Supplementary Material

Kernel Embeddings of Latent Tree Graphical Models

Le Song, Ankur P. Parikh, Eric P. Xing

Section A of the supplemental contains a brief introduction to Tensor Algebra while Section B contains details on the Spectral Algorithm.

A Tensor Algebra

Here we give a brief introduction to tensor algebra (for more details, see [2]). A tensor is a multidimensional array, and its order is the number of dimensions, also known as modes. In this paper, vectors (tensors of order one) are denoted by boldface lowercase letters, e.g., a. Matrices (tensors of order two) are denoted by boldface capital letters, e.g., A. Higher-order tensors (order three or higher) are denoted by boldface caligraphic letters, e.g., \mathcal{T}. Scalars are denoted by lowercase letters, e.g., a.
Subarrays of a tensor are formed when a subset of the indices is fixed. Particularly, a fiber is defined by fixing every index but one. Fibers are the higher-order analogue of matrix rows and columns. A colon is used to indicate all elements of a mode. Thus, the j th column of a matrix \boldsymbol{A} is $\boldsymbol{A}(:, j)$, and the i th row of \boldsymbol{A} is $\boldsymbol{A}(i,:)$. Analogously, the mode- n fiber of a N th order tensor $\boldsymbol{\mathcal { T }}$ is then denoted as $\mathcal{T}\left(i_{1}, i_{2}, \ldots, i_{n-1},:, i_{n+1}, \ldots, i_{N}\right)$.
Tensors can be multiplied together. For matrices and vectors, we will use standard notation for their multiplications, e.g., Ba and $\boldsymbol{A B}$. For tensors of higher order, we are particularly interested in multiplying a tensor by matrices and vectors. The n-mode matrix product is the multiplication of a tensor with a matrix in mode n of the tensor. Let $\mathcal{T} \in \mathbb{R}^{I_{1} \times I_{2} \times \ldots \times I_{N}}$ be an N th order tensor and $\boldsymbol{A} \in \mathbb{R}^{J \times I_{n}}$ be a matrix. Then

$$
\begin{equation*}
\mathcal{T}^{\prime}=\boldsymbol{T} \times{ }_{n} \boldsymbol{A} \in \mathbb{R}^{I_{1} \times \ldots I_{n-1} \times J \times I_{n+1} \times \ldots \times I_{N}} \tag{1}
\end{equation*}
$$

where the entries $\boldsymbol{\mathcal { T }}^{\prime}\left(i_{1}, \ldots, i_{n-1}, j, i_{n+1}, \ldots, i_{N}\right)$ are defined as $\sum_{i_{n}=1}^{I_{n}} \boldsymbol{\mathcal { T }}\left(i_{1}, \ldots, i_{n}, \ldots, i_{N}\right) \boldsymbol{A}\left(j, i_{n}\right)$. For example, if \boldsymbol{A} and \boldsymbol{B} are matrices, then $\boldsymbol{A} \times{ }_{1} \boldsymbol{B}=\boldsymbol{B} \boldsymbol{A}$ and $\boldsymbol{A} \times{ }_{2} \boldsymbol{B}^{\top}=\boldsymbol{A} \boldsymbol{B}$. We will further introduce two useful properties of n-mode matrix product. First, for distinct modes in a series of multiplications, the order of the multiplication can be exchanged

$$
\begin{equation*}
\mathcal{T} \times_{n} \boldsymbol{A} \times_{m} \boldsymbol{B}=\boldsymbol{\mathcal { T }} \times_{m} \boldsymbol{B} \times_{n} \boldsymbol{A} \quad(m \neq n) . \tag{2}
\end{equation*}
$$

Second, the matrices can be combined first, if the modes in a series of multiplications are the same

$$
\begin{equation*}
\mathcal{T} \times_{n} \boldsymbol{A} \times_{n} \boldsymbol{B}=\boldsymbol{\mathcal { T }} \times_{n}(\boldsymbol{B} \boldsymbol{A}) \tag{3}
\end{equation*}
$$

