
GINI: From ISH Images to Gene Interaction Networks
Kriti Puniyani, Eric P. Xing*

School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America

Abstract

Accurate inference of molecular and functional interactions among genes, especially in multicellular organisms such as
Drosophila, often requires statistical analysis of correlations not only between the magnitudes of gene expressions, but also
between their temporal-spatial patterns. The ISH (in-situ-hybridization)-based gene expression micro-imaging technology
offers an effective approach to perform large-scale spatial-temporal profiling of whole-body mRNA abundance. However,
analytical tools for discovering gene interactions from such data remain an open challenge due to various reasons, including
difficulties in extracting canonical representations of gene activities from images, and in inference of statistically meaningful
networks from such representations. In this paper, we present GINI, a machine learning system for inferring gene interaction
networks from Drosophila embryonic ISH images. GINI builds on a computer-vision-inspired vector-space representation of
the spatial pattern of gene expression in ISH images, enabled by our recently developed SPEX2 system; and a new multi-
instance-kernel algorithm that learns a sparse Markov network model, in which, every gene (i.e., node) in the network is
represented by a vector-valued spatial pattern rather than a scalar-valued gene intensity as in conventional approaches
such as a Gaussian graphical model. By capturing the notion of spatial similarity of gene expression, and at the same time
properly taking into account the presence of multiple images per gene via multi-instance kernels, GINI is well-positioned to
infer statistically sound, and biologically meaningful gene interaction networks from image data. Using both synthetic data
and a small manually curated data set, we demonstrate the effectiveness of our approach in network building. Furthermore,
we report results on a large publicly available collection of Drosophila embryonic ISH images from the Berkeley Drosophila
Genome Project, where GINI makes novel and interesting predictions of gene interactions. Software for GINI is available at
http://sailing.cs.cmu.edu/Drosophila_ISH_images/
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Introduction

In multicellular organisms such as the metazoans, many

important biological processes such as development and differen-

tiation depend fundamentally on the spatial and temporal control

of gene expression [1,2]. To date, the molecular basis and

regulatory circuitry underlying metazoan gene regulation remains

largely unknown. Numerous statistical or algorithmic approaches

have been attempted to infer ‘‘networks’’ of regulatory elements

from high-throughput experimental data, based on various

computational techniques like Bayesian networks [3–5], undirect-

ed Gaussian graphical models [6,7], graph mining [8], ordinary

differential equations [9], partial correlations [10], and others.

Comparisons of different methods used for reverse engineering

gene networks have been performed [11,12], and predictions

made by automatically learned gene networks have been

experimentally validated [13,14], thus increasing the credibility

of such approaches.

This progress notwithstanding, a key deficiency of existing

approaches is that they rely almost exclusively on univariate

characteristics of gene states, such as a continuous-valued

abundance measurement from microarray, or a binary on/off

status derived from discretization of microarray data. However,

microarray profiling of mRNA abundance can often be ill-suited

for spatial-temporal analysis of gene expressions in multicellular

organisms such as Drosophila, or in tissues/organs with natural or

pathological progressions, because it captures only the ‘‘average’’

pattern of a sample. For any sample of interesting heterogeneous

cell populations, the averaging operation would cause severe

information loss and inaccuracy in downstream analysis (see

Figure 1 in [15] for an intuitive illustration of how two genes with

completely different spatial patterns over time yield near identical

‘‘average’’ temporal patterns.)

Recent advancements in image-based genome-scale profiling

technology such as whole-body mRNA abundance micro-imaging

via in situ hybridization (ISH) have begun to reveal a more holistic

view of the activities and functions of genes in rich spatial-temporal

contexts. ISH has been used to characterize whole genome

expression patterns for different species such as Drosophila

embryos [16,17], C. elegans [18], and adult mouse brain [19],

and at smaller scales for Arabidopsis flowers [20], testicular germ

cell tumors [21], and others. The availability of this form of gene

expression data calls for development of next-generation image

analysis systems to facilitate not only efficient pattern mining such

as image clustering or retrieval, but also in-depth reasoning of

complex spatial-temporal relationships between gene expression

patterns, which will be essential for functional genomics and

regulatory network inference in higher organisms. In this paper,

we focus on a particularly interesting, but previously unaddressed

challenge along this direction: inferring a statistically sound gene
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network from gene expression micro-imaging data, in the same

sense of inferring a gene network from microarray data as widely

studied in the literature. Analyzing ISH data allows us to infer a

network by computing similarities in the spatial distributions of

gene expressions in Drosophila embryo. Another important source

of information is the temporal changes of the spatial distributions

of genes, which could reveal how a gene regulation network

evolves over time during dynamic biological processes such as

embryogenesis [22]. We will defer the spatio-temporal network

building based on time series of ISH data for future work as it

requires the technique developed in this paper as a building block.

A major motivation of our work is the extensive imagery

documentation of all the genes expressed during Drosophila

embryogenesis via ISH imaging by the Berkeley Drosophila

Genome Project (BDGP) [16]. BDGP is an ongoing effort to

determine gene expression patterns during embryogenesis for

Drosophila genes. In February 2013, the data contained more

than 110,000 ISH images capturing the expression pattern of 7516

genes. Each image is annotated with time information, indicating

the development of the embryo in six development stage ranges.

Each image documents the gene expression pattern of a single

gene in an embryo. Most images have a single embryo, however

some images capture partial views of the embryo, others have

overlapping or touching embryos. This is an extremely interesting

but difficult dataset that reveals unprecedented details of gene

activities during metazoan embryogenesis, but at the same time

posts large unanswered challenges on methodologies for systematic

and principled analysis. Specifically, we recognized the following

main challenges that are unique to micro-imaging data versus the

classical microarray data, which must be properly addressed

before a genome-scale gene network can be derived from such

data.

Representation and quantification of gene activities:
Unlike microarrays, which represent gene activity with a

univariate state or magnitude, images provide high-

dimensional information for every gene, and it remains

an open problem in computer vision research to extract

meaningful features from the ISH images that are

suitable for comparing activities of different genes and

other genome-wide analysis [15,23].

Multi-variate measurement: Even after one can standardize

the imagery-records of the expression of a gene at a

particular time point by a d-dimensional vector, where d
are the number of features extracted from the image, a

proper metric must be defined to quantify distances

between them.

Condition alignment: Images for different genes are typically

taken under non-identical conditions (e.g., time, tem-

perature, etc.), whereas a microarray is a snapshot of

multiple genes under the same condition. This affects

how signals are normalized across genes before they can

be compared.

Sample imbalance: Different genes typically have different

number of image records, i.e., for gene i and j, their

corresponding measurements can be in the form of two

bags of different sizes. It is not clear how to define

distance or correlation between bags of images of

different sizes. One simple solution to this problem is

to randomly sample a single image from each gene.

However, throwing away images fails to capture the

natural variation observed in gene expression patterns

for some genes. Further, if noise in the expression

patterns has not been removed correctly in the feature

extraction step, leveraging the existence of multiple

images per gene can lead to reduced noise, and

improved performance.

