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1 Discussion of Conditions for Observable Representation

The observable representation exists only if there exist transformations F; = P[;|S;] with rank 7, :=
kn x |S;| and P[@_;|S;] also has rank 7; (so that P(&;, 0;—) has rank 7;). Thus, it is required that
#states(0;) > Fstates(S;). This can either be achieved by either making &; consist of a few high di-
mensional observations, or many smaller dimensional ones. In the case when #states(&;) > #states(S;),
we need to project F; to a lower dimensional space such that it can be inverted using a tensor U;.
In this case, we define F; := P[0;|S;] x¢, U;]. Following this through the computation gives us that
’IB(CZ) =P(0,0,-) xe,_ (P(O,0,— xg,U;)" . A good choice of U; can be obtained by performing a sin-
gular value decomposition of the matricized version of P(&;, &;_) (variables in &; are arranged to rows and
those in &;_ to columns).

For HMMs and latent trees, this rank condition can be expressed simply as requiring the conditional
probability tables of the underlying model to not be rank-deficient. However, junction trees encode sig-
nificantly more complex latent structures that introduce more subtle considerations. While we consider a
general characterization of such models where the observable representation to be future work, here try to
give some intuition on what types of latent structures the rank condition may fail.

First, the rank condition can fail is if there are not enough observed nodes/states, and thus #states(&;) <
7;. Intuitively, this corresponds to a model where the latent space is too expressive and inherently represents
an intractable model (e.g. a set of n binary variables connected by a hidden node with 2™ states is equivalent
to a clique of size n).

However, there are more subtle considerations unique to non-tree models. In general, our method is not
limited to non-triangulated graphs (see the factorial HMM in Figure 3 of the main paper), but the process of
triangulation can introduce artificial dependencies that can lead to complications. Consider Figure 1(a) which
shows a DAG and its corresponding junction tree. To construct P(Cap), we may set P[0, 0_;] = P[D, F]
based on the junction tree topology. However, in the original model before triangulation, D | F because
of the v-structure. As a result, P[D, F'] does not have rank k; and thus cannot be inverted. However, note
that choosing P[&;, _;] = P[D, E] is valid.

Finally consider Figure 1 (b), ignoring the orange nodes for now and assuming the variables are binary.
In this model, the hidden variables are largely redundant since integrating out A and B would simply give
a chain. F,, must be set to P[F|S,,] = P[F|AB]. If we think of A, B has just one large variable, then it is
clear that P[F'|AB] = P[F|D]P[D|AB]. However, D only has two states while AB has 4, so P[F|AB] only has
rank 2. Now, consider adding the orange node. In this case we could set F,, to P[F,G|S,,] = P[F,G|A, B|
whose matricized version has rank 4. Note that once the orange node has been added, integrating out A
and B no longer produces a simple chain, but a more complicated structure.

Thus, we believe that more rigorously characterizing the existence of the observable representation in
more detail, may shed light on the “intrinsic” complexity /redundancy of latent variable models in the context
of linear and tensor algebra.

2 Linear Systems to Improve Stability

As derived in Section 6 in the main paper, for non-root and non-leaf nodes:

P(C;) %6, P(O;,0,_) = P(O},, 0, 0;) (1)



Figure 1: Models and their corresponding junction trees, where constructing the observable representation
poses complications. See Section 1.

which then implies that

P(Ci) =P(0y,,04,,05_) X0, P(0:,0;_)7" (2)
However, there may be many choices of ¢;_ (which we denote with ﬁi(i), ey ﬁi(iv)) for which the above
equality is true:
P(C) %0, P01, 0) = P(0,,0,,0)
P(C) %0, P(01,02) = P(0,,0,,0)
P(Ci) 0, B(0,02)) = B0, 0,,0))

This defines an over-constrained linear system, and we can solve for ’IB(CZ) using least squares. In the case
where #states(O;) > #states(S;), and the projection tensor U; is needed, our system of equations becomes:

73(02) X0, (P(ﬁ“ ﬁz(i)> X0, ul) = P(ﬁin Oy, ﬁz(i)) X0, Ui, X0, Ui,
P(C) xo, (B(6:1,0) xo,Us) = P(0:,.0:,07) %0, Ui, 0, Us,

P(Ci) %o, P01, 0) 5o, Uhy) = P(0,,0,,0) x 0, Us, %0, Us,

In this case, one good choice of U; is the top singular vectors of the matrix formed by the horizontal
concatenation of P(&;, ﬁ-(l)), ., P(0;, ﬁﬁv)).

i
This linear system method allows for more robust estimation especially in smaller sample sizes (at the
cost of more computation). It can be applied to the leaf case as well. One does not need to set up the linear

system with all the valid choices; a subset is also acceptable.