We note that n-mode matrix product does not change the order of a tensor, but the size of the tensor may change. Multiplication of a tensor with a vector in mode n of the tensor is called n-mode vector product. Let $\mathcal{T} \in$ $\mathbb{R}^{I_{1} \times I_{2} \times \ldots \times I_{N}}$ and $\boldsymbol{a} \in \mathbb{R}^{I_{n}}$. Then

$$
\begin{equation*}
\mathcal{T}^{\prime}=\mathcal{T} \bar{x}_{n} \boldsymbol{a} \in \mathbb{R}^{I_{1} \times \ldots I_{n-1} I_{n+1} \times \ldots \times I_{N}} \tag{4}
\end{equation*}
$$

where the entries $\boldsymbol{\mathcal { T }}^{\prime}\left(i_{1}, \ldots, i_{n-1}, i_{n+1}, \ldots, i_{N}\right)$ is defined as $\sum_{i_{n}=1}^{I_{n}} \boldsymbol{\mathcal { T }}\left(i_{1}, i_{2}, \ldots, i_{n}, \ldots, i_{N}\right) \boldsymbol{a}\left(i_{n}\right)$. We note that n mode vector product actually reduces the order of the tensor, i.e., $\boldsymbol{\mathcal { T }}^{\prime}$ is order $N-1$ if $\boldsymbol{\mathcal { T }}$ is order N. Note that in general $\mathcal{T} \overline{\times}_{n} \boldsymbol{a}=\operatorname{squeeze}\left(\boldsymbol{\mathcal { T }} \times{ }_{n} \boldsymbol{a}^{\top}\right)$.

B Derivation of Spectral Algorithm

In this section, we provide a more detailed derivation of the spectral algorithm for (transformed) parameter learning. For simplicity of explanation, we will focus on latent tree structure where each internal node has exactly 3
neighbors. We can reroot the tree and redirect all the edges away from the root. For a variable X_{s}, we use α_{s} to denote its sibling, π_{s} to denote its parent, ι_{s} to denote its left child and ρ_{s} to denote its right child; the root node will have 3 children, we use ω_{s} to denote the extra child. All the observed variables are leaves in the tree, and we will use $\iota_{s}^{*}, \rho_{s}^{*}, \pi_{s}^{*}$ to denote an observed variable which is found by tracing in the direction from node s to its left child ι_{s}, right child ρ_{s}, and its parent π_{s} respectively. s^{*} denotes any observed variable in the subtree rooted at node s.

Recall the transformed messages:

* At leaf nodes, $\widetilde{m}_{s}=T_{s}^{\top} C_{s \mid \pi_{s}}^{\top} \phi\left(x_{s}\right)=\left(\mathcal{C}_{s \mid \pi_{s}} \times_{2} T_{s}^{\top}\right) \overline{\times}_{1} \phi\left(x_{s}\right)$
** At internal nodes, $\widetilde{m}_{s}=\left(\mathcal{C}_{s^{2} \mid \pi_{s}} \times_{1} T_{\iota_{s}}^{-1} \times_{2} T_{\rho_{s}}^{-1} \times_{3} T_{s}^{\top}\right) \bar{x}_{2} \widetilde{m}_{\rho_{s}} \bar{x}_{1} \widetilde{m}_{\iota_{s}}$ *** At the root, $b_{r}=\left(\mathcal{C}_{r^{3}} \times{ }_{1} T_{\iota_{s}}^{-1} \times{ }_{2} T_{\rho_{s}}^{-1} \times{ }_{3} T_{\omega_{r}}^{-1}\right) \overline{\times}_{3} \widetilde{m}_{\omega_{s}} \overline{\times}_{2} \widetilde{m}_{\rho_{s}} \bar{x}_{1} \widetilde{m}_{\iota_{s}}$

