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Abstract. New bio-technologies are being developed that allow high-
throughput imaging of gene expressions, where each image captures the
spatial gene expression pattern of a single gene in the tissue of interest.
This paper addresses the problem of automatically inferring a gene in-
teraction network from such images. We propose a novel kernel-based
graphical model learning algorithm, that is both convex and consistent.
The algorithm uses multi-instance kernels to compute similarity between
the expression patterns of different genes, and then minimizes the L1

regularized Bregman divergence to estimate a sparse gene interaction
network. We apply our algorithm on a large, publicly available data set
of gene expression images of Drosophila embryos, where our algorithm
makes novel and interesting predictions.

1 Introduction

As large-scale techniques for measuring gene expressions have been developed,
automatically inferring gene regulatory or interaction networks from gene ex-
pression data has emerged as a popular technique to advance our understanding
of cellular systems [1,2,3]. Predictions made by automatically learned gene net-
works have been experimentally validated [4,5], thus increasing the credibility of
the algorithms. While previous approaches for estimating gene interaction net-
works focus on analyzing microarray data, the goal of this paper is to utilize
the spatial similarity of gene expression using ISH image data to predict such
networks.

In-situ hybridization (ISH) is a newly developed technique that can measure
gene expression in tissue without homogenizing it, thus capturing the spatial
variations in the gene expression. For multicellular organisms such as Drosophila
(fruit fly) and human, it is well known that gene interactions are both time and
space dependent. Since ISH images capture spatial variations in the gene expres-
sion, instead of capturing the average expression like in microarrays, analyzing
ISH images should allow us to estimate spatial-dependent interaction networks.

In this paper, we focus our attention on data from the Berkeley Drosophila
Genome Project (BDGP) [6]. BDGP is an ongoing effort to determine gene
expression patterns during embryonic development for Drosophila genes. A light
microscope is used in combination with a Spot RT digital camera to capture
the images. Each image has a single central embryo, stained for a known gene.
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(a) (b)

Fig. 1. (a) Examples of embryonic ISH images from the BDGP data. Presence of gene
expression is indicated by the blue stain on the different regions of the embryo. (b)
Our task is to infer an interaction network from bags of images per gene.

The age of the embryo has been labeled manually, classifying the embryo into
one of six development stage ranges. Most images have a single embryo, however
some images capture partial views of the embryo, others have overlapping or
touching embryos. Some examples of the images found in the BDGP data can
be viewed in Figure 1(a). The data currently contains over 100,000 ISH images
capturing the expression pattern of 7200 genes.

1.1 Related Work

This paper proposes to learn an interaction network from images: each node of
the network is a concept represented by a bag of images, and an edge indicates
a relationship (or interaction) between the nodes. This problem is an instance
of a class of problems where we wish to understand how concepts relate to each
other. Similar problems already proposed in the vision literature include learning
an ontology from images [7], finding related images given an image [8], etc.

Reverse engineering gene networks from microarray time course data is a
well studied problem in the literature. Techniques have been proposed to reverse
engineer gene networks based on Bayesian networks [9,10,1], undirected Gaussian
graphical models [11,12], ordinary differential equations [13], partial correlations
[2], and others. Comparisons of different methods used for reverse engineering
gene networks have been performed [14,15]. However, this is the first work to
reverse engineer a gene network from ISH image data.

1.2 Challenges

The underlying assumption behind our work is that if two genes have correlated
expression patterns, then they may interact with each other. The main technical
challenges in capturing spatial similarity to predict interaction networks (Figure
1(b)) are

Condition alignment: Images for different genes are typically taken under
non-identical conditions (e.g., time, temperature, etc.), hence, signals from
different images need to normalized across genes before they can be com-
pared.
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Sample imbalance: Different genes typically have different number of image
records, i.e., for gene i and j, their corresponding measurements can be in
the form of two bags of different sizes. It is not clear how to define distance
or correlation between bags of images of different sizes. One simple solution
to this problem is to randomly sample a single image from each gene. How-
ever, throwing away images fails to capture the natural variation observed in
gene expression patterns for some genes. Further, if noise in the expression
patterns has not been removed correctly in the feature extraction step, lever-
aging the existence of multiple images per gene can lead to reduced noise,
and improved performance.

Multi-variate measurement: An image records the expression of a gene at
a particular time point in a d dimensional vector, where d are the number
of features extracted from the image; given multiple multi-variate measure-
ments of gene expression across time, we need to define a suitable distance
metric between them.