Sparsity and statistical interpretability: The interaction

network proposed must be sparse and statistically

meaningful, since we expect that a small fraction of all

possible interactions are actually present in a single

organism, and such interactions must reveal globally

Figure 1. ISH analysis is more challenging than microarray analysis. (a) Univariate measurements taken simultaneously for all genes
simplifies gene network inference from microarray data. (b) GINI extends such analysis to inferring a network from bags of images per gene.
doi:10.1371/journal.pcbi.1003227.g001

Author Summary

As high-throughput technologies for molecular abun-
dance profiling are becoming more inexpensive and
accessible, computational inference of gene interaction
networks from such data based on well-founded statistical
principles is imperative to advance the understanding of
regulatory mechanisms in various biological systems.
Reverse engineering of gene networks has traditionally
relied on analysis of whole-genome microarray data; here
we present a new method, GINI, to infer gene networks
from ISH images, thereby enabling exploration of spatial
characteristics of gene expressions for network inference.
Our method generates a Markov network, which encap-
sulates globally meaningful statistical-dependencies from
vector-valued gene spatial patterns. In other words, we
advance the state-of-art in both the usage of richer forms
of expression data, and the employment of principled
statistical methodology for sound network inference on
such new form of data. Our results show that analyzing the
spatial distribution of gene expression enables us to
capture information not available from microarray data.
Such an analysis is especially important in analyzing genes
involved in embryonic development of Drosophila to
reveal specific spatial patterning that determines the
development of the 14 segments of the adult fly.

GINI: From ISH Images to Gene Interaction Networks
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consistent conditional-independence relationships be-

tween genes, which is not possible in a simple

pairwise-correlation graph.

There has been some earlier work on automatic annotation of

ISH images with annotation terms [24,25], clustering of gene

expressions [17], determination of the development stage of

embryos [26], etc., some of which have been applied on the BDGP

dataset. In this paper, we propose a machine learning system to

infer gene interaction networks from spatial similarity of gene

expressions captured via ISH images. The system is called GINI,

for Gene Interaction Network from Images. With such a system,

we were able to address satisfactorily the challenges mentioned

above, and systematically performed a genome-scale network

learning and analysis on the BDGP dataset.

Overview of the GINI approach
GINI first extracts the gene expression pattern from each image

using a computer version driven image analysis pipeline SPEX2

[15]. These expression patterns are spatially aligned and

normalized to enable spatial comparison of gene expression across

multiple images. Next, the expression patterns are represented by

suitable standardized features through a process called ‘‘triangu-

lation’’, followed by feature normalization and selection. Since

each gene may have a different number of images in the data, each

gene can now be represented by a ‘‘bag’’ or a set of feature vectors

- one feature vector per image. Thus, our task is to estimate the

gene network, given bags of images per gene (Figure 1). We cast

the problem of estimating a gene interaction network as the task of

estimating the graph structure G of a Markov random field (MRF)

over the genes. The underlying graph encodes conditional

independence assumptions between the genes, that is, two genes

are said to not interact in the network if their gene expressions are

conditionally independent of each other, conditioned on the

expression of all other genes in the network. We employ multi-

instance kernel technique using different order statistics to

compute similarity between bags of images. We then estimate a

sparse network of gene interactions by modeling the data as a

multi-variate multi-attribute Gaussian, and estimating the sparse

inverse covariance matrix of the model. A schematic diagram of

the system pipeline can be seen in Figure 2.

Contributions
GINI is a bioimage informatics system based on a computer

vision pipeline for ISH micro-image processing and a statistical

learning algorithm for network inference. The main contributions

of this work are summarized below.

First, the image analytic pipeline used by GINI offers a rigorous

and universal approach to extract a standardized representation of

spatial patterns of gene expressions. Comparing to the popular

SIFT features [24], which is based on detecting interest points with

heavy assumptions on object shape, texture, and other physical

properties originally meant for natural objects, our approach is

more suitable for ISH staining in Drosophila embryos which do

not resemble natural objects and require preservation of overall

spatial shape and overall intensity information in a canonical way

for intra-gene normalization and inter-gene comparison.

Second, GINI infers a network that enjoys the Markov network

property: it gives globally consistent conditional-independency

interpretation for every edge, and therefore is biologically more

meaningful. It is known that marginal correlation (as often used in

estimating an ad hoc network), which is computed for every gene-

pair in isolation (i.e., ignoring all other genes in the system),

confounds direct and indirect dependencies, and could result in a

clique-like dense graph or subgraph among genes that are not

directly dependent, but have a long-distance interaction. Studying

conditional independencies in a network allows us to predict

interactions between a pair of genes in the context of other genes,

allowing a distinction to be made between direct and indirect

relationships between the genes, and reducing false positives.

Third, our formulation based on Gaussian Markov random

field and multi-instance kernel for the GINI network is convex,

hence the globally optimal estimator of the network is computed,

no approximations are involved. Furthermore, under suitable

conditions, our graphical model learning algorithm is sparsistent,

i.e. as the amount of available data increases, the algorithm is

statistically guaranteed to predict the correct interactions between

the genes. While Bach et.al. [27] have previously proposed

Figure 2. GINI schematic. The schematic shows an outline of the overall system to reverse engineer gene networks from ISH data. Sample output
of each step is shown on top of the box corresponding to that step.
doi:10.1371/journal.pcbi.1003227.g002
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learning the structure of graphical models from data using Mercer

kernels, their approach is based on a non-convex local greedy

search to find edges in the graph. Our approach represents the first

work that uses Mercer kernels and Gaussian Graphical Models to

predict kernelized graphical models using a convex formulation.

Finally, with the GINI system, we were able to systematically

perform a genome-scale network learning and analysis of the genes

expressed during 2 time points of Drosophila embryogenesis

recorded by ISH imaging from BDGP [16]. In both time points,

we find that the GINI networks are modular and scale free, which

are properties predicted to hold true in gene interaction networks.

Further, different regions of the networks are enriched for spatial

annotations, thus GINI is able to cluster spatially similar genes.

The hubs of the networks, i.e., the genes with the largest number

of predicted interactions are functionally enriched for important

cellular functions. We demonstrate that the networks predicted by

analyzing microarray data does not have either spatial or

functional enrichment, thus these results could not have been

obtained by analyzing microarray data.

To the best of our knowledge, GINI represents one of the first

efforts to reverse engineering gene networks from ISH image data.

In both extensive simulation studies and empirical biological

analysis, we demonstrate the effectiveness of GINI in predicting

networks, and show that the statistical assumptions behind GINI

are reasonable, and the biological analysis enabled by GINI merits

close examination and further exploration.

Methods

We begin by introducing the key algorithmic innovations

needed to compute the gene network from the ISH images,

assuming that each gene has a bag of images, with the images

processed to be represented by informative and canonical feature

vectors. This is followed by a discussion on the image processing

procedures needed to extract informative features from the

images.

Network inference from ‘‘one image per gene’’ ISH data
We first show how GINI estimates a gene network, when each

gene has only one image. The next subsection extends the GINI

algorithm to deal with multiple images per gene.