Let $\widetilde{\mathcal{C}}_{s^{2} \mid \pi_{s}}:=\mathcal{C}_{s^{2} \mid \pi_{s}} \times{ }_{1} T_{\iota_{s}}^{-1} \times{ }_{2} T_{\rho_{s}}^{-1} \times{ }_{3} T_{s}^{\top}$ and $\widetilde{\mathcal{C}}_{r^{3}}:=\mathcal{C}_{r^{3}} \times{ }_{1} T_{\iota_{s}}^{-1} \times_{2} T_{\rho_{s}}^{-1} \times{ }_{3} T_{\omega_{r}}^{-1}$. We set $T_{s}=\left(U_{s}^{\top} \mathcal{C}_{s^{*} \mid \pi_{s}}\right)^{-1}$. U_{s} is chosen ${ }^{1}$ to be the top d right singular vectors of $\mathcal{C}_{\pi_{s}^{*} s^{*}}$, and therefore one can take the one-sided inverse of $\left(\mathcal{C}_{\pi_{s}^{*} s^{*}} U_{s}\right)$ assuming all latent variables have dimension d. For internal nodes we set s^{*} in $\left(\mathcal{C}_{\pi_{s}^{*} s^{*}} U_{s}\right)$ to ι_{s}^{*} while for leaves we set s^{*} to s. We have the following observable representation that we derive in the following subsections:

* At leaf nodes, $\tilde{m}_{s}=\left(\mathcal{C}_{\pi_{s}^{*} s} U_{s}\right)^{\dagger} \mathcal{C}_{\pi_{s}^{*} s} \phi\left(x_{s}\right)$.
** At internal nodes, $\widetilde{C}_{s^{2} \mid \pi_{s}}=\mathcal{C}_{\iota_{s}^{*} \rho_{s}^{*} \pi_{s}^{*}} \times_{1} U_{\iota_{s}}^{\top} \times_{2} U_{\rho_{s}}^{\top} \times{ }_{3}\left(\mathcal{C}_{\pi_{s}^{*} \iota_{s}^{*}} U_{s}\right)^{\dagger}$.
${ }^{* * *}$ At the root, $\widetilde{\mathcal{C}}_{r^{3}}=\mathcal{C}_{\iota_{r}^{*} \rho_{r}^{*} \omega_{r}^{*}} \times{ }_{1} U_{\iota_{r}}^{\top} \times{ }_{2} U_{\rho_{r}}^{\top} \times{ }_{3} U_{\omega_{r}}^{\top}$

B. 1 Root

Recall that

$$
\begin{align*}
\widetilde{\mathcal{C}}_{r^{3}} & =\mathcal{C}_{r^{3}} \times_{1} T_{\iota_{r}}^{-1} \times_{2} T_{\rho_{r}}^{-1} \times_{3} T_{\omega_{r}}^{-1} \tag{5}\\
& =\mathcal{C}_{r^{3}} \times_{1} U_{\iota_{r}}^{\top} \mathcal{C}_{\iota_{r}^{*} \mid r} \times{ }_{2} U_{\rho_{r}}^{\top} \mathcal{C}_{\rho_{r}^{*} \mid r} \times{ }_{3} U_{\omega_{r}}^{\top} \mathcal{C}_{\omega_{r}^{*} \mid r} \tag{6}\\
& =\mathcal{C}_{r^{3}} \times{ }_{1} \mathcal{C}_{\iota_{r}^{*} \mid r} \times{ }_{2} \mathcal{C}_{\rho_{r}^{*} \mid r} \times{ }_{3} \mathcal{C}_{\omega_{r}^{*} \mid r} \times{ }_{1} U_{\iota_{r}}^{\top} \times_{2} U_{\rho_{r}}^{\top} \times_{3} U_{\omega_{r}}^{\top} \tag{7}
\end{align*}
$$

