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Abstract

Multitask learning addresses the problem of learning related tasks whose informa-
tion on parameters is assumed to be shared with each other. Previous approaches
usually deal with homogeneous tasks such as a set of regression tasks only or a
set of classification tasks only. In this paper, we consider the problem of learning
multiple related tasks, where tasks consist of predicting both continuous and dis-
crete outputs from a common set of input variables that lie in a high-dimensional
space. All of the tasks are related in the sense that they share the same set of rele-
vant input variables, but the amount of influence of each input on different outputs
may vary. We formulate this problem as a combination of linear regressions and
logistic regressions, and model the joint sparsity as L1/L∞ or L1/L2 norm of the
model parameters. Among several possible applications, our approach addresses
an important open problem in genetic association mapping, where the goal is to
discover genetic markers that influence multiple correlated traits jointly. In our
experiments, we demonstrate our method in the setting of association mapping,
using simulated and asthma datasets, and show that our method can effectively
recover the relevant inputs with respect to all of the tasks.

1 Introduction

In multitask learning, we are interested in learning a set of related models for predicting multiple
(possibly) related outputs (i.e., tasks) given a set of input variables [3]. In most applications, the
multiple tasks share a common input space, but have different functional mappings to different
output variables corresponding to different tasks. When the tasks and their corresponding models
are believed to be related, it is desirable to learn all of the models jointly rather than treating each
task as independent of each other and fitting each model separately. Such methods that allow us to
borrow information across tasks can potentially increase the predictive power.

Depending on the type of information shared among the tasks, many different algorithms have been
proposed. Hierarchical Bayesian modeling has been introduced when the parameter values them-
selves are thought to be similar across tasks [1, 13]. A probabilistic method for modeling the latent
structure shared across multiple tasks has been proposed [15]. On the other hand, when the input
lies in high-dimensional space and the goal is to recover the shared sparsity structure, a regularized
regression method has been used [9].

Traditional multitask learning only considers homogeneous tasks such as regression and classifi-
cation individually. The lasso using L1 regularization has been a popular approach for variable
selection when the problem involves a single task or a set of independent tasks of linear regres-
sion [10, 11]. One of the successful extensions of the standard lasso is group lasso with an L1/L2

penalty [14], or more generally an L1/Lq-regularized regression with q > 0 [16]. When the
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L1/Lq penalty is used in a multivariate regression for a single task, it makes use of information
on the groupings of input variables, and applies the L1 penalty over the Lq norm of the regression
coefficients for each group of inputs when the variables in that group are believed to be significant
as a whole. We can use simliar regularization in logistic regression and multinomial logistic regres-
sion for classification tasks[8, 12]. In the specific multitask regression problem, in order to recover
these common supports to the multiple responses, we assume the common supports across all the
tasks in one dimension as a group and the group variable selection method could be applied to solve
this problem. Since the problem formulated in this way has a convex objective function, many of
the algorithms developed for a general convex optimization problem can be used for optimization.
For example, an interior point method and preconditioned conjugate gradient has been used to solve
large scale L1 regularized linear regression and logistic regression [7]. In [5, 11], coordinate descent
method was used in solving L1 regularized linear regression and generalized linear models, where
the soft thresholding operator gives a closed form solution for each coordiate in each iteration.

In this paper, we consider an interesting and not uncommon scenario of multitask learning, where
the tasks are heterogeneous and bear union support. That is, each task can be either a multivari-
ate regression or classification, with the inputs lying in a very high-dimensional space, but only a
small number of input variables (i.e., predictors) are relevant to each of the output variables (i.e.,
responses). Furthermore, we assume that all of the related tasks possibly share common relevant
predictors with varying amount of influence on each task. We propose to use an L1/Lq regular-
ization (q > 0) when the tasks consist of both regression and classification problems. Assuming a
linear regression for continuous-valued output and a logistic regression for discrete-valued output
with dummy variables for multiple categories, an L1/Lq penalty can be used to learn both types of
tasks jointly for a union support recovery. We consider particular cases of L1/Lq regularizations
with q = 2 and q = ∞.