Sparsity: The interaction network proposed must be sparse, since we expect
that a small fraction of all possible interactions are actually present in a
single organism.

1.3 Contributions

In this paper, we propose a system to predict gene interaction networks from
spatial similarity of genes in ISH images from a single time point, leaving spatial-
temporal networks for future work.

We cast the problem of estimating a gene interaction network as the task of
estimating the graph structure G of a Markov random field (MRF) over the genes,
given bags of images per gene. The underlying graph encodes independence
assumptions between the genes, thus an edge between a pair of genes suggests
an interaction between them.

We propose a multi-instance kernel using different order statistics to compute
similarity between bags of images. We then estimate the gene interaction net-
work by minimizing the L1-penalized log-determinant Bregman divergence be-
tween the kernel and the estimated network. Under suitable conditions, we show
that our graphical model learning algorithm is consistent, i.e. as the amount of
available data increases, the algorithm is statistically guaranteed to predict the
correct interactions between the genes. Further, our formulation is convex, hence
the globally optimal estimator of the network is computed, no approximations
are involved.

To the best of our knowledge, this work is the first work to predict interaction
networks from images. Further, while [16] has previously proposed learning the
structure of graphical models from data using Mercer kernels, their approach
is based on a non-convex local greedy search to find edges in the graph. This
paper is also the first work that uses Mercer kernels and Bregman divergence to
predict kernelized graphical models using a convex formulation.
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We apply our algorithm to the BDGP data, and find that the networks pre-
dicted are spatially coherent, modular, and have interesting new predictions of
gene interactions.

2 Kernels for Image Similarity

Let gi represent the i
th gene, i ∈ {1, · · · , n}, where n is the number of genes. For

each gene gi, the set of images measuring the expression of gi are represented by
bag Bi, where each image b in Bi is represented by d features, i.e. b ∈ [0, 255]d.
Each feature represents the gene expression in a spatial location of the embryo.

Any network-learning algorithm should leverage the existence of multiple im-
ages per gene per time point in improving its estimates of gene similarity, a prob-
lem which is reminiscent of multi-instance learning [17]. Multi-instance learning
is a form of supervised learning, where instead of labeling each instance, a bag
of instances is labeled.

A popular solution to the multi-instance problem is to define a multi-instance
kernel, that can compute the similarity between bags of instances. Let s(A) be a
collection of order statistics of the set A, for example, mean, median, minimum,
maximum etc. In d dimensions, s(A) is computed on each dimension indepen-
dently, to form a vector of order statistics. If we use m order statistics, then the
length of s(A) will be dm. The similarity between gene gi with a set of images
Bi and gene gj with images Bj can then be computed as

K(Bi,Bj) = k(s(Bi), s(Bj)) (1)

where k(a, b) is an appropriate kernel function between vectors a and b. Such a
kernel is called the statistic kernel.

The choice of the order statistics used in the kernel depends on the data
collection procedure of the ISH. One concern in ISH data is that images may
be overstained. In such a scenario, the median may be an appropriate choice of
order statistic. If over-staining is not a concern, the maximum statistic may be
more appropriate to ensure that information about presence of gene expression
is not lost.

For the BDGP data, we use the covariance kernel k(a, b) = Cov(a, b), and the
mean statistic s(B) = 1

|B|
∑

b∈B b. Thus,

K(Bi,Bj) = Cov

⎛

⎝ 1

|Bi|
∑

a∈Bi

a,
1

|Bj |
∑

b∈Bj

b

⎞

⎠

=
1

|Bi|
1

|Bj|
∑

a∈Bi

∑

b∈Bj

Cov(a, b) (2)

Thus, our choice of kernel is equivalent to comparing the similarity of all pairs
of images in bags Bi and Bj. This specific kernel is also known as the nor-
malized set kernel, and has been shown to perform very well in multi-instance
classification [18].
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3 Kernel Based Graphical Models

The underlying joint distribution of a n-dimensional random vector (X1, X2,
· · · , Xn) can be represented as an undirected graph G = (V ; E) with vertex
set V containing an element for each variable Xi, and the edges in E represent
relationships between the variables. Formally, an edge (i, j) is excluded from E
if and only if Xi is independent of Xj given all other variables.