where $T_{s}^{-1}=U_{s}^{\top} \mathcal{C}_{s^{*} \mid \pi_{s}}$.
We first prove that $\mathcal{C}_{r^{3}} \times \mathcal{C}_{\iota_{r}^{*} \mid r} \times{ }_{2} \mathcal{C}_{\rho_{r}^{*} \mid r} \times{ }_{3} \mathcal{C}_{\omega_{r}^{*} \mid r}=\mathcal{C}_{\iota_{r}^{*} \rho_{r}^{*} \omega_{r}^{*}}$: Consider any $f, g, h \in \mathcal{F}$. Then,

$$
\begin{align*}
\mathcal{C}_{r^{3}} & \times_{1} \mathcal{C}_{L_{r}^{*} \mid r} \times_{2} \mathcal{C}_{\rho_{r}^{*} \mid r} \times_{3} \mathcal{C}_{\omega_{r}^{*} \mid r} \overline{\times}_{3} h \overline{\times}_{2} g \overline{\times}_{1} f \tag{8}\\
& =\left\langle f \otimes g \otimes h, \mathcal{C}_{r^{3}} \times_{1} \mathcal{C}_{\iota_{r}^{*} \mid r} \times_{2} \mathcal{C}_{\rho_{r}^{*} \mid r} \times_{3} \mathcal{C}_{\omega_{r}^{*} \mid r}\right\rangle \tag{9}\\
& =\mathbb{E}_{X_{r}}\left[\left\langle\mathcal{C}_{\iota_{r}^{*} \mid r}^{\top} f, \phi\left(X_{r}\right)\right\rangle\left\langle\mathcal{C}_{\rho_{r}^{*} \mid r}^{\top} g, \phi\left(X_{r}\right)\right\rangle\left\langle\mathcal{C}_{\omega_{r}^{*} \mid r}^{\top} h, \phi\left(X_{r}\right)\right\rangle\right] \tag{10}\\
& =\mathbb{E}_{X_{r}}\left[\left\langle f, \mathcal{C}_{\iota_{r}^{*} \mid r} \phi\left(X_{r}\right)\right\rangle\left\langle g, \mathcal{C}_{\rho_{r}^{*} \mid r} \phi\left(X_{r}\right)\right\rangle\left\langle h, \mathcal{C}_{\omega_{r}^{*} \mid r} \phi\left(X_{r}\right)\right\rangle\right] \tag{11}\\
& =\mathbb{E}_{X_{r}}\left[\mathbb{E}_{X_{\rho_{r} *} \mid X_{r}}\left[f\left(X_{L_{r}^{*}}\right)\right] \mathbb{E}_{X_{\rho_{r}^{*}} \mid X_{r}}\left[g\left(X_{\rho_{r}^{*}}\right)\right] \mathbb{E}_{X_{\omega_{r}^{*}} \mid X_{r}}\left[h\left(X_{\omega_{r}^{*}}\right)\right]\right] \tag{12}\\
& =\mathbb{E}_{X_{\iota_{r}^{*}}, X_{\rho_{r}^{*}, X_{\omega_{r}^{*}}}\left[f\left(X_{\iota_{r}^{*}}\right) g\left(X_{\rho_{r}^{*}}\right) h\left(X_{\omega_{r}^{*}}\right)\right]}= \tag{13}\\
& =\left\langle f \otimes g \otimes h, \mathbb{E}_{X_{\iota_{r}^{*}}, X_{\rho_{r}^{*}}, X_{\omega_{r}^{*}}}\left[\phi\left(X_{\iota_{r}^{*}}\right) \otimes \phi\left(X_{\rho_{r}^{*}}\right) \otimes \phi\left(X_{\omega_{r}^{*}}\right)\right]\right\rangle \tag{14}\\
& \mathcal{C}_{\iota_{r}^{*} \rho_{r}^{*} \omega_{r}^{*}} \bar{X}_{3} h \overline{\times}_{2} g \overline{\times}_{1} f \tag{15}
\end{align*}
$$