3 Sample Complexity Theorem

We prove the sample complexity theorem.

3.1 Notation

For simplicity, the main text describes the algorithm in the context of a binary tree. However, in the sample
complexity proof, we adopt a more general notation. Let C; be a clique, and Cy, (1),---,Cq, (+,) denote its ;
children. Let C denote the set of all the cliques in the junction tree, and |C| denote its size. Define dyax
to be maximum degree of a tensor in the observable representation and e;,q; to be maximum number of



observed variables in any tensor. Furthermore, let 7; = |k | x |S;| (i.e. the number of states associated with
the separator).
We can now write the transformed representation for junction trees with more than 3 neighbors as:

Root:
P(C;) = P(Cy) x5
Internal nodes:
P(C3) = P(Cy) x5, FL X501y Fas(t) X - X80 1) Fastn)
Leaf:
P(Ci) = P(Ci) xs, F|

-7:0471(1) X ... Xg ]:041‘,(71‘)

a; (1) i (vi)

and the observable representation as:
root: P(CZ) = P(ﬁai(l)v ceey ﬁai(%)) Xﬁai(l) uai(l) X ... X@ai(’yi) L{ai(%)

internal: ’P(Cl) = P(ﬁai(l)7 ceay ﬁai(%), ﬁ_l) Xo_, (P(ﬁl, ﬁ_z) X @, Ltl)T Xﬁai(l) Llai(l) X Xﬁ%‘(’%ﬂ L{ai(%)
leaf: P(C;) = P(R;, 0_;) xo_, (B(O;, 0_;) x o, U;)T

Sometimes when the multiplication indices are clear, we will omit it to make things simpler.

Rearranged version:
We will often find it convenient to rearrange the tensors into lower order tensors for the purpose of taking
some norms (such as the spectral norm). We define R(-) as the “rearranging” operation. For example,
R(I@(@, 0_;)) is the matricized version of @(@-, O_;) with 0; being mapped to the rows and &_; being
mapped to the columns.
More generally, if P(C;) (which has order d;) then R(P(C;)) is a rearrangement of of P(C;) such that it has
order equal to the number of neighbors of C;. The set of modes of P(C;) corresponding to a single separator
of C; get mapped to a single mode in R(P(C;)). We let R(S,,(;)) denote the mode that S, ;) maps to in
R(P(Ci)).

In the case of the root, R(P(C;)) rearranges P(C;) into a tensor of order «;. For other clique nodes,
R(P(C;)) rearranges P(C;) into a tensor of order 7; + 1.

Example: In Figure 2 of the main text P(Cpcpr) = P(@2B,D| @2 C, E). Cpcpr has 3 neighbors and so
R(P(Cpcpr)) is of order 3 where each of the modes correspond to {B,C}, {B, D}, {C, E} respectively.

This rearrangement can be applied to the other quantities. For example, R(P(ﬁai(l), s Oai(y))) 18 a

rearranging of P(0y, 1), ..., Oa,(+,)) into a tensor of order v; where the 0y, (1),..., 04, (+,) correspond to
one mode each. R(@(@, 0_;)) is the matricized version of @(ﬁi, O_;) with €; being mapped to the rows
and O_; being mapped to the columns. Similarly, R(F;) is the matricized version of F; and R(l;) is the
matricized version of U;.
Thus, we can define the rearranged quantities:

Root:

R(P(Ci)) = R(P(Ci)) X R(s,,0y) B(Fai(1)) X -+ XR(Sa.5,)) B(F as(m))

R(P(Cy)) = R(P(Cy)) xR(s,) R(F) xR(s,. ) Faut) X - XR(s,. ) BRIF)

Leaf:

R(P(Cy)) = R(P(C:)) X s,y R(F))



and the observable representation as:
root: R(P(C;)) = R(P(Ou, (1), -+ Oi())) XR(Sa, ) BUai(1)) X - XR(5,,,,)) BUai(4))
internal: R(P(C;)) = R(P(Os, ), Ou,(y) O-i)) Xr(s_,) R(P(0:, 0_;) x5, U;)") (3)
X R(Sa, (1)) RUq, 1)) X - XR(Sa, () RUq,(,))
leaf: R(P(C;)) = R(P(R;, 0_,)) X r(o_) RI(P(G;, 6_;) x 6, U)T)
Furthermore define the following:
o = ming,ec o, (P[O;, 0_;)) (4)
B = ming,ec o, (F;) (5)

The proof is based on the technique of HKZ [2] but has differences due to the junction tree topology and
higher order tensors.