Let G denote the set of n genes being studied, so that gi is the ith

gene, where i[f1, � � � ,ng, and d is the number of features

extracted per image. Each feature represents the gene expression

in a spatial location of the embryo.

Note that algorithms that analyze microarray data typically

treat samples drawn from different time points as independent

samples [28], even though expressions of the same gene across

time is expected to be auto correlated. We similarly assume that

the different spatial features are independent of each other. The

spatial independence assumption has also been implicitly made by

[29,30] while modeling transcription networks in Drosophila

embryos. In the results section, we use simulated data to

demonstrate that this assumption does not affect the accuracy of

the algorithm significantly.

By modeling the gene interactions as invariant across the spatial

locations in the embryo, we can assume that each feature is

independently and identically drawn (i.i.d.) from the same

distribution. Inferring gene interactions is then equivalent to

modeling the dependence between the expression values of

different genes at the same spatial location. Expression of the n
genes in each spatial location is assumed to be drawn from some

(multi-variate) distribution, independent of all other spatial

locations. Each spatial feature X (k) (k[f1, � � � ,dg) may be modeled

as a vector of length n, with X (k)(i) capturing the expression value

of the ith gene in this location k. This gives us d independent

samples with which the parameters of the underlying distribution

may be learned. Formally, let each spatial location be drawn

independently from a multi-variate Gaussian N (m,Sn|n), where m
is the mean vector, and Sn|n is the positive semi-definite

covariance matrix between the genes.

In a multivariate Gaussian distribution, the (i, j)th entry of the

inverse covariance matrix S{1 is zero if and only if the

corresponding genes are conditionally independent given the rest

of the graph. Thus, the non-zero entries of the inverse covariance

matrix correspond to edges in the corresponding Gaussian Markov

random field, giving rise to the gene interaction network. The

Gaussian Markov random field is also known as a Gaussian

graphical model (GGM) [31]. Since we expect a small number of

interactions per gene, the estimated graph must be sparse, i.e. the

number of non-zero entries of the inverse covariance matrix must

be small.

Thus, the gene interaction network may be estimated by

learning a Gaussian distribution from the observed images, such

that the inverse covariance matrix is sparse. The mean m of the

Gaussian is estimated by the observed sample mean,

m~
1

d

Xd

k~1

X (k) ð1Þ

Then, the inverse covariance matrix ŜS{1 can be estimated by

minimizing the negative log-likelihood of the data, over all possible

positive semi-definite matrices. To enforce sparsity, the L0 norm of

S{1, which counts the number of non-zero elements, is added to

the negative log likelihood. Since optimizing the L0 norm is non-

convex and NP hard, the L1 norm is used as a convex relaxation

to the L0 norm. The L1 norm of a matrix is the sum of the

absolute values of the elements of the matrix, and also enforces

sparsity in the solution. Adding the L1 norm regularization also

ensures that the minimizer of the objective function exists, and is

well defined. Thus, our objective function is

ŜS{1~ arg min
H§0

trace SHð Þ{log detHzl Hk k1

� �
ð2Þ

where S is the second moment matrix about the mean

S~
1

d

Xd

k~1

(X (k){m)(X (k){m)T ð3Þ

l is a tuning parameter, by which we determine the strength of the

penalty. As we increase the value of l, we increase the penalty on

the absolute values of H, and hence, the graph induced by ŜS{1

becomes more sparse. The edges in the graphical model are then

estimated as

E~ (i,j) D ŜS{1(i,j)=0; i=j
� �

ð4Þ

Optimization. The objective function defined in Equation 2

is convex, hence it can be solved by any convex optimization

algorithm. Banerjee et. al. [32] formulated an O(n4) block

coordinate descent method to solve it, where n is the number of

dimensions. Friedman et. al. [33] formulated each step of the block

GINI: From ISH Images to Gene Interaction Networks
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coordinate descent as a Lasso regression, and solved it in O(n3) -

they named their technique glasso. The glasso algorithm uses a

series of L1 penalized regressions, called Lasso regressions [34];

and we use the glasso algorithm for efficient optimization of our

objective function.

Note that Equation 2 is a function of data X only through the

sample covariance matrix S, hence, we can replace the sample

covariance matrix with a suitable similarity or kernel function.

This is the key idea behind GINI’s algorithm to deal with multiple

images per gene, which we discuss in the next section.

Network inference from ‘‘multiple images per gene’’
ISH data

Multiple images of the same gene at the same time point should

have the same gene expression pattern. However, in practice, the

expression patterns in different images may differ considerably, for

three main reasons.

Firstly, there is a wide interval of time considered as a single

time point while collecting such data. For instance, the BDGP data

divides embryonic development into 6 time stages. The last stage

13–16 corresponds to development of the embryo 9.3 to 15 hours

after fertilization, which represents more than a third of the time

taken for embryonic development. Hence, the true gene expres-

sion pattern may be dynamic within the time period of a single

development stage, and the gene expressions captured for the

same gene at the same time may not look similar to each other.

Secondly, we might expect that for any organism for which ISH

data is collected, there will necessarily be some ambiguity in how

the development stage of the organism is labeled by human

annotators. Finally, noise in the expression patterns due to

excessive staining, lighting conditions and similar other reasons

will also be observed. For all of the above reasons, any network-

learning algorithm should leverage the existence of multiple

images per gene per time point in improving its estimates of gene

similarity.

The problem of multiple images per gene is reminiscent of

multi-instance learning [35,36]. Multi-instance learning is a form

of supervised learning, where instead of labeling each instance, a

bag of instances is labeled. A popular solution to the multi-instance

problem is to define a multi-instance kernel, that can compute the

similarity between bags of instances. Let s(A) be a collection of

order statistics of the setA, for example, mean, median, minimum,

maximum etc. In d dimensions, s(A) is computed on each

dimension independently, to form a vector of order statistics. If we

use m order statistics, then the length of s(A) will be d m. The

similarity between gene gi with a set of images Bi and gene gj with

images Bj can then be computed as

K(Bi,Bj)~k(s(Bi),s(Bj)) ð5Þ

where k(a,b) is an appropriate kernel function between vectors a
and b. Such a kernel is called the statistic kernel.

The choice of the order statistics used in the kernel depends on

the data collection procedure of the ISH. One concern in ISH

data is that images may be overstained. In such a scenario, the

median may be an appropriate choice of order statistic. If over-

staining is not a concern, the maximum statistic may be more

appropriate to ensure that information about presence of gene

expression is not lost.

For the BDGP data, we use the covariance kernel

k(a,b)~Cov(a,b), and the mean statistic s(B)~ 1
DBD
P

b[B b. The

choice of using a single statistic to represent information from

multiple images was due to the presence of noisy images in the

data set. Thus,

K(Bi,Bj)~Cov
1

jBij
X
a[Bi

a,
1

jBj j
X
b[Bj

b

0
@

1
A

~
1

jBij
1

jBj j
X
a[Bi

X
b[Bj

Cov(a,b)

ð6Þ

Thus, our choice of kernel is equivalent to computing the mean

similarity of all pairs of images in bags Bi and Bj . This specific

kernel is also known as the normalized set kernel, and has been

shown to perform very well in multi-instance classification [37].