Combining this result with Eq. 7 gives,

$$
\begin{equation*}
\widetilde{\mathcal{C}}_{r^{3}}=\mathcal{C}_{r^{3}} \times{ }_{1} T_{\iota_{r}}^{-1} \times_{2} T_{\rho_{r}}^{-1} \times{ }_{3} T_{\omega_{r}}^{-1}=\mathcal{C}_{\iota_{r}^{*} \rho_{r}^{*} \omega_{r}^{*}} \times_{1} U_{\iota_{r}}^{\top} \times_{2} U_{\rho_{r}}^{\top} \times{ }_{3} U_{\omega_{r}}^{\top} \tag{16}
\end{equation*}
$$

[^0]
B. 2 Leaf

Recall that $\widetilde{m}_{s}=T_{s}^{\top} C_{s \mid \pi_{s}}^{\top} \phi\left(x_{s}\right)$ and $T_{s}=\left(U_{s}^{\top} \mathcal{C}_{s^{*} \mid \pi_{s}}\right)^{-1}$. However since s is a leaf we can set $s^{*}=s$. Consider expanding the related quantity $\widetilde{m}_{s}^{\top}\left(U_{s}^{\top} \mathcal{C}_{s \pi_{s}^{*}}\right)$:

$$
\begin{align*}
\widetilde{m}_{s}^{\top}\left(U_{s}^{\top} \mathcal{C}_{s \pi_{s}^{*}}\right) & =\phi^{T}\left(x_{s}\right) C_{s \mid \pi_{s}}\left(U_{s}^{\top} C_{s \mid \pi_{s}}\right)^{-1}\left(U_{s}^{\top} \mathcal{C}_{s \pi_{s}^{*}}\right) \tag{17}\\
& =\phi^{T}\left(x_{s}\right) C_{s \mid \pi_{s}}\left(U_{s}^{\top} C_{s \mid \pi_{s}}\right)^{-1}\left(U_{s}^{\top} \mathcal{C}_{s \mid \pi_{s}} \mathcal{C}_{\pi_{s}^{2}} \mathcal{C}_{\pi_{s}^{*} \mid \pi_{s}}\right) \tag{18}\\
& =\phi^{T}\left(x_{s}\right) C_{s \mid \pi_{s}}\left(U_{s}^{\top} C_{s \mid \pi_{s}}\right)^{-1}\left(U_{s}^{\top} \mathcal{C}_{s \mid \pi_{s}}\right)\left(\mathcal{C}_{\pi_{s}^{2}} \mathcal{C}_{s}^{\top} \mid \pi_{s}\right) \tag{19}\\
& =\phi^{T}\left(x_{s}\right) C_{s \mid \pi_{s}} \mathcal{C}_{\pi_{s}^{2}}^{2} \mathcal{C}_{\pi_{s}^{*} \mid \pi_{s}} \tag{20}\\
& =\phi\left(x_{s}\right)^{\top} C_{s \pi_{s}^{*}} \tag{21}
\end{align*}
$$

where we have used the fact that $\mathcal{C}_{s \mid \pi_{s}} \mathcal{C}_{\pi_{s}^{2}} \mathcal{C}_{\pi_{s}^{*} \mid \pi_{s}}^{\top}=\mathcal{C}_{s \pi_{s}^{*}}$ (which is proved using the same technique as used in Section B.1).
This implies that $\widetilde{m}_{s}=\left(\mathcal{C}_{\pi_{s}^{*} s} U_{s}\right)^{\dagger} C_{\pi_{s}^{*} s} \phi\left(x_{s}\right)=C_{s \pi_{s}^{*}}\left(U_{s}^{\top} \mathcal{C}_{s \pi_{s}^{*}}\right)^{\dagger} \bar{x}_{1} \phi\left(x_{s}\right)$. We choose U_{s} to be the top d right singular vectors of $\mathcal{C}_{\pi_{s}^{*}}$, and therefore the one-sided inverse exists (since all latent variables are assumed to have dimension d).