3.2 Tensor Norms

We briefly define several tensor norms that are a generalization of matrix norms. For more information
about matrix norms see [1].
Frobenius Norm: Just like for matrices, the frobenius norm of a tensor of order N is defined as:

IT|r= | Y T, rin)’ (6)

i1, IN

Elementwise One Norm: Similarly, the elementwise one norm of a tensor of order IV is defined as:

11,0 0iN
Spectral Norm: For tensors of order N the spectral norm [3] can be defined as as

T, = sup T XN UN, ..., XoU2 X1 U1 (8)
v s.t. |0 ]|, <1VI<iKN

In our case, we will find it more convenient to use the rearranged spectral norm, which we define as:

T2 = [IR(T)]]] 9)

where R(-) was defined in the previous section.
Induced One Norm: For matrices the induced one norm is defined as the max column sum of the
matrix: |[|[M]|[|; = supy, ¢ o), <1 [|[Mv][1. We can generalize this to be the max slice sum of a tensor on a

tensor where some modes are fixed and others are summed over. Let o denote the modes that will be maxed
over. Then:

H|T|||? = sup HT XO’l vla"'axc‘a‘vkﬂlll (10)
v s.t. [|lv;|[1 <1, V1<i<|o|

In the Appendix, we prove several lemmas regarding these tensor norms.

3.3 Concentration Bounds

E(ﬁl, ceeey ﬁd)

H]}“»(ﬁl,....ﬁd) —P(ﬁh....,ﬁd)HF (11)

e(ﬁl, ceeey ﬁd—ea Od—e+1y s Od) = H@(ﬁl, ceeey ﬁd—a Od—e+41y -+ Od) - ]P)(ﬁl, varey ﬁd—ea Od—e+1y s Od)Hg2)

1,...,d — e denote the d — e non-evidence variables while d — e 4 1, ..., d denote the e evidence variables. d
indicates the total number of modes of the tensor. As the number of samples N gets large, we expect these
quantities to be small.



Lemma 1 (variant of HKZ [2] ) If the algorithm independently samples N of the observations, then with

probability at least 1 — 9.
/1 2|C| /1
6(@17....7ﬁd) ~ NlnT—i— N (13)

kgmax 2|(C| kgmax
O1y.cc; Og—c,04—ci1, - < 1
26(1,7d Od—c+1; -5 0d) N 5T N
Od—e+1;---,0d

A

(14)

for all tuples (04, ...., O4) that are used in the spectral algorithm.

The proof is the same as that of HKZ [2] except the union bound is taken over 2|C| instead of 3 (since each
transformed quantity in the spectral algorithm is composed of at most two such terms). The last bound can
be made tighter, identical to HKZ, but for simplicity we do not pursue that approach here.

3.4 Singular Value Bounds

Basically this is the generalized version of Lemma 9 in HKZ [2], which is stated below for completeness:

Lemma 2 (variant of HKZ [2] ) Suppose €(0;,0_;) < e x 0., (P(0;,0_;)) for some e < 1/2.
Let eg = €(0;, 0_9)%) (1 — €)or, (P(T;, 6_;))?. Then:

1. gg <1

2. 0, (B(6,,0_3) xo,Ui) > (1 - 20)0-, (B(6,,0_y))
3. 0, (P(0i,0_3) x o, Us) > T =90, (P(6;,0_;))
4. 05, (B(01]S:) x 0, Us) = /T = €90y, (P(0]S:)))

Tt follows that if €(0;, 0_;) < 0., (P(0;, 0_;))/3 then this implies that g9 < % = 1. It then follows that,

L. O-Ti(@(ﬁ’hﬁ—i) X o, al) > %OH(P(@, 0_;))

Lo, (P(0;,0-,))

