diversifi-
cation to reduce risk, he/she may be wary of investing
in both of these stocks together when oil prices are low
since they are highly associated, but might consider it
if oil prices are high and the stocks are less associated.

7. Discussion

We develop a new nonparametric estimator for the
problem of high-dimensional conditional covariance
selection. Elements of the precision matrix are re-
lated to the partial correlation coefficients, whose non-
zero structure tells a lot about the associations be-
tween different components of the vector X. Our work
is motivated by problems arising in biology and fi-
nance, where the associations between different vari-
ables change with respect to environmental factors.
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Figure 4. This figure demonstrates how the changing edge
weight between Analog Devices and NVIDIA ((c)) corrob-
orates with the fact that Analog Devices and NVIDIA be-
have quite differently as a function of oil price ((a) and
(b)). In (a) and (b), the y-axis is the ratio of the stock
price to its price on January 1, 2003.

We believe that our method will help in extracting
subtle information from noisy data, that otherwise
couldn’t be found using standard methods for covari-
ance selection that analyze data in isolation, without
considering various environmental factors.
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