Instead of learning E by using i.i.d. samples of vector X ∈ R
n, we will es-

timate it by directly using the kernel similarity matrix K ∈ R
n×n, defined in

the previous section. Our goal is to estimate a graph structure which is close to
K, but is sparse. Thus, we wish to find a matrix Σ that minimizes the distance
between the two matrices; defined as a Bregman divergence

DF (K||Σ) = F(K)−F(Σ)− trace(∇F(Σ)T (K−Σ)) (3)

where F : S → R is a differentiable, strictly convex function over the domain S
of K, Σ.

We consider the divergence that arises when we use F(X) = − log detX,
called the Log-Det divergence over positive definite matrices. Then,

D(K||Σ) = trace(KΣ−1)− log det(KΣ−1) (4)

The Log-Det divergence is of special interest, since it is scale invariant, as long as
K and Σ are scaled by the same linear transformation, a natural property that
does not hold for the Frobenius norm distance. Further, the Log-Det divergence
has been used as a measure of distance between covariance matrices, a property
we will use to show the consistency of our algorithm.

In the high-dimensional scenario, when the number of features d is fewer than
the number of genes n, the minimizer of D(K||Σ) is not well-defined, hence we
need to add a regularizer. Since we expect the gene interaction network to have
few edges, this suggests that Σ−1 should have few non-zeros, that is, Σ−1 should
be sparse. To enforce sparsity, the L0 norm of Σ−1, which counts the number
of non-zero elements, may be added as a regularizer to the Log-Det divergence
objective. Since optimizing the L0 norm is non-convex and NP hard, the L1

norm is used as a convex relaxation to the L0 norm. The L1 norm of a matrix is
the sum of the absolute values of the elements of the matrix, and also enforces
sparsity in the solution. Thus, our objective function is

Σ̂−1 = argmin
Θ�0

{
trace(KΘ)− log detΘ+ λ||Θ||1

}
(5)

λ is a tuning parameter, by which we determine the strength of the penalty. As
we increase the value of λ, we increase the penalty on the absolute values of Θ,
and hence, the graph induced by Σ̂−1 becomes more sparse. The edges in the
graphical model are then estimated as

E =
{
(i, j)

∣
∣ Σ̂−1(i, j) �= 0; i �= j

}
(6)
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Consistency of the estimate. Given i.i.d. data samples X(1), X(2), ..., we can
estimate the sparse inverse covariance matrix of the distribution of X by using
the sample covariance matrix S of the data as the kernel matrix in Equation 5.
[19] shows that if the distribution of X is sub-Gaussian, then such an estimator
is consistent, i.e. as the amount of data increases, the probability of estimating
incorrect edges goes to zero.

Any kernel k can be represented as an inner product in some feature space φ,
i.e. k(a, b) = φ(a)Tφ(b). For the multi-instance statistic kernel, φ = s(B), that is,
the feature space is defined by the order statistics computed over bag B. Since the
order statistics for image data is bounded between 0 and 255, s(B) is a bounded
random variable, hence the distribution of s(B) is sub-Gaussian. Further, the
choice of kernel we use reduces to computing the sample covariance matrix of
features s(B). Hence, for our choice of kernel, the algorithm is consistent.

Optimization. The objective function defined in Equation 5 is convex, hence it
can be solved by any convex optimization algorithm. Banerjee et. al.[20] for-
mulated an O(n4) block coordinate descent method to solve it, where n is the
number of dimensions. Friedman et. al.[21] formulated each step of the block
coordinate descent as a Lasso regression, and solved it in O(n3) - they named
their technique glasso. The glasso algorithm uses a series of L1 penalized regres-
sions, called Lasso regressions [22]; and we use the glasso algorithm for efficient
optimization of our objective function.

4 Feature Extraction and Representation

This section describe the feature extraction, representation, and normalization
process used to obtain suitable features from images that can be input into our
algorithm.

4.1 Gene Expression Extraction via SPEX2

The similarity of two ISH images should be dependent only on the spatial profile
of the expression pattern within the embryo, and independent of the location,
shape, orientation etc. of the embryo within the image. Hence, we need to ex-
tract a precise gene expression pattern from the ISH images. We use SPEX2

[23], an automatic system for embryonic ISH image feature extraction for the
same. SPEX2 registers each Drosophila ISH image by first extracting the embryo
(foreground) from the image, using edge filters and image analysis techniques.
Next, the alignment, size, shape and orientation of the embryo is determined,
and normalized to a standardized ellipse. The expression stain is extracted from
the standardized embryo using a novel algorithm that maximizes the contrast
between the stained and unstained regions of the embryo. Finally, an image
segmentation algorithm using Markov random fields is defined to extract only
the regions that have gene expression. Thus, a concise and high fidelity gene
expression pattern is extracted from the ISH image.
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Input images Triangulated images 