Any kernel function may be written as the dot product in some

higher dimensional feature space, i.e. K(a,b)~w(a)T w(b) [38].

Hence, if we assume that the data is drawn from a distribution

such that w(a) is a zero-mean Gaussian, we can learn the gene

interaction network by treating K as the sample covariance matrix.

Since estimating the inverse covariance matrix by solving equation

2 requires only the sample covariance matrix S and not the data

itself, we can kernelize it by using the kernel matrix K defined in

equation 6 as the required sample covariance matrix. Thus, the

objective function is

ŜS{1~ arg min
H§0

trace KHð Þ{log detHzl Hk k1

� �
, ð7Þ

which can be solved as discussed in the previous section.

Consistency of the estimate. Given samples X (1),X (2), � � � ,
X (n) drawn from a Gaussian distribution, it can be shown that the

objective function in Equation 2 leads to a consistent solution, with

a suitable choice of l [32]. That is, the estimator ŜS{1 converges in

probability to the true inverse covariance matrix S.

GINI however does not work with samples from a Gaussian

distribution, but directly with a multi-instance kernel K. By

definition, any kernel K can be represented as an inner product in

some feature space w, i.e. K(a,b)~w(a)T w(b). For the multi-

instance statistic kernel, w~s(B), that is, the feature space is

defined by the order statistics computed over bag B. Since the

order statistics for image data is bounded between 0 and 255, s(B)
is a bounded random variable. Hence the distribution of s(B) is

sub-Gaussian. For sub-Gaussian distributions, Ravikumar et. al.

[39] show that the penalized maximum likelihood estimator

defined in Equation 7 is sparsistent, i.e. as the amount of data

increases, the probability of identifying incorrect edges goes to

zero. Thus, the kernelized estimator defined by GINI is

sparsistent.

Thus, the GINI algorithm predicts the gene interaction network

in two steps: in the first step, the similarity between different genes

is computed using a multi-instance kernel. In the next step, a

sparse interaction network is learned from the similarity matrix

by solving Equation 7, and predicting edges corresponding to the

non-zeros of the non-diagonal entries of the estimated ŜS{1. The

next subsections describe the feature extraction, representation,

and normalization process used to obtain suitable features from

images that can be input into GINI.

Image processing
We convert the ISH images into canonical feature vectors

suitable for analysis by our algorithm described above in a three-

step manner. First, the precise expression pattern found in each

image is extracted and aligned spatially to make all images

GINI: From ISH Images to Gene Interaction Networks
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spatially comparable. Next, each image is represented by a feature

vector using Delaunay triangulation. Finally, features are normal-

ized and feature selection is performed to extract meaningful

features, that can be then used to compute the multi-set kernels to

obtain gene similarity and learn the gene network.

Feature extraction via SPEX2. ISH images are taken under

diverse lighting conditions, and may suffer from poor quality

staining/washing. A good feature extraction system must remove

these effects, controlling for position, orientation etc. of the

embryo and extract a precise gene expression pattern from the

ISH images. In previous work [15], we developed SPEX2, an

automatic system for embryonic ISH image feature extraction.

SPEX2 registers each Drosophila ISH image by first extracting the

embryo (foreground) from the image, using edge filters and image

analysis techniques. Next, the alignment, size, shape and

orientation of the embryo is determined, and normalized to a

standardized ellipse. SPEX2 also does automatic error detection

and correction, rejecting images where the gene expression

extraction process may have introduced errors, and also rejecting

partial embryos, multiple embryos physically touching each other,

and excessively dried or otherwise mishandled embryos. Next, the

expression stain is extracted from the standardized embryo using a

novel algorithm that maximizes the contrast between the stained

and unstained regions of the embryo. Finally, an image

segmentation algorithm using Markov random fields is defined

to extract only the regions that have gene expression. Thus, a

concise and high-fidelity gene expression pattern is extracted from

the ISH image.

Feature representation via Delaunay triangulation. While

SPEX2 makes the images of different genes alignable spatially, and

therefore directly comparable, the expression patterns must still be

converted into an appropriate feature representation. One com-

monly used method for feature representation is to use the SIFT

feature descriptor [40] in either a grid of points spaced uniformly

through the image, with principal component analysis (PCA) used

for dimensionality reduction [15], or via interest point detection and

codebook generation [24]. Such techniques work well for supervised

tasks like image annotation where a weight can be learned for each

direction computed by PCA or for each codeword in the generated

codebook. However, for unsupervised tasks, where weights cannot

be learned, we wish to extract features that explicitly take into

account the spatial distribution of the gene expression. A pixel level

feature representation on the other hand, allows us to capture spatial

information, but has high redundancy due to the correlation

between neighboring pixels.

To reduce redundancy while capturing spatial gene expression

information, we choose to overlay a fixed triangular mesh on top

of the standardized embryo. The gene expression pattern for each

image may then be represented as the median gene expression

present in each triangle in this mesh. A mesh of 311 equilateral

triangles was produced by using the Delaunay triangulation

algorithm [41], and aligning the mesh to the standardized embryo,

as described in [23]. Each image can then be represented as a

feature vector of length 311, with each feature representing the

median gene expression expressed in a specific location on the

embryo, which is fixed across all images. For example, triangle 1

may correspond to the head in all images, and so on. Modeling the

spatial locations in a lower dimensional space via triangulation

helps in approximating the independence assumption made in the

GINI algorithm, analogous to using coarse time definitions while

making microarray measurements.

Figure 3 shows examples of ISH images converted into the

triangulated gene expression patterns. As can be seen, triangulat-

ing the SPEX2 output captures the key features of the gene

expression location and strengths. Thus, triangulation enables

reducing the dimensionality of the feature space, while retaining

explicit spatial information about the gene expression, which other

dimensionality reduction techniques would not be able to capture.

Feature processing. The feature vectors extracted by

triangulating the expression patterns are not normalized, hence,

we need to adjust the signal obtained from different images to a

common scale. The set of triangulated features may also contain

uninformative features that may add a bias if used directly to

compute the multi-set kernel. Further, the gene network analysis

should only consider genes with informative expression patterns

that have non-trivial spatial expression in the data. Hence, we

need to further process the features to select informative features

and genes, and normalize the features in an appropriate manner.

Feature normalization. Unlike in microarray data, the

currently available ISH data does not measure the signal related

to nonspecific binding of the probe for each image, hence the

background correction of intensities cannot be image specific.

Each gene expression pattern is normalized to have its expression

values(t) lie between 0 and 255 (the minimum and maximum color

value). The feature value is then computed as the logarithm of the

expression value : log(1zt).
Feature & gene selection. A large percentage of the ISH

images have no stain, or ubiquitous staining. In the BDGP data,

55% of the genes have at least one image, in at least one time

point, with no stain. Since no information may be inferred from

such data, these images must be removed from analysis. This can

be achieved by removing expression patterns having variance

below a threshold (E, usually 0.1).