Our work is primarily motivated by the genetic association based on the genotype data for genetic
markers called single nucleotide polymorphisms (SNPs) and phenotype data such as disease status,
clinical traits, and microarray data collected over a large set of individuals. The goal in this type
of study is to identify the SNPs (or inputs) that explain the variation in the phenotypes (or outputs),
and at the same time to reduce false positives. Many clinical traits for a given disease are highly
correlated, and genes in the same biological pathway are co-expressed in microarray data. Since the
input often involves millions of SNPs and the association signal of causal (or relevant) SNPs tends
to be very weak, it is greatly beneficial to combine information across multiple related phenotypes
to increase the power for variable selection among predictors. Over the recent years, researchers
started recognizing the importance of the joint analysis of multiple correlated phenotypes [4, 17],
but there has been a lack of statistical tools to systematically perform such analysis. In our previous
work [6], we developed a regularized regression method, called a graph-guided fused lasso, for
multitask regression problem that takes advantage of the graph structure over tasks to encourage
a selection of common inputs across highly correlated traits in the graph. While this method was
only applied to the restricted case of continuous-valued outputs, the set of clinical traits related
to a disease often contain both continuous- and discrete-valued traits. As we demonstrate in our
experiments, the L1/Lq regularization for the joint regression and classification can successfully
handle this situation.

The paper is organized as follows. In Section 2 we introduce the notation and the basic formulation
for joint regression and classification problem and we describe the L1/L∞ and L1/L2 regularized
regression for heterogeneous multitask learning in the joint regression and classification setting. In
Section 3 we formulate the parameter estimation as a convex optimization problem, and solve it
using an interior-point method. Section 4 presents experimental results and analysis on simulated
and asthma datasets. In Section 5, we conclude with a brief discussion of future work.

2 Joint Multitask Linear Regression and Multinomial Logistic Regression

Suppose we have K response variables of which Kr are continuous and Kc are discrete and K =
Kr + Kc. They shared a common P dimensional input variables. Then for the Kr continuous
variables we can model them as a regression problem where

Yk = β
(r)
k0 + Xβ

(r)
k + ε, k = 1, ...,Kr,
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where β
(r)
k = (β(r)

k1 , . . . , β
(r)
kP )′ represents a vector of P regression coefficients for the kth regression

task, with the superscript (r) indicating that this is a parameter for regression, β
(r)
k0 is the intercept,

and ε is the residual.

The loss for the Kr regression tasks is

Lr =
Kr∑

k=1

(yk − 1β
(r)
k0 −Xβ

(r)
k )′ · (yk − 1β

(r)
k0 −Xβ

(r)
k ), (1)

For the tasks with discrete-valued output, we set up a multinomial logistic regression for each of the
Kc tasks, assuming that the kth task has Mk categories:

P (Yk = m|X = x) =
exp (β(c)

k0 + xβ
(c)
km)

1 +
∑Mk−1

l=1 exp (β(c)
k0 + xβ

(c)
kl )

, for m = 1, . . . , Mk − 1,

P (Yk = Mk|X = x) =
1

1 +
∑Mk−1

l=1 exp (β(c)
k0 + xβ

(c)
kl )

, (2)

where β
(c)
km = (β(c)

km1, . . . , β
(c)
kmP )′, m = 1, . . . , (Mk − 1), is the parameter vector for the mth

category of the kth classification task, and β
(c)
k0 is the intercept.

Assuming that the measurements for the Kc output variables are collected for the same set of N
samples as in the regression tasks, we expand each output data yki for the kth task of the ith sample
into a set of Mk binary variables y′ki = (yk1i, . . . , yk(Mk)i), each ykmi, m = 1, . . . , Mk, takes value
1 if the ith sample for the kth classification task belongs to the mth category and value 0 otherwise,
and thus

∑
m ykmi = 1. Using the observations for the output variable in this representation and

the shared input data X, one can estimate the parameters β
(c)
km’s by minimizing the negative log-

likelihood given as below:

Lc = −
N∑

i=1

Kc∑

k=1

(
Mk−1∑
m=1

ykmi(β
(c)
k0 +

P∑

j=1

xijβ
(c)
kmj)− log

(
1 +

Mk−1∑
m=1

exp (β(c)
k0 +

P∑

j=1

xijβ
(c)
kmj)

))
. (3)

In a heterogeneous multitask learning problem, we form a global objective function by combining
the two empirical loss functions in Equations (1) and (3):

L = Lr + Lc. (4)

This is equivalent to estimating the β
(r)
k ’s and β

(c)
km’s independently for each of the K tasks, assum-

ing that there are no shared patterns in the way that each of the K output variables is dependent
on the input variables. Our goal is to increase the performance of variable selection and prediction
power by allowing the sharing of information among the heterogeneous tasks.

