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Section A of the supplemental contains a brief introduction to Tensor Algebra while Section B contains details on
the Spectral Algorithm.

A Tensor Algebra
Here we give a brief introduction to tensor algebra (for more details, see [2]). A tensor is a multidimensional array,
and its order is the number of dimensions, also known as modes. In this paper, vectors (tensors of order one)
are denoted by boldface lowercase letters, e.g., a. Matrices (tensors of order two) are denoted by boldface capital
letters, e.g., A. Higher-order tensors (order three or higher) are denoted by boldface caligraphic letters, e.g., T .
Scalars are denoted by lowercase letters, e.g., a.
Subarrays of a tensor are formed when a subset of the indices is fixed. Particularly, a fiber is defined by fixing every
index but one. Fibers are the higher-order analogue of matrix rows and columns. A colon is used to indicate all
elements of a mode. Thus, the jth column of a matrix A is A(:, j), and the ith row of A is A(i, :). Analogously,
the mode-n fiber of a Nth order tensor T is then denoted as T (i1, i2, . . . , in−1, :, in+1, . . . , iN ).
Tensors can be multiplied together. For matrices and vectors, we will use standard notation for their multipli-
cations, e.g., Ba and AB. For tensors of higher order, we are particularly interested in multiplying a tensor by
matrices and vectors. The n-mode matrix product is the multiplication of a tensor with a matrix in mode n of the
tensor. Let T ∈ RI1×I2×...×IN be an Nth order tensor and A ∈ RJ×In be a matrix. Then

T ′ = T ×n A ∈ RI1×...In−1×J×In+1×...×IN , (1)

where the entries T ′(i1, . . . , in−1, j, in+1, . . . , iN ) are defined as
∑In
in=1 T (i1, . . . , in, . . . , iN )A(j, in). For example,

if A and B are matrices, then A×1 B = BA and A×2 B> = AB. We will further introduce two useful properties
of n-mode matrix product. First, for distinct modes in a series of multiplications, the order of the multiplication
can be exchanged

T ×n A×m B = T ×m B ×n A (m 6= n). (2)

Second, the matrices can be combined first, if the modes in a series of multiplications are the same

T ×n A×n B = T ×n (BA). (3)

We note that n-mode matrix product does not change the order of a tensor, but the size of the tensor may change.
Multiplication of a tensor with a vector in mode n of the tensor is called n-mode vector product. Let T ∈
RI1×I2×...×IN and a ∈ RIn . Then

T ′ = T ×̄n a ∈ RI1×...In−1In+1×...×IN (4)

where the entries T ′(i1, . . . , in−1, in+1, . . . , iN ) is defined as
∑In
in=1 T (i1, i2, . . . , in, . . . , iN )a(in). We note that n-

mode vector product actually reduces the order of the tensor, i.e., T ′ is order N − 1 if T is order N . Note that in
general T ×̄n a = squeeze(T ×n a>).

B Derivation of Spectral Algorithm
In this section, we provide a more detailed derivation of the spectral algorithm for (transformed) parameter learn-
ing. For simplicity of explanation, we will focus on latent tree structure where each internal node has exactly 3
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neighbors. We can reroot the tree and redirect all the edges away from the root. For a variable Xs, we use αs to
denote its sibling, πs to denote its parent, ιs to denote its left child and ρs to denote its right child; the root node
will have 3 children, we use ωs to denote the extra child. All the observed variables are leaves in the tree, and we
will use ι∗s, ρ∗s, π∗s to denote an observed variable which is found by tracing in the direction from node s to its left
child ιs, right child ρs, and its parent πs respectively. s∗ denotes any observed variable in the subtree rooted at
node s.

Recall the transformed messages:
* At leaf nodes, m̃s = T>s C

>
s|πsφ(xs) = (Cs|πs ×2 T

>
s ) ×̄1 φ(xs)

** At internal nodes, m̃s = (Cs2|πs ×1 T
−1
ιs ×2 T

−1
ρs ×3 T

>
s ) ×̄2 m̃ρs ×̄1 m̃ιs

*** At the root, br = (Cr3 ×1 T
−1
ιs ×2 T

−1
ρs ×3 T

−1
ωr ) ×̄3 m̃ωs ×̄2 m̃ρs ×̄1 m̃ιs

Let C̃s2|πs := Cs2|πs ×1 T
−1
ιs ×2 T

−1
ρs ×3 T

>
s and C̃r3 := Cr3 ×1 T

−1
ιs ×2 T

−1
ρs ×3 T

−1
ωr . We set Ts = (U>s Cs∗|πs)

−1. Us
is chosen 1 to be the top d right singular vectors of Cπ∗

ss
∗ , and therefore one can take the one-sided inverse of

(Cπ∗
ss

∗Us) assuming all latent variables have dimension d. For internal nodes we set s∗ in (Cπ∗
ss

∗Us) to ι∗s while for
leaves we set s∗ to s. We have the following observable representation that we derive in the following subsections:

* At leaf nodes, m̃s = (Cπ∗
ss
Us)†Cπ∗

ss
φ(xs).