Additionally, features that have low variance in the data set are

capturing no information about the gene expression variation

across multiple genes. Hence, they must be removed from the

analysis as well. Since removing images from the analysis affects

the feature variance and vice-versa, we alternate removing features

Figure 3. Triangulation. Examples of how ISH images are converted into low-dimensional triangulated representations, for efficient feature
representation.
doi:10.1371/journal.pcbi.1003227.g003
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and images with low variance, until both feature variance and

image variance is greater than the threshold. This is described

formally in Algorithm 1.

Summary of the GINI system
Putting everything together, we conclude the method section

with a summary of the GINI system for network inference from

ISH images. Each ISH image is converted into a standardized

expression pattern using SPEX2, and then triangulated to extract

a low-dimensional spatial feature vector. Next, feature values are

normalized, uninformative features are removed, and genes with

insufficient information available are rejected. Finally, the multi-

set kernel is used to compute the similarity between the bags of

image vectors available for each gene, and the gene network is

estimated using Equation 7. The algorithm is summarized in

Algorithm 2.
Computational complexity. We assume that the number of

images per gene is small and bounded by a constant, and hence

the total number of images is O(n), where n is the number of

genes. Then, given the triangulated features of all images, feature

and gene selection takes time O(nd2) and O(n2d) to compute

the correlation matrix in feature and gene space respectively.

Computing the kernel requires O(n2d) time, and finally, the

computational complexity of minimizing the log-det divergence

is known to be O(n3). The overall computational complexity is

then O(n3znd2zn2d). Assuming dvvn, the complexity may be

assumed to be O(n3). The implementation is efficient, and

computes a gene network for *2000 genes in a few minutes on

an Intel Core-2 CPU with 2 GB memory.

Results

We first demonstrate that the independence and Gaussian

assumptions are reasonable for ISH data, and that GINI explains

the ISH data well, with small fitting errors, and no bias in the

residues. Next, we show the performance on a small subset of 12

images for 6 genes to verify that the network predicted by GINI

is reasonable. We then run GINI on two datasets of ISH images

from 2 time points in the BDGP data, and study the networks.

We find the networks are modular and scale free as expected.

Furthermore, different regions of the networks are enriched for

spatial annotations, and the hubs of the networks are functionally

enriched for important cellular functions. Finally, we demonstrate

that these results could not have been obtained by analyzing

microarray data.

Validation of the GINI assumptions: Independent
spatial data

GINI assumes that the gene expression in each triangle can be

assumed to be independently drawn from a multi-variate

Gaussian. However, the true gene expression in adjacent spatial

locations is correlated and not independent. To verify that this

dependence of adjacent samples does not affect the accuracy of the

estimated network, we simulate synthetic data where the

underlying network is known, but the data points are not

independent of each other, and test whether GINI can recover

the correct network in such a scenario. The data samples depend

on each other via a parameter c that captures degree of

dependence between data samples. When c~0, all data samples

are drawn i.i.d. from the known distribution. As c increases, data

samples are drawn from the same distribution, but they depend on

the adjacent samples.

Data generation. For p~50 dimensions, the true inverse

covariance matrix was constructed by using the AR(1) model from

[42]. That is, S{1
i,i ~1, and S{1

i,iz1~0:5, with all other elements

being zero. Dependent samples are generated from a zero mean

Gaussian having the above known inverse covariance matrix, as

explained below.

Let c[½0,1) be the fractional overlap between adjacent samples.

The first sample is sampled independently from the above

specified Gaussian. The (iz1)th sample is generated from the ith

sample as follows. Pick c � p random features f , and copy the value

Algorithm 1. Algorithm Outlining Feature
Normalization and Processing.

Input: triangulated features for n images : ti , where
i[f1,:::ng;

variance threshold E
Output: normalized and processed features in matrix X
for image i~1 � � � n do

X(i,.)~log(1z255 � ti{min(ti)
max(ti){min(ti)

);

end
while min(var(X))vE DD min(var(X0))vEð Þ do

keepImages~find(var(X’)wE);
X~X(keepImages,.);
keepFeatures~find(var(X)wE);
X~X(.,keepFeatures);

end

var(A) for matrix A returns a vector containing the
variance of each column of A; find(y) returns the indices
of the non-zero elements of vector y, and A’ is the
transpose of matrix A.

Algorithm 2. The Final GINI Algorithm to
Obtain the Gene Network from ISH Images.

Input: Embryonic ISH images for n genes;
l - tuning parameter to control sparsity
Output: Predicted gene network for the n genes
for gene i~1 � � � n do

// feature extraction
Bi~fg;
for each image j of gene gi do

Extract expression patterns from image j using

SPEX2;
tj~triangulate expression pattern of image j;
// feature normalization

tj~log(1z255 � tj{min(tj )

max(tj ){min(tj )
);

bj~feature selection(tj);
Bi~Bi|fbjg;

end
// Bi is now the set of all normalized features of the
images of gene gi

end
// Define the multi-instance kernel
for gene i~1 � � � n do

for gene j~1 � � � n do

K(i,j)~Cov 1
DBi D

P
a[Bi

a, 1
DBj D

P
b[Bj

b
� �

end
end
// Run glasso using kernel K

S{1~glasso(K ,l);
Predicted edges in the network: E~non-zeros in the non-

diagonal elements of S{1;

GINI: From ISH Images to Gene Interaction Networks
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of the previous sample for these features : X (iz1, f )~X (i, f )~a.

Now, Xiz1 can be partitioned into the ‘‘known’’ f features and the

remaining q features which still need to be sampled, conditioned

on X (iz1, f )~a. If we partition S as

Sff Sfq

Sqf Sqq

� �

then Xq conditioned on Xf ~a can be shown to be Gaussian with

mean �mm and covariance �SS, which can be computed as below, and

X (iz1,q) can be sampled from it.

�mm~Sqf S
{1
ff a ð8Þ

�SS~Sqq{Sqf S
{1
ff Sfq ð9Þ

We ran two experiments. In the first, a fixed number of

samples(n~100) were used to learn the network. In the second, as

c increases, more samples (n~100
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p � cz1
p

) are available for

learning the network. In both experiments, for each c value, we

randomly sample data points X using the method outlined above,

estimate the ŜS{1 matrix, and compare it to the known S{1

matrix, to compute precision and recall. Results are averaged over

50 runs of the experiment.

Figure 4(a) shows that as c increases, the precision (fraction of

correct interactions among all inferred ones) and recall (fraction of

correct interaction among all true interactions) stay constant for

small values for c. Only when the amount of dependence increases

beyond half, do we see a small reduction in accuracy. Thus, we

can conclude that even if there is a large spatial dependence in

gene expression, the result is equivalent to a slight reduction in

performance. Futher, in Figure 4(b), we see that if we can increase

the number of data points as we increase c, the performance

remains the same as using i.i.d. data.