3 Heterogeneous Multitask Learning with Joint Sparse Feature Selection

Consider the case where the related tasks share the same sparsity pattern such that they have a
common set of relevant input variables for both the regression and classification tasks and the amount
of influence of the relevant input variables on the output may vary across the tasks, we introduce
an L1/Lqregularization to the problem of the heterogeneous multitask learning in Equation (4) as
below:

L = Lr + Lc + λPq, (5)

where Pq is the group penalty to the sum of linear regression loss and logistic loss and λ is a
regularization parameter which determines the sparsity level and could be chosen by cross validation.
We consider two extreme cases of the L1/Lq penalty for group variable selection in our problem
which are sup norm and L2 norm across different tasks at one dimension.

P∞ =
( P∑

j=1

max
k,m

(
|β(r)

kj |, |β(c)
kmj |

))
or P2 =

( P∑

j=1

|β(r)
j , β

(c)
j |L2

)
(6)
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β
(r)
j ,β

(c)
j are vector of parameters over all regression and classification tasks for the jth dimen-

sion. Here the sup norm and L2 norm over the parameters of that dimension across different tasks
which can regulate the joint sparsity among tasks and the multiple tasks could be related during the
optimization instead of optimizing each objective function individually.

4 Optimization Method

Different methods such as gradient descent, steepest descent, Newton’s method and Quasi-Newton
method can be used to solve the problem in Equation (5). Although second order methods have a
fast convergence fast near the global minimum for convex objective functions, they involve com-
puting a hessian matrix and inverting it which may be infeasible in a high-dimensional setting. The
coordinate-descent method iteratively updates each element of the parameter vector one at a time,
using a closed-form update equation given all of the other elements. However, since it is a first-order
method, the speed of convergence becomes slow as the number of tasks and dimension increase. In
[7], the truncated Newton’s method that uses a preconditionor and solves the linear system instead
of inverting the hessian matrix has been proposed as a fast optimization method for a very large
scale problem. We adopt this interior-point method because the linear regression loss and logistic
regression loss have different forms, and it is more intuitive to see how the two heterogeneous tasks
affect each other by optimizing their loss functions directly.

In this section, we discuss the case of the L1/L∞ penalty since the same optimization method can be
easily extended to handle the L1/L2 penalty. First, we re-write the problem of minimizing Equation
(5) with the nondifferentiable L1/L∞ penalty in Equation (6) as

minimize Lr + Lc + λ

P∑

j=1

uj

subject to max
k,m

(
|β(r)

kj |, |β(c)
kmj |

)
< uj , for j = 1, . . . , P, k = 1, . . . , Kr + Kc. (7)

Further re-writing the constraints in the above problem, we obtain 2·P · (Kr +
∑Kc

k=1(Mk − 1))
inequality constraints as follows:

−uj < β
(r)
kj < uj , for k = 1, . . . ,Kr, j = 1, . . . , P,

−uj < β
(c)
kmj < uj , for k = 1, . . . ,Kc, j = 1, . . . , P, m = 1, . . . , Mk − 1.

Using the barrier method [2], we re-formulate the objective function in Equation (7) into an uncon-
strained problem given as

LBarrier = Lr + Lc + λ

P∑

j=1

uj +
Kr∑

k=1

P∑

j=1

(
I−(−β

(c)
kj − uj) + I−(β(c)

kj − uj)
)

+
Kc∑

k=1

Mk−1∑
m=1

P∑

j=1

I−(−β
(c)
kmj − uj) + I−(β(c)

kmj − uj),

where

I−(x) =
{

0 x ≤ 0
∞ x > 0 .

Then, we apply the log barrier function I−(f(x)) = −(1/t) log(−f(x)), where t is an additional
parameter that determines the accuracy of the approximation.

Based on the above conversion, the total number of parameters needed to be estimated is (Kr +∑Kc

k=1(Mk−1))(P +1)+P . The goal of the optimization algorithm is to find the direction towards
the optimal solution which can be computed by Newton method,

H

[
∆β

∆u

]
= −g
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Where ∆β and ∆u are the searching directions of the coeffients and bounding parameters. H is the
hessian matrix and g is the gradient evaluated at the current parameters.

The gradient vector include three parts, regression tasks, classification tasks and additional regular-
ization parameters. g = [g(r), g(c), g(u)]T where g(r) has Kr components, g(c) has Kc components
and each component has Mk − 1 subcomponents which represent the gradients of the function cor-
responding each class of the classification tasks.

H =




R 0 D(r)

0 L D(c)

D(r) D(c) F




Where R and L are second derivatives of the parameters β for regression tasks in the form of, R =
∇2Lr +∇2Pg|∂β(r)∂β(r) , L = ∇2Lc +∇2Pg|∂β(c)∂β(c) , D = ∇2Pg|∂β∂u and F = D(r) + D(c).