B. 3 Intermediate Node

Recall that $T_{s}=\left(U_{s}^{\top} \mathcal{C}_{s^{*} \mid \pi_{s}}\right)^{-1}$ and $\widetilde{C}_{s^{2} \mid \pi_{s}}=\mathcal{C}_{s^{2} \mid \pi_{s}} \times{ }_{1} T_{\iota_{s}}^{-1} \times_{2} T_{\rho_{s}}^{-1} \times{ }_{3} T_{s}^{\top}$. Thus,

$$
\begin{equation*}
\widetilde{C}_{s^{2} \mid \pi_{s}}=\mathcal{C}_{s^{2} \mid \pi_{s}} \times{ }_{1} U_{\iota_{s}}^{\top} \mathcal{C}_{L_{s}^{*} \mid s} \times{ }_{2} U_{\iota_{s}}^{\top} \mathcal{C}_{\rho_{s}^{*} \mid s} \times{ }_{3}\left(\mathcal{C}_{s \mid \pi_{s}}^{\top} U_{s}\right)^{-1} \tag{22}
\end{equation*}
$$

Consider expanding the quantity $\widetilde{C}_{s^{2} \mid \pi_{s}} \times{ }_{3}\left(\mathcal{C}_{\pi_{s}^{*} s^{*}} U_{s}\right)$:

$$
\begin{align*}
& \widetilde{C}_{s^{2} \mid \pi_{s}} \times{ }_{3}\left(\mathcal{C}_{\pi_{s}^{*} s^{*}} U_{s}\right)=\mathcal{C}_{s^{2} \mid \pi_{s}} \times{ }_{1} U_{\iota_{s}}^{\top} \mathcal{C}_{L_{s}^{*} \mid s} \times{ }_{2} U_{\iota_{s}}^{\top} \mathcal{C}_{\rho_{s}^{*} \mid s} \times{ }_{3}\left(\mathcal{C}_{s \mid \pi_{s}}^{\top} U_{s}\right)^{-1} \times_{3}\left(\mathcal{C}_{\pi_{s}^{*} s^{*}} U_{s}\right) \tag{23}\\
& =\mathcal{C}_{s^{2} \mid \pi_{s}} \times \mathcal{C}_{L_{s}^{*} \mid s} \times{ }_{2} \mathcal{C}_{\rho_{s}^{*} \mid s} \times{ }_{3}\left(\mathcal{C}_{\pi_{s}^{*} s^{*}} U_{s}\right)\left(\mathcal{C}_{s \mid \pi_{s}}^{\top} U_{s}\right)^{-1} \times_{1} U_{\iota_{s}}^{\top} \times{ }_{2} U_{\rho_{s}}^{\top} \tag{24}\\
& =\mathcal{C}_{s^{2} \mid \pi_{s}} \times{ }_{1} \mathcal{C}_{L_{s}^{*} \mid s} \times{ }_{2} \mathcal{C}_{\rho_{s}^{*} \mid s} \times{ }_{3}\left(\mathcal{C}_{\pi_{s}^{*} \mid \pi_{s}} C_{\pi_{s}^{2}} \mathcal{C}_{s \mid \pi_{s}}^{\top} U_{s}\right)\left(\mathcal{C}_{s \mid \pi_{s}}^{\top} U_{s}\right)^{-1} \times_{1} U_{\iota_{s}}^{\top} \times_{2} U_{\rho_{s}}^{\top} \tag{25}\\
& =\mathcal{C}_{s^{2} \mid \pi_{s}} \times_{1} \mathcal{C}_{\iota_{s}^{*} \mid s} \times{ }_{2} \mathcal{C}_{\rho_{s}^{*} \mid s} \times{ }_{3}\left(\mathcal{C}_{\pi_{s}^{*} \mid \pi_{s}} C_{\pi_{s}^{2}}\right)\left(\mathcal{C}_{s \mid \pi_{s}}^{\top} U_{s}\right)\left(\mathcal{C}_{s \mid \pi_{s}}^{\top} U_{s}\right)^{-1} \times_{1} U_{\iota_{s}}^{\top} \times_{2} U_{\rho_{s}}^{\top} \tag{26}\\
& =\mathcal{C}_{s^{2} \mid \pi_{s}} \times{ }_{1} \mathcal{C}_{\iota_{s}^{*} \mid s} \times{ }_{2} \mathcal{C}_{\rho_{s}^{*} \mid s} \times{ }_{3}\left(\mathcal{C}_{\pi_{s}^{*} \mid \pi_{s}} C_{\pi_{s}^{2}}\right) \times{ }_{1} U_{\iota_{s}}^{\top} \times{ }_{2} U_{\rho_{s}}^{\top} \tag{27}\\
& =\mathcal{C}_{\iota_{s}^{*}, \rho_{s}^{*}, \pi_{s}^{*}} \times_{1} U_{\iota_{s}}^{\top} \times_{2} U_{\rho_{s}}^{\top} \tag{28}
\end{align*}
$$