GINI explains the ISH data well
For a high-dimensional distribution, it is not feasible to test if the

data is truly Gaussian. However, a consequence of Gaussianity is

that for each gene, the gene expression can be expressed as a

weighted linear sum of the expression values of a few other genes,

which form the edges of the network. To test if this assumption

holds true in ISH data, for each gene, we fit a linear regression

between the gene and its neighbors found by GINI and look at the

absolute value of the error i.e. the mean absolute difference

between the predicted and the known gene expression. When the

maximum expression value is 1, for more than 90% of the genes

we looked at, the absolute error was less than 0.02; 99.5% of all

genes had absolute error less than 0.05, confirming that the GINI

generative model explains the ISH data.

We also confirm that the prediction error is not systematic with

respect to the spatial location. For each gene, we compute the

prediction error (residue) when the gene is predicted by regressing

it on its neighbors. For each spatial location, we plot the mean

residue at that location for all genes. As can be seen in Figure 5,

there is no systematic bias in the spatial positions that are hardest

to predict for any gene.

Figure 4. GINI assumptions are reasonable. Even if the data are not independent draws from the Gaussian, the network can still be learned with
high precision and recall. (a) For a fixed number of data points, as c increases beyond 0.5, the precision and recall reduces. (b) If we allow the number
of data points n to increase as c increases, the precision and accuracy of the method is not affected. The standard deviation at each point in both
results is approximately 0.09.
doi:10.1371/journal.pcbi.1003227.g004

Figure 5. GINI error analysis. Locations where gene expression cannot be predicted easily. Red color indicates that the true gene expression was
higher than predicted by the regression, while blue indicates that the true gene expression was lower than predicted by the regression. Note that
since the difference in the true and predicted gene expressions is very small, the mean residue values were multiplied by 10 to improve the contrast
of the image for visualization purposes. Thus, there is no systematic bias in the spatial locations where expression is hard to predict.
doi:10.1371/journal.pcbi.1003227.g005
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Network on limited data
Before running our algorithm on a large sized dataset, we

construct an artificial small data set to verify the results. We input

12 images, shown in Figure 6(a) from 6 genes to the GINI

algorithm (each gene has 1–3 images in the data set). With

l~0:46, 4 edges are predicted in the network, shown in

Figure 6(b). As can be seen, the three genes hunchback(hb), four-

jointed(fj), and Blimp-1, which are expressed in the dorsal, ventral

and procephalic ectoderm, are connected in a single cluster.

Similarly, the genes organic anion transporting polypeptide

74D(Oatp74D) and bicoid(bcd) are connected by an edge, since

both show expression in the foregut and the anterior endoderm.

Finally, the expression of sloppy paired-1(slp1) was considered to

be sufficiently different from the other genes, hence it is not

connected to any other gene in the network.

Thus, the gene interaction network found by GINI can be

verified to be reasonable for the above small data set.

Network on the whole BDGP data
We now turn our attention to the ISH images from the Berkeley

Drosophila Genome Project data set. We have obtained around

67400 ISH images of 3509 protein-coding genes from the BDGP

data released in September 2009, captured at key development

stages of embryonic development. Each image captures embryonic

gene expression of a single gene using RNA in-situ hybridization.

Each image was labeled manually with the age of the embryo,

categorized into six distinct embryonic stages : 1–3, 4–6, 7–8, 9–

10, 11–12, and 13–16. Genes are also annotated with ontology

terms from a controlled vocabulary of around 295 terms,

describing the unique embryonic structures in which gene

expression is observed during the various stages of embryonic

development. SPEX2 analyzes these image automatically, reject-

ing unsuitable images, to produce 51593 expression patterns of

3347 genes.

As proof of concept, we focus on images viewed from a lateral

perspective from two development stage ranges of this data : 9–10

and 13–16. For the stage 9–10, we have 2869 expression patterns

of 2609 genes, and for stage 13–16, we have 6350 expression

patterns of 3258 genes. We extracted features as described in the

methods section. For each development stage, we ran a separate

analysis.

Using a l value of 0.775 for stage 9–10, we ran GINI and

obtained a network having 258 genes, and 516 interactions (edges)

between them. For the development stage 13–16, we used

l~0:875, and obtained a network with 1202 genes and 3666

interactions between them. The l value was selected for each

network by running GINI for 21 l values between 0.5 and 1, and

picking a value such that the mean-degree for the network is

reasonable (approximately 2–3) - see Supplementary Figure S1 for

a plot that shows how the number of edges in the network

decreases as l increases.

Some of the interactions predicted by GINI have already been

reported in the literature. For example, in the network for stage

9–10, GINI predicts that DCP-1 (CG5370), an effector caspase

which is involved in apoptosis, will interact with the thread gene

(CG12284), a known inhibitor of apoptosis protein [43]. GINI

also predicts that Snf5- related 1(CG1064) interacts with echinoid

(CG12676), both of which are known to be involved in epidermis

development, muscle organ development, as well as imaginal disc-

derived wing vein morphogenesis. In the 13–16 development

network, GINI predicts that the capping protein beta gene (CG17158)

interacts with the Glycogen phosphorylase gene (CG7254), and Tpc1

(CG6608) interacts with CG2812, which has been previously

reported in [44].

The next five subsections do a detailed analysis of the 2

networks.

Scale free network
A network is said to be scale free if its degree distribution

asymptotically follows a power law. That is, the fraction of genes

P(k) that have at least k interactions with other genes is

P(k)~ck{c ð10Þ

where c is the scale free parameter, and c is the normalization

constant. It has been hypothesized that gene regulatory networks

are scale free [10]. We looked at the characteristic of our

interaction networks by plotting the number of interactions per

gene (Figure 7), and found that the networks found by GINI are

scale free. The c parameter obtained is 2.3 and 2.5 for the 9–10

and 13–16 networks respectively, which corresponds well to the

values observed for a large variety of power law graphs. The scale

free nature of the network was found to be independent of the l
tuning parameter of the algorithm.

Unlike the gene regulatory network obtained for Human-B cells

[10], we found that the scale-free nature of the gene network we

obtain has a good fit, without observing a deviation from the

expected at low connectivity values. However, this could be a side-

effect of the larger number of genes they analyzed.

Figure 6. Example network on small data. (a) 12 images input to the GINI system, and (b) network of genes learnt by it, with each gene
represented by one image.
doi:10.1371/journal.pcbi.1003227.g006
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The BDGP networks are modular
Using spectral clustering, we construct 12 regions or clusters

within each network, and visualize the five biggest clusters of each

of the networks in Figure 8. All 12 clusters in both networks are

very well separated. The ratio of within-cluster edges to total

number of edges is 70% and 87% for the 9–10 and 13–16

development stage networks respectively, indicating that the

estimated networks are highly modular. From a biological

perspective, different parts of gene networks may be responsible

for different pathways or biological functional components of the

cell, thus modularity is a good prediction for real interaction

networks.