Fig. 2. Examples of how ISH images are converted into low-dimensional triangulated
representations, for efficient feature representation

4.2 Delaunay Triangulation

The gene expression pattern extracted by SPEX2 may be converted into features
using standard methods like the SIFT feature descriptor[24], with PCA for di-
mensionality reduction. While this works well for supervised tasks like image
annotation, it fails for unsupervised tasks, where the importance of every SIFT
feature cannot be learned at training time. A pixel level feature representation
on the other hand, allows us to capture spatial information, but has high redun-
dancy due to the correlation between neighboring pixels. Hence, we represent the
expression pattern in a low dimensional space by triangulation, i.e. overlaying a
fixed triangular mesh on top of the standardized embryo. The gene expression
pattern for each image is then represented as the median gene expression present
in each triangle in this mesh. A mesh of 311 equilateral triangles was produced
by using the Delaunay triangulation algorithm [25], and aligning the mesh to
the standardized embryo, as described in [26]. Each image is represented as a
feature vector of length 311, with each feature corresponding to a specific loca-
tion on the embryo, which is fixed across all images. For example, triangle 1 may
correspond to the head in all images, and so on.

Figure 2 shows examples of ISH images converted into the triangulated gene
expression patterns. As can be seen, triangulating the SPEX2 output captures
the key features of the gene expression location and strengths. Thus, triangula-
tion enables dimensionality reduction of the feature space, while retaining ex-
plicit spatial information about the gene expression, which other dimensionality
reduction techniques would not be able to capture.

Each gene expression pattern is normalized to have its expression values(t) lie
between 0 and 255 (the minimum and maximum color value). The feature value
is then computed as the logarithm of the expression value : log(1 + t).

4.3 Feature and Gene Selection

A large percentage of the ISH images have no stain, or ubiquitous staining. In the
BDGP data, 55% of the genes have at least one image, in at least one time point,
with no stain. Since no information may be inferred from such data, these images
(and their corresponding genes) must be removed from the analysis. This can
be achieved by removing expression patterns having variance below a threshold
(ε, usually 0.1).

Additionally, features that have low variance in the data set are capturing no
information about the gene expression variation across multiple genes. Hence,
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they must be removed from the analysis as well. Since removing images from
the analysis affects the feature variance and vice-versa, we alternate removing
features and images with low variance, until both feature variance and image
variance is greater than the threshold. The algorithm is defined in Figure 3.

Input: triangulated features for n images : ti, where i ∈ {1, ...n};
variance threshold ε

Output: selected genes with their features in matrix X
for image i = 1 · · ·n do

X(i, •) = ti ;
end
while (min(var(X)) < ε || min(var(X′)) < ε) do

keepImages = find(var(X′) > ε);
X = X(keepImages,•);
keepFeatures = find(var(X) > ε);
X = X(•, keepFeatures);

end

Fig. 3. Algorithm outlining feature and gene selection to reject uninformative images
and features. var(A) for matrix A returns a vector containing the variance of each
column of A; find(y) returns the indices of the non-zero elements of vector y, and A′

is the transpose of matrix A.

5 Final Algorithm

A schematic of the system to estimate gene interaction networks from ISH images
is shown in Figure 4, while the algorithm is summarized in Figure 5. The overall
system has a computational complexity of O(n3+n2d+nd2) (see supp. material
for details). The implementation is efficient, and computes a gene network for
∼2000 genes in a few minutes on an Intel Core-2 CPU with 2 GB memory.

g1 

g2 

g3 

g4 g

2 2

gg

Gene interaction 
network 

Input images 

Fig. 4. The schematic shows an outline of the overall system to reverse engineer gene
networks from ISH data. Sample output of each step is shown on top of the box
corresponding to that step.
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Input: Embryonic ISH images for n genes ;
λ - tuning parameter to control sparsity
Output: Predicted gene network for the n genes
for gene i = 1 · · ·n do