** At internal nodes, C̃s2|πs = Cι∗sρ∗
sπ

∗
s
×1 U

>
ιs ×2 U

>
ρs ×3 (Cπ∗

s ι
∗
s
Us)†.

*** At the root, C̃r3 = Cι∗rρ∗
rω

∗
r
×1 U

>
ιr ×2 U

>
ρr ×3 U

>
ωr

B.1 Root
Recall that

C̃r3 = Cr3 ×1 T
−1
ιr ×2 T

−1
ρr ×3 T

−1
ωr (5)

= Cr3 ×1 U
>
ιrCι∗r |r ×2 U

>
ρrCρ∗

r |r ×3 U
>
ωrCω∗

r |r (6)
= Cr3 ×1 Cι∗r |r ×2 Cρ∗

r |r ×3 Cω∗
r |r ×1 U

>
ιr ×2 U

>
ρr ×3 U

>
ωr (7)

where T−1
s = U>s Cs∗|πs .

We first prove that Cr3 ×1 Cι∗r |r ×2 Cρ∗
r |r ×3 Cω∗

r |r = Cι∗rρ∗
rω

∗
r
: Consider any f, g, h ∈ F . Then,

Cr3 ×1 Cι∗r |r ×2 Cρ∗
r |r ×3 Cω∗

r |r ×̄3 h ×̄2 g ×̄1 f (8)
=

〈
f ⊗ g ⊗ h, Cr3 ×1 Cι∗r |r ×2 Cρ∗

r |r ×3 Cω∗
r |r
〉

(9)

= EXr
[〈
C>ι∗r |rf, φ(Xr)

〉〈
C>ρ∗

r |rg, φ(Xr)
〉〈
C>ω∗

r |rh, φ(Xr)
〉]

(10)

= EXr
[〈
f, Cι∗r |rφ(Xr)

〉 〈
g, Cρ∗

r |rφ(Xr)
〉 〈
h, Cω∗

r |rφ(Xr)
〉]

(11)

= EXr
[
EXρr∗ |Xr

[
f(Xι∗r

)
]
EXρ∗

r
|Xr
[
g(Xρ∗

r
)
]
EXω∗

r
|Xr
[
h(Xω∗

r
)
]]

(12)

= EXι∗r ,Xρ∗
r
,Xω∗

r

[
f(Xι∗r

)g(Xρ∗
r
)h(Xω∗

r
)
]

(13)

=
〈
f ⊗ g ⊗ h,EXι∗r ,Xρ∗

r
,Xω∗

r

[
φ(Xι∗r

)⊗ φ(Xρ∗
r
)⊗ φ(Xω∗

r
)
]〉

(14)

= Cι∗rρ∗
rω

∗
r
×̄3 h ×̄2 g ×̄1 f (15)

Combining this result with Eq. 7 gives,

C̃r3 = Cr3 ×1 T
−1
ιr ×2 T

−1
ρr ×3 T

−1
ωr = Cι∗rρ∗

rω
∗
r
×1 U

>
ιr ×2 U

>
ρr ×3 U

>
ωr (16)

1This is not the only valid choice of Us but will generally result in better performance. See [1, 3] for more details.
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B.2 Leaf
Recall that m̃s = T>s C

>
s|πsφ(xs) and Ts = (U>s Cs∗|πs)−1. However since s is a leaf we can set s∗ = s. Consider

expanding the related quantity m̃>s (U>s Csπ∗
s
):

m̃>s (U>s Csπ∗
s
) = φT (xs)Cs|πs(U

>
s Cs|πs)

−1(U>s Csπ∗
s
) (17)

= φT (xs)Cs|πs(U
>
s Cs|πs)

−1(U>s Cs|πsCπ2
s
C>π∗

s |πs) (18)

= φT (xs)Cs|πs(U
>
s Cs|πs)

−1(U>s Cs|πs)(Cπ2
s
C>π∗

s |πs) (19)

= φT (xs)Cs|πsCπ2
s
C>π∗

s |πs (20)

= φ(xs)>Csπ∗
s

(21)

where we have used the fact that Cs|πsCπ2
s
C>π∗

s |πs
= Csπ∗

s
(which is proved using the same technique as used in

Section B.1).
This implies that m̃s = (Cπ∗

ssUs)
†
Cπ∗

ss
φ(xs) = Csπ∗

s
(U>s Csπ∗

s
)† ×̄1 φ(xs). We choose Us to be the top d right singular

vectors of Cπ∗
ss

, and therefore the one-sided inverse exists (since all latent variables are assumed to have dimension
d).