2. 0., (P(Cr, 6_) X, Us) > %

Y

3. 0r,(B(01]S;) x 0, U;) > Lo, (P(G4]S)))

3.5 Bounding the Transformed Quantities
Define,

1. root: 75(6'1) = P(ﬁai(l)» e ﬁai(%)) X041 aai(l) e X Oy l//\lai(%)
2. leaf: P,,(C;) = P(R; = 14, 0_;) o, (Py(G;,0-))1

3. internal: P(C;) =P(Os, .-\ Oaiiy), O=i) X0, P01, 0-)) %o, Ua,1y % %o, Uayrn)

(which are the observable quantities with the true probabilities, but empirical a’s). Similarly, we can define
F, = P[0;|Si] x ¢, U;. We have also abbreviated P(&;, 0_;) x g, U; with Py (03, 0_;).
We seek to bound the following three quantities:

~ 9 v —1 v —1
6;«007& = H(P(OZ) — ,P(Cl)) Xﬁai(l) fozi(l)7 ey Xﬁai('yi)f z‘(%)Hl (15)
) ~ o o L -1 o -1 Si
ginternal _ H’(P(Ci) —P(C)) X0y Fi Xy Fr seons X0n o Frion) ’ 1 (16)
& = D NP (Ci) = Pr(Ch) %o, Fill (17)



Lemma 3 If e(0;,0_;) < 0., (P(0;,0_;))/3 then

Qdma" kimaxe(ﬁai(l)’ N ﬁai(%))

root

0; < 347254 (18)
ginternal < 2hmaxtiimas [ €(O,1), - - - Oay () 0=3) _ e(01,0-4) (19)
Z a 3v3%3d or, (P(0;,0-;)) o, (P(6;,0_)))°

gleaf < 8 e(0;,0_;) >, €(Ry =i, ﬁ_,) o0

LT3 \onea0)  on(Py @020

We define N = max(87°°t, ginternal ¢lealy  ioper gl ).

Proof

Case 6/ :
For the 7’00t, P(CZ) = P(ﬁai(l)v-“vﬁai(%)) X0, uai(l) X ... X0

o~ BN

P(ﬁai(1)7 ey ﬁai(,ﬁ)) Xoai(l) uai(l) X oo, XOW. ual(%)

i(vi)

>4 i (7)) aai('Yi) and similarly 75(@) —

oot = H(Ip(ﬁai(l)’ T ﬁai(%‘)) ><Oai(l) uo‘i(l) X XO%(% uo"("“
~ ~ v —1 v —1
“P(Oa,1)s -5 Oai(3) X0y Uai(1) X -+ X044, ”ai(m) XOu, 1y Fai(1)s s X000y F s <1>H
< N (B(Oasr)s - s Oastr) = P(Oai1)s -5 Oai(30)) X0y Y1) X -+ X0, ) Us(on) .
v —1 v
F m H F, *1H’
x’ ai(M{op ) 2R
Jofhma ~ ? 7
= : & H (]P)(ﬁozb(lﬁ . '70()@(’)'1)) _P(ﬁai(l)a ceey ﬁal(’yb))) Xou.( ) uai(l) X XOQ,(.Y, u
It om0 (Faui) v o
s _
[|BGays- s Ousir) = B(Gascars- - Gacu)|| |, *

||J%:1 UTaim(j ai(j))
m ‘Dlyp 1||lyp i(n)

lor
Amax
kh

H;Y;l OTa, () ('7:%:(]'))

Between the first and second line we use Lemma 8 to convert from elementwise one norm to spectral norm,
and Lemma 6 (submultiplicativity). Lemma 6 (submultiplicativity) is applied again to get to the second-to-last

line. We also use the fact that ’Haa?(l)m o 1.
2
Thus, by Lemma 2

€(Oa;(1)s s Ocy(1))

2dmam kimaz €(ﬁai(1)’ ey ﬁal(’ﬁ))

6root <
g - 3d1naz/2/8d7nam

Case deaf:
We note that Py, (C;) = P(R; =1;,0_;) xo_, (Pg(0;, 6-;))' and similarly P (C)) =P(R; =74, 0_3) X6,
(P (i, O-i)T.