where in the last line we have claimed that $\mathcal{C}_{L_{s}^{*}, \rho_{s}^{*}, \pi_{s}^{*}}=\mathcal{C}_{s^{2} \mid \pi_{s}} \times \mathcal{C}_{\iota_{s}^{*} \mid s} \times{ }_{2} \mathcal{C}_{\rho_{s}^{*} \mid s} \times{ }_{3} \mathcal{C}_{\pi_{s}^{*} \mid \pi_{s}} \mathcal{C}_{\pi_{s}^{2}}$. To prove this assertion, first consider the $\mathcal{C}_{s^{2} \mid \pi_{s}} \times{ }_{1} \mathcal{C}_{\iota_{s}^{*} \mid s} \times{ }_{2} \mathcal{C}_{\rho_{s}^{*} \mid s}$ part. For any $f, g \in \mathcal{F}$:

$$
\begin{align*}
\left\langle f \otimes g, \mathcal{C}_{s^{2} \mid \pi_{s}} \times_{1} \mathcal{C}_{L_{s}^{*} \mid s} \times_{2} \mathcal{C}_{\rho_{s}^{*} \mid s} \bar{×}_{3} \phi\left(x_{\pi_{s}}\right)\right\rangle & =\left\langle\left(\mathcal{C}_{L_{s}^{*} \mid s}^{\top} f\right) \otimes\left(\mathcal{C}_{\rho_{s}^{*} \mid s}^{\top} g\right), \mathcal{C}_{s^{2} \mid \pi_{s}} \overline{\times}_{3} \phi\left(x_{\pi_{s}}\right)\right\rangle \tag{29}\\
& =\left\langle\left(\mathcal{C}_{\iota_{s}^{*} \mid s}^{\top} f\right) \otimes\left(\mathcal{C}_{\rho_{s}^{*} \mid s}^{\top} g\right), \mathbb{E}_{X_{s} \mid x_{s}}\left[\phi\left(X_{s}\right) \otimes \phi\left(X_{s}\right)\right]\right\rangle \tag{30}\\
& =\mathbb{E}_{X_{s} \mid x_{\pi_{s}}}\left[\left\langle\left(\mathcal{C}_{L_{s}^{*} \mid s}^{\top} f\right) \otimes\left(\mathcal{C}_{\rho_{s}^{*} \mid s}^{\top} g\right), \phi\left(X_{s}\right) \otimes \phi\left(X_{s}\right)\right\rangle\right] \tag{31}\\
& =\mathbb{E}_{X_{s} \mid x_{s}}\left[\left\langle f, \mathcal{C}_{L_{s}^{*} \mid s} \phi\left(X_{s}\right)\right\rangle\left\langle g, \mathcal{C}_{\rho_{s}^{*} \mid s} \phi\left(X_{s}\right)\right\rangle\right] \tag{32}\\
& =\mathbb{E}_{X_{s} \mid x_{\pi_{s}}}\left[\mathbb{E}_{X_{L_{s}^{*}} \mid X_{s}}\left[f\left(X_{L_{s}^{*}}\right)\right] \mathbb{E}_{X_{\rho_{s}^{*}} \mid X_{s}}\left[g\left(X_{\rho_{s}^{*}}\right)\right]\right] \tag{33}\\
& =\mathbb{E}_{L_{s}^{*}, \rho_{s}^{*} \mid x_{s}}\left[f\left(X_{L_{s}^{*}}\right) g\left(X_{\rho_{s}^{*}}\right)\right] \tag{34}\\
& =\left\langle f \otimes g, \mathcal{C}_{L_{s}^{*}, \rho_{s}^{*} \mid \pi_{s}} \bar{X}_{3} \phi\left(x_{\pi_{s}}\right)\right\rangle \tag{35}
\end{align*}
$$