Hub analysis
Given the scale-free nature of the network, a small number of

the genes have a large number of interactions. We analyze the

Gene Ontology functions of the genes having the largest number

of interactions, i.e. the hubs of the network. The question we wish

to address is: if we pick the top 5% of the genes having the

maximum connectivity with other genes, what kind of functional

enrichment do these genes have? Our background population is

of the 2609 and 3258 genes for which we have at least one ISH

image describing its expression for the 9–10 and 13–16 stages

respectively. We use the hypergeometric test, with Bonferroni

correction used to correct for multiple hypothesis tests [45]. As

can be seen in Table 1, we observe enrichment of a wide variety of

functions that are essential to cell growth and functioning,

including metabolic processes, cellular respiration, transport of

electrons and ions, protein modification, ribosome biogenesis etc.

Next, we examine a few high-degree hubs in the two networks

in detail, along with their neighborhood genes in the networks.

Figure 9 shows the hub neighborhood for two genes in the 9–10

development stage network. CG3969 is a Activated Cdc42 kinase-

like gene known to be involved in protein phosphorylation [46]

and cell death [47], and CG9984 (TH1) is known to be involved in

regulation of biosynthetic process [48] and nervous system

development [49]. Both genes interact with many genes having

functions related to the primary metabolic process, and single-

organism cellular process. In stage 13–16, we examine the hub

neighborhood of CG5904 and CG6501. The mitochondrial

ribosomal protein CG5904 has been previously predicted to be

a structural constituent of ribosome [50], and we find that it

interacts with many genes involved in the ribosome biogenesis.

Gene CG6501 (Ns2) has been previously predicted to be involved

in phagocytosis, engulfment [51], and ribosome biogenesis [46];

CG6501’s neighborhood has multiple genes that are also involved

in ribosome biogenesis and single-organism cellular process.

Enrichment of annotation terms
Each gene in the BDGP data has been labeled manually by

annotations describing the spatial gene expression, using 295

annotation terms. We expect that since the gene interaction

Figure 7. Scale-free network. Connectivity properties of the reconstructed network for time stage 9–10, and 13–16. The scale free nature of the
plot can be observed for both networks. The plot for stage 9–10 has fewer points since the network constructed has fewer nodes and edges.
doi:10.1371/journal.pcbi.1003227.g007

Figure 8. Modular network. A global view of the networks constructed by our algorithm for development stage 9–10, and 13–16, visualized for 5
of the 12 clusters in the network. The nodes of each cluster in the network are represented by different colors. Red edges are edges between nodes in
the same cluster, while green edges are edges between nodes in different clusters. Each cluster is represented by one or two spatial annotation terms
enriched in the cluster.
doi:10.1371/journal.pcbi.1003227.g008
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network is constructed via spatial similarity, genes that are

connected to each other in the network will have similar spatial

annotation terms.

To test this, we cluster the gene network using spectral

clustering [52] into 12 clusters, and analyze the enrichment of

each cluster for annotation terms using the hypergeometric test,

with Bonferroni correction used to correct for multiple hypothesis

tests. In the gene network for the 9–10 stage, 11 of the 12 clusters

are enriched for 63 total annotation terms (Figure 10). The only

cluster not showing any enrichment in the 9–10 stage network is

Table 1. GO functional analysis for the gene hubs of the GINI network.

Stage Gene Ontology term Hub frequency Genome frequency P-value

9–10 cellular macromolecule metabolic process 57 of 119 genes, 47.9% 652 of 2575 genes, 25.3% 1.79e-05

macromolecule metabolic process 62 of 119 genes, 52.1% 772 of 2575 genes, 30.0% 8.16e-05

cell cycle 24 of 119 genes, 20.2% 174 of 2575 genes, 6.8% 0.00029

primary metabolic process 67 of 119 genes, 56.3% 962 of 2575 genes, 37.4% 0.00559

cell cycle phase 18 of 119 genes, 15.1% 127 of 2575 genes, 4.9% 0.00667

cellular metabolic process 64 of 119 genes, 53.8% 910 of 2575 genes, 35.3% 0.00827

mitotic cell cycle 18 of 119 genes, 15.1% 131 of 2575 genes, 5.1% 0.01039

cell cycle process 19 of 119 genes, 16.0% 146 of 2575 genes, 5.7% 0.01313

cellular process 90 of 119 genes, 75.6% 1508 of 2575 genes, 58.6% 0.01798

macromolecule modification 20 of 119 genes, 16.8% 163 of 2575 genes, 6.3% 0.01888

protein modification process 19 of 119 genes, 16.0% 155 of 2575 genes, 6.0% 0.03111

nucleobase-containing compound metabolic process 39 of 119 genes, 32.8% 476 of 2575 genes, 18.5% 0.04665

13–16 energy derivation by oxidation of organic compounds 13 of 159 genes, 8.2% 47 of 3217 genes, 1.5% 0.00011

cellular respiration 12 of 159 genes, 7.5% 43 of 3217 genes, 1.3% 0.00031

generation of precursor metabolites and energy 14 of 159 genes, 8.8% 60 of 3217 genes, 1.9% 0.00039

electron transport chain 10 of 159 genes, 6.3% 32 of 3217 genes, 1.0% 0.00093

mitochondrial ATP synthesis coupled electron transport 9 of 159 genes, 5.7% 26 of 3217 genes, 0.8% 0.00121

ATP synthesis coupled electron transport 9 of 159 genes, 5.7% 27 of 3217 genes, 0.8% 0.00174

cellular process 116 of 159 genes, 73.0% 1808 of 3217 genes, 56.2% 0.00211

respiratory electron transport chain 9 of 159 genes, 5.7% 28 of 3217 genes, 0.9% 0.00246

oxidative phosphorylation 9 of 159 genes, 5.7% 29 of 3217 genes, 0.9% 0.00342

ribosome biogenesis 7 of 159 genes, 4.4% 20 of 3217 genes, 0.6% 0.01640

cellular metabolic process 78 of 159 genes, 49.1% 1091 of 3217 genes, 33.9% 0.01708

mitochondrial electron transport, NADH to ubiquinone 6 of 159 genes, 3.8% 15 of 3217 genes, 0.5% 0.02661

GO functional analysis for the gene hubs of the networks learned for the two development stages by GINI. Both networks have hubs that are enriched for multiple
important cellular functions.
doi:10.1371/journal.pcbi.1003227.t001

Figure 9. Hubs of the GINI network. A look into the neighborhoods of a few hubs from the GINI networks for stage 9–10 and 13–16. A few
enriched GO groups are highlighted in the subnetworks as shown.
doi:10.1371/journal.pcbi.1003227.g009
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also the smallest cluster, having only 4 genes. For example, in

cluster 8, 92% of the genes have expression in the ventral nerve

cord primordium P3 , while only 8% of the genes in the data have

expression in this region. Similarly, 73% of the genes in cluster 11

have expression in the trunk mesoderm primordium, while only

16% of the genes in the data have expression in this region. For

the 13–16 stage network, all 12 clusters are enriched for a total

of 81 enrichments, a part of which is visualized in Figure 10.

Tables S1 and S2 in the supplementary material report the

complete enrichment analysis.

Triangulation improves quality of result. Previous work

on image processing for ISH images has focused on using

SIFT features, and constructing a codebook that contain all the

embryonic structures that the system is expected to annotate [24].