Again, we use Lemma 8 to convert from the one norm to the spectral norm, and Lemma 6 for submulti-

ai(v:)

L.



plicativity.

gl = Zi\\(ﬁ(ci)—ﬁn(ci))xﬁ,iia-

I\IP[@’IS]IIM

H HMH
2R 2R

[P (Co) = Prico))]||, (22)

IA
:M 3
o
sa
1]

E

IN
(]

=
ISl

g

o

"

=1

Note that ||[P[6;]Si]]||3* = 1, .

- H‘]IAD(Ri =10, 0_) %o, B(01, 0 ) —P(Ri =14, 0_3) x0_, (Py (0, ﬁ_i))fmm

e

< H‘]PR-zm,ﬁ_i)xﬁ.(@a(@,ﬁ_i)f— (@,ﬁ_l))H +
]H Ri=ri,0_) —P(Ri = 1;,0,)) xo_, P (6;,0_)t
< PR =13 0-)lllog ||| Bg (01, 0-)T = P01, 0-)1)
1B (0o 0!Il ||| BCR: = i ) ~ BBy = 7. 0-0) HzR
- P(Ri:mH\/ﬁ e(O;,0_)

2 min(o,, (By(0:,04)), 00, (P (0, 6-)))
€(Rz‘ =Ty, ﬁﬂ‘)
or, (Py (05, 0_4))

The last line follows from Eq. 35. We have also used the fact that
[|[P(R; =73, O—i)||lag < [P(Ri = ri, O—;)||r < P[R; =] by Lemma 7. Thus, using Lemma 2,

ea V5 (0, 0_;) (R =i, 0_;)
ool < N7 e (IP Ry =)t — - ) 23
Z " ( R min(an(IP’a(@,ﬁ_i)),an(Pa(ﬁi,ﬁ_i))f o7, (Pg(0i, 0-,)) 23)

gleaf

i

IN

de 1+\[16P( —Ti)E(ﬁi,ﬁ_i) QE(RZ :Tivﬁ—i)
907, (Py(0i, 0—-;))? V30, (Py(0;, 0_;))

Sk;'fm < ((@,ﬁ_i) > e(&zmﬁ—ﬁ)

< 73 B0, 00 " 0 (Pg(6n6-) 29

3.5.1 51_'nternal
0. i

75(01) = P(ﬁai(l)7 sy ﬁdi(’Yi)? ﬁ—i) Xo_; (]P)ﬁ(ﬁiv ﬁ—i))T Xﬁai(l) uai(l) X xﬁai(w) uai(’n)'
. ~ ~ ~ t ~ ~
Szmzlarly, IP(C%) = P(ﬁai(l)v “eey ﬁai(%), ﬁ_l) Xo_, (Pa(ﬁ“ ﬁ_i)) Xﬁai(l) uai(l) X ... Xﬁai(w) uai(%).



Again, we use Lemma 8 to convert from one norm to spectral norm and Lemma 6 for submultiplicativity.

ginternal m C)) xeo_, Fixe., e j'-;il(na 9 X Oo(vp) j:;il("ﬁ ‘ fl
< m Gi)) xe_, U XOuy) j:_l(l)’“"xﬁaz(% ‘h(% H H\IP’@\S]HM
< kpmes ‘(ﬁ( i) - P(C HLR Ui 21?,’ v;"'l(l) 2R v;"’l(%) H2R
= lde-sell, ™

H“/i
j=19 1(J) (J)

Note that |||P[0;]S;]

=1
2R

P(Ci) = P(Cy)

2R

~

~ ~ f ~
= P(ﬁai(l)v ey ﬁai(%), O_;) Xe_, (Pa(ﬁi, 0_)) X641 uai(l) X X6, (0 uai("{j,)_

~ ~

P(ﬁai(lﬁ R ﬁai("/i% ﬁ—i) X6_; (Pa(ﬁla ﬁ—z))T xﬁai(l) uai(l) X ... Xg, o (74) uai(yi)

L.