// feature extraction

Bi = {};
for each image j of gene gi do

Extract expression patterns from image j using SPEX2;
tj = triangulate expression pattern of image j;
// feature normalization

tj = log(1 + 255 ∗ tj−min(tj)

max(tj)−min(tj)
) ;

bj = feature-selection(tj);
Bi = Bi ∪ {bj};

end
// Bi is now the set of all normalized features of the images of

gene gi
end
// Define the multi-instance kernel

for gene i = 1 · · ·n do
for gene j = 1 · · ·n do

K(i, j) = Cov
(

1
|Bi|

∑
a∈Bi

a, 1
|Bj|

∑
b∈Bj

b
)

end

end
// Run glasso using kernel K
Σ−1 = glasso(K, λ) ;
Predicted edges in the network: E = non-zeros in the non-diagonal elements of
Σ−1 ;

Fig. 5. The final algorithm to obtain the gene network from ISH images

6 Results

6.1 Network Learned on Small Data Set

Before running our algorithm on a large sized dataset, we construct an artifi-
cial small data set to verify the results. We input 12 images, shown in Figure
6(a), from 6 genes (each gene has 1-3 images in the data set). With λ = 0.46, 4
edges are predicted in the network, shown in Figure 6(b). As can be seen, the
three genes hunchback(hb), four-jointed(fj ), and Blimp-1, which are expressed in
the dorsal, ventral and procephalic ectoderm, are connected in a single cluster.
Similarly, the genes organic anion transporting polypeptide 74D(Oatp74D) and
bicoid(bcd) are connected by an edge, since both show expression in the foregut
and the anterior endoderm. Finally, the expression of sloppy paired-1(slp1) was
considered to be sufficiently different from the other genes, hence it is not con-
nected to any other gene in the network.

Thus, the gene interaction network found by our algorithm can be verified to
be reasonable for the above small data set.
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(a) (b)

Fig. 6. (a) 12 input images and (b) network of genes learnt by it, with each gene
represented by one image

6.2 BDGP Network

We now turn our attention to the ISH images from the Berkeley Drosophila
Genome Project data set. We have obtained around 67400 ISH images of 3509
protein-coding genes from the BDGP data, captured at key development stages
of embryonic development. Each image captures embryonic gene expression of a
single gene using in-situ hybridization. Each image was labeled manually with
the age of the embryo, categorized into six distinct embryonic stages : 1-3, 4-6,
7-8, 9-10, 11-12, and 13-16. Genes are also annotated with ontology terms from
a controlled vocabulary of around 295 terms, describing the unique embryonic
structures in which gene expression is observed during the various stages of
embryonic development. SPEX2 analyzes these image automatically, rejecting
unsuitable images, to produce 51593 expression patterns of 3347 genes.

As proof of concept, we focus on images viewed from a lateral perspective
from two development stage ranges of this data : 9-10 and 13-16. For the stage
9-10, we have 2869 expression patterns of 2609 genes, and for stage 13-16, we
have 6350 expression patterns of 3258 genes. For each development stage, we ran
a separate analysis.

Using a λ value of 0.775 for stage 9-10, we obtained a network having 258
genes, and 516 interactions (edges) between them. For the development stage
13-16, we used λ = 0.875, and obtained a network with 1202 genes and 3666
interactions between them. The λ value was selected for each network by running
our algorithm for 21 λ values between 0.5 and 1, and picking a value such that
the mean-degree for the network is reasonable (approximately 2-3).

Some of the predicted gene interactions have already been reported in the
literature. For example, in the network for stage 9-10, the algorithm predicts
that CG5370 and CG12284 interact, both of which are known to be involved
in apoptosis [27]. It also predicts that CG1064 interacts with CG12676, both of
which are known to be involved in epidermis development, muscle organ devel-
opment, as well as imaginal disc-derived wing vein morphogenesis. In the 13-16
development network, the algorithm predicts that the CG17158 interacts with
the CG7254, and CG6608 interacts with CG2812, which has been previously
reported in Rothberg et. al.[28].
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Fig. 7. Enrichment analysis for clusters in the gene interaction networks. A green dot
indicates enrichment with a P-value < 0.05.

6.3 Enrichment of Annotation Terms

Each gene in the BDGP data has been labeled manually by annotations describ-
ing the location of the spatial gene expression, using 295 annotation terms. We
expect that since the gene interaction network is constructed via spatial simi-
larity, genes that are connected to each other in the network will have similar
spatial annotation terms.