Thus, $\mathcal{C}_{\iota_{s}^{*} \rho_{s}^{*} \mid \pi_{s}}=\mathcal{C}_{s^{2} \mid \pi_{s}} \times{ }_{1} \mathcal{C}_{\iota_{s}^{*} \mid s} \times{ }_{2} \mathcal{C}_{\rho_{s}^{*} \mid s}$. We can then conclude (using a similar derivation to that in Section B.1) that $\mathcal{C}_{L_{s}^{*}, \rho_{s}^{*}, \pi_{s}^{*}}=\mathcal{C}_{L_{s}^{*}} \rho_{s}^{*} \mid \pi_{s} \times{ }_{3} \mathcal{C}_{\pi_{s}^{*} \mid \pi_{s}} \mathcal{C}_{\pi_{s}^{2}}$. Thus,

$$
\begin{equation*}
\mathcal{C}_{L_{s}^{*}, \rho_{s}^{*}, \pi_{s}^{*}}=\mathcal{C}_{s^{2} \mid \pi_{s}} \times{ }_{1} \mathcal{C}_{L_{s}^{*} \mid s} \times{ }_{2} \mathcal{C}_{\rho_{s}^{*} \mid s} \times{ }_{3} \mathcal{C}_{\pi_{s}^{*} \mid \pi_{s}} \mathcal{C}_{\pi_{s}^{2}} \tag{36}
\end{equation*}
$$

Now, returning to Eq. 28 we get that

$$
\begin{equation*}
\widetilde{C}_{s^{2} \mid \pi_{s}}=\mathcal{C}_{\iota_{s}^{*}, \rho_{s}^{*}, \pi_{s}^{*}} \times{ }_{1} U_{\iota_{s}^{*}}^{\top} \times{ }_{2} U_{\rho_{s}^{*}}^{\top} \times{ }_{3}\left(\mathcal{C}_{\pi_{s}^{*} s^{*}} U_{s}\right)^{\dagger} \tag{37}
\end{equation*}
$$

where one valid choice for s^{*} is ι_{s}^{*}. U_{s} is chosen to be the top d right singular vectors of $\mathcal{C}_{\pi_{s}^{*} \iota_{s}^{*}}$, and therefore one can take a one-sided inverse of $\left(\mathcal{C}_{\pi_{s}^{*} s^{*}} U_{s}\right)$ (assuming all latent variables have dimension d).

References

[1] D. Hsu, S. Kakade, and T. Zhang. A spectral algorithm for learning hidden markov models. In COLT, 2009.
[2] Tamara. Kolda and Brett Bader. Tensor decompositions and applications. SIAM Review, 51(3):455-500, 2009.
[3] A. Parikh, L. Song, and E. Xing. A spectral algorithm for latent tree graphical models. In ICML, 2011.

[^0]: ${ }^{1}$ This is not the only valid choice of U_{s} but will generally result in better performance. See [1, 3] for more details.