The process of contructing and inverting Hessian matrix is the most time consuming part in the
whole algorithm. But we can use a preconditionor diag(H) and apply the preconditioned conjugate
gradient algorithm to compute the searching direction which could make the algorithm more scalable
and faster. The optimization algorithm is given by:
Let Θ denote the set of parameters β

(r)
k ’s and β

(c)
km’s. Given a strictly feasible Θ, t = t(0) > 0,

µ > 1, and tolerance ε > 0, we iterate the following steps until convergence.

Step 1 Compute Θ∗(t) by minimizing LBarrier, starting at Θ.
Step 2 Update: Θ := Θ∗(t)
Step 3 Stopping criterion: quit if m/t < ε where m is the number of constraint functions.
Step 4 Increase t: t := tµ

In Step 1, we use the Newton method to minimize LBarrier at t. In each iteration, we increase
t in Step 4, so that we have a more accurate approximation of I−(u) through I−(f(x)) =
−(1/t) log(−f(x)).

5 Experiment Result

We demonstrate our methods for heterogeneous multitask learning with L1/L∞ and L1/L2 regular-
izations on simulated and asthma datasets, and compare their performances with those from solving
two types of multitask-learning problems for regressions and classifications separately. We show
our method on both simulated and asthma datasets.

5.1 Simulation Study

In the context of genetic association analysis, we simulate the input and output data with known
model parameters as follows. We start from the 120 haplotypes of chromosome 7 from the popula-
tion of European ancestry in HapMap data, and randomly mate the haplotypes to generate genotype
data for 500 individuals. We randomly select 50 SNPs across the chromosome as inputs. In order to
simulate the paramters β

(r)
k ’s and β

(c)
km’s, we assume 6 regression tasks and 1 classification task one

with 5 categories and choose five common SNPs from the total of 50 SNPs as relevant covariates
across all of the tasks. We fill the non-zero entries in the regression coefficients β

(r)
k ’s with values

uniformly distributed in the interval (a, b) with 5 ≤ a, b ≤ 10, and the non-zero entries in the logistic
regression parameters β

(c)
km’s such that the five categories are separated in the output space. Given

these inputs and the model parameters, we generate the output values using the noise for regression
tasks distributed as N(0, σ2

sim). In the classification task, we expand the single output into five
dummy variables representing different categories which take values of 0 or 1 depending on which
category each sample belongs to. We repeat this whole process of simulating inputs and outputs to
obtain 50 datasets, and report the results averaged over these datasets.

The regularization paths of the different multitask-learning methods with an L1/L∞ regularization
obtained from a single simulated dataset are shown in Figure 1. The results from learning all of the
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Figure 1: The regularization path for L1/L∞-regularized methods. (a) Regression parameters
estimated from the joint regression-classification method, (b) regression parameters estimated
from regression tasks only, (c) logistic-regression parameters estimated from the joint regression-
classification method, and (d) logistic-regression parameters estimated from classification tasks only.
The blue curves show parameters for irrelevant inputs, and the red curves for relevant inputs.

tasks jointly are shown in Figures 1(a) and 1(c) for regression and classification tasks, respectively,
whereas the results from learning the sets of regression and classification tasks separately are shown
in Figures 1(b) and 1(d). The red curves indicate the parameters for true relevant inputs, and the
blue curves for true irrelevant inputs. We find that when learning both types of tasks jointly, the
parameters of the irrelevant inputs are more reliably set to zero along the regularization path than
learning the two types of tasks separately.

In order to evaluate the performance of the methods, we use two criteria of sensitivity/specificity
plotted as receiver operating characteristic (ROC) curves and prediction error on test data. To obtain
ROC curves, we estimate the parameters, sort the input-output pairs according to the magnitude of
the estimated β

(r)
kj ’s and β

(c)
kmj’s, and compare the sorted list with the list of true correlated input-

output pairs.

We vary the sample size to N = 100 and 200, and show the ROC curves for detecting true relevant
inputs using different methods in Figure 2. We use σsim = 1 to generate noise in the regression
tasks. Results for the regression and classification tasks with N = 100 are shown in Figures 2(a)
and (b), respectively, and similarly, the results with N = 200 in Figures 2(c) and (d). The ”M”
and ”HM” represent multitask learning and heterogeneous multitask learning methods respectively.
The results with L1/L∞ penalty are shown with color blue and green to compare the homogeneous
and heterogeneous method. Red and yellow are results using the L1/L2 penalty. Although the
performance of learning the two types of tasks separately improves with a larger sample size, the
joint estimation performs significantly better for both sample sizes. A similar trend can be seen in
the prediction errors for the same simulated dataset in Figure 3.