< NNP(Cas)s s Ons(i)s O—i) = P(Ous(1)s -+ s Os(iys O—i)) X, By (Gi, 6-3))1
X () % -+ %0y B[
+[[[P(Gascrys -+ Oairs 0-i) %0, (Bg(0:,6-0)) — (B, 6-))
X6 i(1>aai(1) X Xy U HQR
< |||®@a- ~-ﬁai<mv@li)—P(ﬁai(l)a~~~ﬁai(wi>ﬁli))wm|||Pa(ﬁi,@i))T!}|2RH'amu)mz

~

{[[B(Gastt)s- -+ Gartrs 00| |||Pa (05 0-0)t =B, 001 || [P ||, || [
(Ouny1ys > Ony(ys), O—i) N 14++5 e(0;,0_;)
T on(Pu(6i,0-) 2 wmin(o,, (Pg(6r, 0_4)), 00 (P65, 6_1))

The last line follows from Eq. 35. We have also used the fact that
||’P(ﬁai(1), ey Oay(vy), O—4) |||2R SP(Oay1ys - -5 Oni(riy, O—i))llF < 1 via Lemma 7. Using Lemma 2,

5znte7nal < (Qk )dmaz (6(@0‘1.(1), R ﬁai(%‘)’ ﬁ*i) + 1+ \/5 E(ﬁ% ﬁ*i)
(BV3)"

dmazx
5zjnternal < (2kh) <26(ﬁ(xl(1)7 ceey ﬁa,('yl)v 671) + 86(@1, o_ ) )

' (BV/3)"m V3o, (P(0;,0_;)) 3(0r, (P(0,0_,)))°
S(Qkh)dmaz €(ﬁai(1)7 ey ﬁai('yi)a ﬁ*l) G(ﬁia ﬁ—l) (27)

3(5v3)"" (B(0:, 0-1) (0+,(P(6:,0-1))°
||

3.6 Bounding the Propagation of Error

We now show all these errors propagate on the junction tree. For this section, assume the clique nodes are
numbered 1,2, ..., |C| in breadth first order (such that 1 is the root). Moreover let ®1..(C) be the transformed

s H‘Uai(w

[/

26
o7 (P (03, 0-1)) 2 min(oy, (Py(0:, 0-0)). 0, (By (0, @»))2) -

HZR



factors accumulated so far if we computed the joint probability from the root down (instead of the bottom
up). For example,

®..1(C) = P) (28)
élzg(C) = P(Cl) X 8y P(Cz) (29)
®12(C) = P(C1) x5, P(C2) x5, P(C3) (30)

(Note how this is very computationally inefficient: the tensors get very large. However, it is useful for proving
statistical properties). Then the modes of ®1.. can be partitioned into mode groups, .#,..., .#4, (where
each mode group consists of the variables on the corresponding separator edge). We now prove the following
lemma,

Lemma 4 Define A = max(d{"(’t,6f”tem‘”,§§mf). Then,

v ~ L1 v —1
D M(@1:e(€) = P1c(C)) X Fr ooy Xy, Fy, 1 < (L4 )71 4 (L4 2) 7! 1 (31)
L1:c

T is all the observed variables in cliques 1 through ¢. Note that when ¢ = |C| then this implies that

fbl_c(C) }P’[xl,.. zo] and thus,

> |Plat, ..o w0] = Plon, oy o] < (14 A)CIT157000 4+ (14 A)IC=1 -1 (32)

Proof The proof is by induction on c¢. The base case follows trivially from the definition of 67°°". For the
induction step, assume the claim holds for ¢ > 1. Then we prove it holds for ¢ + 1.

v ~ v —1
Z H((I)I:C-&-l(c) - (I)l:c+1(c)) X, -7:1 y oo X‘//(dcfdp_'_l”
Tl:c+1

% ~ % ~

— Z H((‘Pl c ﬁ(Cchl) ,ﬁ(Cchl)) + ((I)lzc(c) - (I)lzc(c)) X (ﬁ(cc+1) - ,ﬁ(Cchl)) + ((I)l;c(c) - (I)l;c(C)) X ,ﬁ(chrl))

Llic+1
o —1
X/ﬂl‘rl ’ X-//(d, +1'7:dc+1 1
< Y H(@1e(€) X (P(Cesr) = P(Cor1)) Xty Fr ooy Xty +lﬂfdcﬂllﬁr
Ll:c41
v ~ ~ 9 v —1 u
D 1((@1:6(C) = @1:6(C)) X (P(Ces1) = P(Cer1))) Xty Fi soves Xt F. C+1||1+
Ll:c+1
v ~ 9 v —1
S ((@1:6(€) ~ 1:e(C) X PCotr)) Xtts Fr oo Xt Faa In
Ll:c4+1