Enrichment analysis is a method to test if a given set of genes has a sta-
tistically significant difference in annotations from the background set. To test
this, we cluster the gene network using spectral clustering [29] into 12 clusters,
and analyze if each cluster has an over-representation of some annotation term,
compared to the background population of all genes. We use the hypergeometric
test, with Bonferroni correction used to correct for multiple hypothesis tests. In
the gene network for the 9-10 stage, 11 of the 12 clusters are enriched for 63 total
annotation terms (Figure 7(a)). The only cluster not showing any enrichment
in the 9-10 stage network is also the smallest cluster, having only 4 genes. For
example, in cluster 8, 92% of the genes have expression in the ventral nerve cord
primordium P3 , while only 8% of the genes in the data have expression in this
region. Similarly, 73% of the genes in cluster 11 have expression in the trunk
mesoderm primordium, while only 16% of the genes in the data have expression
in this region. For the 13-16 stage network, all 12 clusters are enriched for a total
of 81 enrichments, a part of which is visualized in Figure 7(b).

6.4 The BDGP Networks Are Modular

We visualize 5 of the 12 clusters of each of the networks in Figure 8, and observe
that the clusters in both networks are well separated. The ratio of within-cluster
edges to total number of edges is 70% and 87% for the 9-10 and 13-16 devel-
opment stage networks respectively, indicating that the estimated networks are
highly modular. From a biological perspective, different parts of gene networks
may be responsible for different pathways or biological functional components of
the cell, thus modularity is a reasonable prediction for real interaction networks.
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Stage 9-10 Stage 13-16

Fig. 8. A global view of the networks constructed by our algorithm for development
stage 9-10, and 13-16, visualized for 5 of the 12 clusters found in section 6.3. The
nodes of each cluster in the network are represented by different colors. Red edges are
edges between nodes in the same cluster, while green edges are edges between nodes
in different clusters.

6.5 Comparison with Microarray Network

We learn a network from microarray data from 12 time points in embryonic
development [6], over the same genes that are being studied in the 9-10 and 13-
16 networks, using covariance between the microarray expression as the kernel.
We find that the overlap in edges between the 2 networks is very small, only 1%
of the edges are common to both networks. If we assume that spatial expression
annotations are a proxy for functional enrichment, then we can check if the
microarray network is enriched for the spatial annotation terms, as described
in Section 6.3. Figure 9 shows that the percentage of enriched clusters in the
microarray network is small, independent of the number of clusters analyzed.

We can also test functional enrichment of the hubs of the network: are the top
5% of the genes having the maximum connectivity with other genes functionally
enriched? We find that the hubs of the ISH image networks are enriched for
a wide variety of functions that are essential to cell growth and functioning,
including metabolic processes, cellular respiration, transport of electrons and
ions, protein modification, ribosome biogenesis etc. However, the hubs of the
microarray network are enriched for only a singe function, where 4 of the 145 hub
genes are involved in the “aromatic compound catabolic process”. The detailed
enrichment analysis of the 2 networks can be found in the supplementary data.

Thus, we find that the network learned from ISH images is enriched for spatial
annotation terms, as well as functional enrichment of the hubs of the network,
which does not hold true for the microarray network. This suggests that analyz-
ing ISH images could support better scientific conclusions than microarray data,
which should be studied in greater detail.



84 K. Puniyani and E.P. Xing

0 5 10 15 20
0

20

40

60

80

100

Number of clusters

P
er

ce
nt

ag
e 

of
 e

nr
ic

he
d 

cl
us

te
rs

 

 

ISH images
Microarray

0 5 10 15 20
0

20

40

60

80

100

Number of clusters

P
er

ce
nt

ag
e 

of
 e

nr
ic

he
d 

cl
us

te
rs

 

 

ISH images
Microarray

Stage 9-10 Stage 13-16

Fig. 9. The percentage of clusters that are enriched for spatial term annotations using
networks learned from ISH and microarray data

7 Conclusions

We proposed an algorithm using kernelized graphical models to predict gene
interaction networks by analyzing Drosophila embryo ISH images. While the ex-
periments above have been reported on the ISH data from BDGP, our algorithm
can be applied to all image data, by suitably modifying only the image processing
SPEX2 pipeline. The analysis of the BDGP data shows that the hubs of the pre-
dicted gene interaction network are enriched for essential cellular functions, and
that different regions of the interaction network are enriched for different combi-
nations of annotation terms describing the gene expression. Thus, the predicted
gene interaction network is capturing essential spatial and functional information
about the expression pattern of the genes. We found that the gene interaction
network learned from ISH images is much more significantly enriched for both
spatial and functional annotations than a network learned from microarray data.

The current work focuses on extracting gene networks from spatial data. The
next step is combining information from multiple time stages to improve predic-
tions, thus learning spatial-temporal gene networks.
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