B.3 Intermediate Node
Recall that Ts = (U>s Cs∗|πs)−1 and C̃s2|πs = Cs2|πs ×1 T

−1
ιs ×2 T

−1
ρs ×3 T

>
s . Thus,

C̃s2|πs = Cs2|πs ×1 U
>
ιsCι∗s |s ×2 U

>
ιsCρ∗

s |s ×3 (C>s|πsUs)
−1 (22)

Consider expanding the quantity C̃s2|πs ×3 (Cπ∗
ss

∗Us):

C̃s2|πs ×3 (Cπ∗
ss

∗Us) = Cs2|πs ×1 U
>
ιsCι∗s |s ×2 U

>
ιsCρ∗

s |s ×3 (C>s|πsUs)
−1 ×3 (Cπ∗

ss
∗Us) (23)

= Cs2|πs ×1 Cι∗s |s ×2 Cρ∗
s |s ×3 (Cπ∗

ss
∗Us)(C>s|πsUs)

−1 ×1 U
>
ιs ×2 U

>
ρs (24)

= Cs2|πs ×1 Cι∗s |s ×2 Cρ∗
s |s ×3 (Cπ∗

s |πsCπ2
s
C>s|πsUs)(C

>
s|πsUs)

−1 ×1 U
>
ιs ×2 U

>
ρs (25)

= Cs2|πs ×1 Cι∗s |s ×2 Cρ∗
s |s ×3 (Cπ∗

s |πsCπ2
s
)(C>s|πsUs)(C

>
s|πsUs)

−1 ×1 U
>
ιs ×2 U

>
ρs (26)

= Cs2|πs ×1 Cι∗s |s ×2 Cρ∗
s |s ×3 (Cπ∗

s |πsCπ2
s
)×1 U

>
ιs ×2 U

>
ρs (27)

= Cι∗s ,ρ∗
s ,π

∗
s
×1 U

>
ιs ×2 U

>
ρs (28)

where in the last line we have claimed that Cι∗s ,ρ∗
s ,π

∗
s

= Cs2|πs ×1 Cι∗s |s ×2 Cρ∗
s |s ×3 Cπ∗

s |πsCπ2
s
. To prove this assertion,

first consider the Cs2|πs ×1 Cι∗s |s ×2 Cρ∗
s |s part. For any f, g ∈ F :

〈
f ⊗ g, Cs2|πs ×1 Cι∗s |s ×2 Cρ∗

s |s ×̄3 φ(xπs)
〉

=
〈

(C>ι∗s |sf)⊗ (C>ρ∗
s |sg), Cs2|πs ×̄3 φ(xπs)

〉
(29)

=
〈

(C>ι∗s |sf)⊗ (C>ρ∗
s |sg),EXs|xπs [φ(Xs)⊗ φ(Xs)]

〉
(30)

= EXs|xπs
[〈

(C>ι∗s |sf)⊗ (C>ρ∗
s |sg), φ(Xs)⊗ φ(Xs)

〉]
(31)

= EXs|xπs
[〈
f, Cι∗s |sφ(Xs)

〉 〈
g, Cρ∗

s |sφ(Xs)
〉]

(32)

= EXs|xπs
[
EXι∗s |Xs [f(Xι∗s

)]EXρ∗
s
|Xs [g(Xρ∗

s
)]
]

(33)

= Eι∗s ,ρ∗
s |xπs

[
f(Xι∗s

)g(Xρ∗
s
)
]

(34)
=

〈
f ⊗ g, Cι∗s ,ρ∗

s |πs ×̄3 φ(xπs)
〉

(35)
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Thus, Cι∗sρ∗
s |πs = Cs2|πs ×1 Cι∗s |s ×2 Cρ∗

s |s. We can then conclude (using a similar derivation to that in Section B.1)
that Cι∗s ,ρ∗

s ,π
∗
s

= Cι∗sρ∗
s |πs ×3 Cπ∗

s |πsCπ2
s
. Thus,

Cι∗s ,ρ∗
s ,π

∗
s

= Cs2|πs ×1 Cι∗s |s ×2 Cρ∗
s |s ×3 Cπ∗

s |πsCπ2
s

(36)

Now, returning to Eq. 28 we get that

C̃s2|πs = Cι∗s ,ρ∗
s ,π

∗
s
×1 U

>
ι∗s
×2 U

>
ρ∗
s
×3 (Cπ∗

ss
∗Us)† (37)

where one valid choice for s∗ is ι∗s. Us is chosen to be the top d right singular vectors of Cπ∗
s ι

∗
s
, and therefore one

can take a one-sided inverse of (Cπ∗
ss

∗Us) (assuming all latent variables have dimension d).
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