In this section, we show that triangulation produces more

interesting networks over such a SIFT feature representation.

We use the SPEX2 gene expression patterns, and represent them

by constructing SIFT features of the expression pattern over a

grid. These grid SIFT features are then represented with a

codebook of 2000 dictionary features, as described in [24].

We then use these dictionary features instead of the triangulated

features to learn the GINI network. Figure 11 shows that the

resulting networks are not as richly enriched as the ones derived

from the triangulation features in Figure 10. The total number

Figure 10. Spatial annotations. Enrichment analysis for clusters in the gene interaction networks found by GINI. A green dot indicates enrichment
with a P-valuev0:05.
doi:10.1371/journal.pcbi.1003227.g010

Figure 11. Enrichment analysis on networks learned from SIFT dictionary features instead of triangulation features. The network for
development stage 9–10 has only 7 enriched clusters of the 12 clusters in the network. For the stage 13–16 network, only 3 of the 12 clusters are
enriched for spatial annotations.
doi:10.1371/journal.pcbi.1003227.g011

Figure 12. SIFT codebook features do not perform as well as triangulated features on ISH data. Percentage of clusters enriched for
spatial annotations in networks predicted by GINI as a function of number of clusters for data from development stage 9–10 and 13–16. As can be
seen, using triangulated features produces networks with more enriched clusters than using SIFT-codeword features, independent of the number of
clusters selected for the analysis. Further, the enrichment of the GINI network clusters does not significantly vary as the number of clusters are varied.
doi:10.1371/journal.pcbi.1003227.g012
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of enrichments in the SIFT codebook network is 42 and 21 for the

9–10 and 13–16 development stage networks respectively. In

contrast, the triangulated GINI networks had 63 and 81

enrichments for the 9–10 and 13–16 stage networks. Figure 12

shows that this result is independent of the number of clusters

selected for the analysis, for both triangulated networks as well as

SIFT codebook networks.

Sensitivity to the tuning parameter l. Supplementary

Figure S1 shows how the number of edges in the network

decreases as the tuning parameter(l) of the GINI algorithm

increases. To confirm that the enrichment results are not sensitive

to the choice of l, we obtained 21 predicted networks by varying

the l value uniformly from 0.5 to 1. For each network, we

repeated the clustering and enrichment analysis, and found that

the enrichment for term annotations is not highly sensitive to

choice of l ( Figure 13). The enrichment results are also not

dependent on the number of clusters - we get high enrichment,

independent of the number of clusters chosen while running the

clustering algorithm (Figure 12).

Comparison with microarray network
We learn a network from microarray data collected by the BDGP

project over 12 time points in embryonic development [16], over

the same genes that are being studied in the 9–10 and 13–16

networks, using covariance between the microarray expression as

the kernel. We find that the overlap in edges between the 2 networks

is very small, only 1% of the edges are common to both networks. If

we assume that spatial expression annotations are a proxy for

functional enrichment, then we can check if the microarray network

is enriched for the spatial annotation terms. Figure 14 shows that the

percentage of enriched clusters in the microarray network is small,

independent of the number of clusters analyzed.

We can also test functional GO enrichment of the hubs of the

network. Table 2 shows that the hubs of the microarray network

for stage 13–16 are enriched for only a single function, where 4 of

the 145 hub genes are involved in the ‘‘aromatic compound

catabolic process’’, while the microarray data network for stage 9–

10 has no enrichments.

Thus, we find that the network learned from ISH images is

clearly different from a network learned from microarray data.

The ISH image network is enriched for spatial annotation terms,

as well as functional enrichment of the hubs of the network, which

does not hold true for the microarray network. This suggests that

analyzing ISH images could support different scientific conclu-

sions, which should be studied in greater detail.

Discussion

GINI predicts gene interaction networks by analyzing Drosophila

embryo ISH images. While the experiments above have been

reported on the ISH data from BDGP, the GINI algorithm can be

applied to all image data, by suitably modifying only the image

processing SPEX2 pipeline. Using synthetic and image data, we

establish that GINI fits the ISH data well, with low error residues,

and that it can learn the true network correctly even if the data is not

completely i.i.d. The analysis of the BDGP data shows that the hubs

of the predicted gene interaction network are enriched for essential

cellular functions, and that different regions of the interaction

network are enriched for different combinations of annotation

terms describing the gene expression. Thus, the predicted gene

interaction network is capturing essential spatial and functional

information about the expression pattern of the genes. We found

that the gene interaction network learned from ISH images differs

significantly from a network learned from microarray data.

Figure 13. l tuning. Percentage of clusters enriched for spatial annotations in networks predicted by GINI as a function of tuning parameter l for
data from development stage 9–10 and 13–16. As we increase l, the number of edges predicted in the network decrease, however, the enrichment
of the different clusters stays almost constant. Thus, qualitative analysis of the network does not seem to be sensitive to choice of l.
doi:10.1371/journal.pcbi.1003227.g013

Figure 14. Microarray v/s ISH data. The percentage of clusters that are enriched for spatial term annotations using networks learned from ISH
and microarray data.
doi:10.1371/journal.pcbi.1003227.g014
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The current work focuses on extracting gene networks from

spatial data. The next step is combining information from multiple

time stages to improve predictions, thus learning spatial-temporal

gene networks. The problem of time-varying networks has

been studied extensively for microarray data, by using different

statistical penalties to estimate the network. For example, Ahmed

et. al. [22] construct time varying networks by using a temporally

smoothed L1-regularized logistic regression formulation, while

Danaher et. al. [53] propose a fused lasso and group lasso based

approach to combine information across time. Extensions of such

algorithms for image data require stronger assumptions on data

quality, such as having the same number of genes and image

quality across time. Further, certain development stages may be

less informative than others; for example, very few genes are active

at development stage 1–3, and expression data from this stage

is not as informative as expression data from development stage

13–16, when the embryo is much more mature. Developing

algorithms that can account for such variations in data quality,

while combining information across time, remains an interesting

future direction to explore.

Supporting Information

Dataset S1 Networks predicted by GINI for the 9–10
and 13–16 development stages. For the data at each stage,

multiple networks were predicted by varying the tuning parameter

l, between 0.5 and 1, as described in the paper. The network for

each l value is stored in a separate file in the dataset, in a format

readable by Cytoscape.

(BZ2)

Figure S1 Number of predicted edges versus l. Number

of edges predicted by GINI as a function of tuning parameter l for

data from development stage 9–10 and 13–16. As l decreases, the

number of edges selected in the network increase.

(TIFF)

Table S1 Enrichment analysis for network for develop-
ment stage 9–10. For each of the 12 clusters in the GINI

network for stage 9–10, the spatial annotation terms for which

each cluster is enriched is shown. 11 of the 12 clusters are enriched

for at least one spatial annotation.

(PDF)

Table S2 Enrichment analysis for network for develop-
ment stage 13–16. For each of the 12 clusters in the GINI

network for stage 13–16, the spatial annotation terms for which

each cluster is enriched is shown.

(PDF)
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