Now we consider two cases, when ¢ 4 1 is a leaf clique and when it is an internal clique.
Case 1: Internal Clique

Note here the summation over @j..41 is irrelevant since there is no evidence. We use Lemma 5 to break up
the three terms:

The first term,

-~ 9 v —1 v —1
1(@1:(C) X (P(Ces1) = P(Cer1))) Xty Fi oo Xt Fay I
o o -1 o —1 Si
< H‘ °+1 (CC‘H)) Xﬁf(cﬂ) ’7:0+1 XﬁacH(I) “Facﬂ(l)’ Y Xﬁ%ﬂ(%ﬂ)]:acﬂ(%ﬂ) H
—1 v —1
X H(I)ltc( ) X ot '7:1 PRREY) X//fda]:dc ”1
< Axl1



The first term above is simply 6}“””‘” < A while the second equals one since it is a joint distribution.

Now for the second term,
o -1

u ~ ~ 9 o1
||(¢16(C) - (I)lzc(c)) X (P(Cc'i‘l) - P(CC"rl))) X fl PREES) X//fdc+1 j:dc+1 ||1
v ~ v —1 v —1
< ||<¢)10<C) - q)lic(c)) X ‘Tl 3ty x//[dcfdc ||1 X

~ o . o —1 L -1 Set1
‘ )(P(CC-&-l) = P(Cet1)) X0_(eiry Fet1 X0 1) Fawir (1)1 X Oy s T ess (vess) ‘ )
< (A4 2)Tem 0t L (1 4+ A) - 1) x 52’_;’516”“1 (via induction hypothesis)
S ((1+A)c—16root + (1—|—A)C_1 _ 1) % /A
The third term,
~ o ~ . 71 = 71
[((@1:c(C) = @1:c(C)) X P(Ces1)) Xr Fr 5o Xetta,, Fap, In
o ~ L1 L1
< [(@1:e(C) = 1:e(C)) Xty Fr s oos Xy, Fa, lrx
o o ¢ -1 o —1 Set1
"‘P(Cc+l) xﬁ*(c+l) fc+1 xﬁac+1(1) Taa+1(1), o Xﬁac+1(vc+1)'¢0‘c+1("/6+l) ‘ 1
< (L)t 14+ A)—1)x 1
Case 2: Leaf Clique
Again we use Lemma 5 to break up the three terms:
The first term,
9 L1 L1
Z H((I)l C(C) X (P 1(Cc+1) _Pri(Cchl))) X, -7'-1 y oy Xy H-’chJrlHl
Ll:c41
1 o o Set1
<Y 181elC) Xt Fr s Xta F ||| (P (Corn) = Pra(Corn)) Xy Feta|
Ll:c+1
o o —1 o —1 ~ o o Scq1
< D N1el€) Xt Fr s %ot F I Y ||| (PrulCosn) = Py (Con)) Xy Fom [,
T1:c Lc+1
< 1xA

The first term above equals 1 because it is a joint distribution and the second is the bound on the transformed
quantity we had proved earlier (since r; = T y1).

The second term,

~ o o —1 o —1

Y 1(@1:e(€) = @1.(C)) X (Pr, (Corr) = Pry(Cerr))) Xt Fi sy Xt Fa i |

Ll:c+1
o ~ o —1 o —1 ~ o o
< Y @10(C) = 810)) s Fr s X, Fo, I D ||| (Pra(Cont) = PrulCotn)) X ooy Forr |,
T1:c Lct1
< (T 2)7 10t (1 8)7 = 1) x &5
S ((1+A>c—15root+ (1+A)C_1 _ 1) NN

The third term,

v ~ Y L1 C -1
Z ”(((I)LC(C) - (I)1:C(C) X Pri(Cchl)) Xty fl ey X//ldc+17dc+1||1
Li:c+1
o ~ o -1 o -1 o o Set1
< Z ||((I)1c(c) - (I)I:C(C)) X Fi o x///dcfdc Hl Z H‘,PH(CC-‘H) XO_(et1) ‘7:C+1H 1
T1:c Tt

S ((1 4 A)cflaroot 4 (1 =+ A)C71 _ 1) % 1
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Combining these terms proves the induction step. ||

3.7 Putting it all together

We use the fact from HKZ [2] that (1 4+ a/t)" <1+ 2a for a < 1/2. Now A is the main source of error. We
set A S O(etotal/‘(CD'
Note that

A< 2dmax+3kznlax (Eod_c+1,..-,od €(ﬁ1, creny ﬁd—€7 Od—e+1y s Od) Zod—c+1y~-~70d 6(@1, creny ﬁd—ev Od—e+41y -+ Od)>

N 3\/§dm‘” [ebmax
This gives,

+
o o?

2d::;ax+3kanax Zod,e+1,---70d e(ﬁla-~-~7ﬁd—e70d—e+17~-~70d) Zod—e+17-~7od e(ﬁh-~-~7ﬁd—e70d—e+17~-~70d)
a + B} S Ketotal/|c|
3v/3 "7 Bdmaz

« o
where K is some constant.
This implies,

3dmaa /21, 102 Bdmas

Qdmaz+3kgmam C|

Z €(O1, ... 04_c,04—cy1,...,04) < K (33)

Od—e+1;-+-;,0d

Now using the concentration bound (Lemma 1) will give,

3d7nam/2+1€totala2ﬁdmaw < kgmax ln 2|C| kSmaa‘
2dmaz+3k2mam |(C| = N 5 N

Solving for N:

2 2 4
35 €total®

2 dmaz keww,w 1 M C 2
N20<<4kh> kgres In 5 |C[ (34)

and this completes the proof.

4 Appendix

4.1 Matrix Perturbation Bounds

This is Theorem 3.8 from pg. 143 in Stewart and Sun, 1990 [4]. Let A € R™*", with m > n and let
A=A+ E. Then

1+45
2

4 4], < 2522 max(| 4% |2, || 4] 121, (35)

2
2 )

4.2 Tensor Norm Bounds

For matrices it is true that ||Mwv|; < |||M]||; ||v|li. We prove the generalization to tensors.

Lemma 5 Let Ty and Ts be tensors o a set of (labeled) modes.

1Ty xo Tally < [[IT2[lI7 [1Ti] (36)
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Proof
1T <o Toll, = Y Y Y Tiiun\o.0=2)L(iy \o,0=x)

i1.8\O J1:M\o T

= Z Z Z Tl(ilzN\o'ao':w)TQ(jI:N\O'va:w)

i1.8\0 T Jir.Mm\o

= Z ZTl(ilzN\oya:a:) Z Ty(ji.n \ 0,0 =x)

i1.N\o O J1:M\o

< max Z Tr(jin \o,0=2x) | |Ti|:

x .
J1:M\o

= [Tl7 1 T1lh

We prove a restricted analog of the fact that spectral norm is submultiplicative for matrices i.e. |||AB]||, <
Al [1BI]],-

Lemma 6 Let T be a tensor of order N and let M be a matriz. Then,
T 2 M[[y < [[IT][]5 M1, (37)
Proof

|||T X1 M|H2 sup Z T(Zl,Zg,7ZN)M(21,m)’vm(m)’vm(lg)’vm(’ég)’l)Zn(’Ln)

Um,V2,...,;UN

i1,00IN M

= sup Z ZT(ilvi%"'7iN)ZM(i17m)Um(m)

Vm,V2,...,V . . .
m U2,y N742’~~~~a7/N i1

< sup sup ZM(il,m)vm(m) X
Vm,V2,..,UN i1 m 9
> T(ir iz, rin) ! > M iy, m)v,(m) | vi, (i2)vs, (is)....vi, (in)
L 15, M, myon ()], \ 2
< Ml 1T,
|
Lemma 7 Let T be a tensor of order N. Then,
Ty < T X1 015 ey X1l p ST X101, X2V p < oo < [T (38)

Proof It suffices to show that sup, ,, jjujj<1 IT X1 0| < ||T||p. By submultiplicativity of the frobenius
norm: ||T xyvl[p < |[T|p [[v][p < [|T], since [|v]|p = [lv]l; < 1. u

Lemma 8 Let T be a tensor of order N, where each mode is of dimension k. Then,
NTHT < &Y I, (39)

For any o.

Proof We simply prove this for o = 0 (which corresponds to elementwise one norm) since |||T|||7" <
I[|T|||7? if o2 C o1. Note that | T||; < kN max(|T|) (where max(T) is the mazimum element of |T|). Simi-
larly, max(|T|) < |||T|||, which implies that | T||; < kN |||T|||,. ]
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