In order to see how different signal-to-noise ratios affect the performance, we vary the noise level
to σ2

sim = 5 and σ2
sim = 8, and plot the ROC curves averaged over 50 datasets with a sample size

N = 300 in Figure 4. Our results show that for both of the signal-to-noise ratios, learning regression
and classification tasks jointly improves the performance significantly. The same observation can be
made from the prediction errors in Figure 5. We can see that the L1/L2 method tends to improve
the variable selection, but the tradeoff is that the prediction error will be high when the noise level
is low. While L1/L∞ has a good balance between the variable selection accuracy and prediction
error at a lower noise level. As the noise increases, the L1/L2 outperforms L1/L∞ in both variable
selection and prediction accuracy.

From the above analysis, we can see that the heterogeneous model can significantly improve the
performance of parameter estimation, variable selection and prediction accuracy. Different regular-
ization method shows different levels of improvement in the above three evaluation criteria. The
reason for the difference between L1/L∞ and L1/L2 is that the L2 norm is greater than L∞, so it
tends to make the relevant groups of variables more significant than the L∞ norm. The disadvantage
is that the larger the penalty is, the estimation is more penalized. This is the reason you see the pre-
diction error is very high for the L1/L2 method. The smaller penalty of L1/L∞ penalty makes the
relevant covariates less significant among all the covariates. So the performance of variable selection
and prediction decrease under the high noise level. But if there are both correlated regression and
classification tasks, the heterogeneous model can improve the performance of all tasks.
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Figure 2: ROC curves for detecting true relevant input variables when the sample size N varies.
(a) Regression tasks with N = 100, (b) classification tasks with N = 100, (c) regression tasks
with N = 200, and (d) classification tasks with N = 200. Noise level N (0,1) was used. The
joint regression-classification methods achieve nearly perfect accuracy, and their ROC curves are
completely aligned with the axes.
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Figure 3: Prediction errors when the sample size N varies. (a) Regression tasks with N=100, (b)
classification tasks N = 100, (c) regression tasks N = 200, and (d) classification tasks N = 200.
Noise level N (0,1) was used.
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Figure 4: ROC curves for detecting true relevant input variables when the noise level varies. (a)
Regression tasks with noise level N(0, 5), (b) classification tasks with noise level N(0, 5), (c) re-
gression tasks with noise level N(0, 8), and (d) classification tasks with noise level N(0, 8). Sample
size N=300 was used.
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Figure 5: Prediction errors when the noise level varies. (a) Regression tasks with noise level
N(0, 52), (b) classification tasks with noise level N(0, 52), (c) regression tasks with noise level
N(0, 82), and (d) classofication tasks with noise level N(0, 82). Sample size N=300 was used.

5.2 ASTHMA DATASET

We apply our method to the asthma dataset with 34 SNPs in the IL4R gene of chromosome 11
and five asthma-related clinical traits collected over the 613 patients. The set of traits include
four continuous-valued traits related to lung physiology such as baseline predrug FEV1, maximum
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Figure 6: Results from the analysis of asthma dataset for discovery of causal SNPs for the corre-
lated phenotypes. (a) Joint regression-classification method, and (b) separate analysis of multitask
regressions and multitask classifications.

FEV1, baseline predrug FVC, and maximum FVC as well as a single discrete-valued trait with five
categories. The goal of this analysis is to discover whether any of the SNPs (inputs) are influencing
each of the asthma-related traits (outputs). We use 400 samples as training data, and the remain-
ing 213 samples as test data. We fit the joint regression-classification method with L1/L∞ and
L1/L2 regularizations, and compare the results from fitting L1/L∞ and L1/L2 regularized methods
only for the regression tasks or only for the classification task. We show the estimated parameters
for the joint learning in Figure 6(a) and the separate learning in Figure 6(b), where the first four rows
correspond to the four regression tasks, the next four rows are parameters for the four dummy vari-
ables of the classification task, and the columns represent SNPs. We can see that the heterogeneous
multitask-learning method encourages to find common causual SNPs for the multiclass classification
task and the regression tasks.

6 CONCLUSIONS

In this paper, we proposed a method for a recovery of union support in heterogeneous multitask
learning, where the set of tasks consists of both regressions and classifications. In our experiments
with simulated and asthma datasets, we demonstrated that using L1/L2 or L1/L∞ regularizations
in the joint regression-classification problem improves the performance in identifying the input vari-
ables that are commonly relavant to multiple tasks.

The union support recovery as was presented in this paper is concerned with finding inputs that
influence at least one task. In the real-world problem of association mapping, there is a clustering
structure such as co-regulated genes, and it would be interesting to discover SNPs that are causal
to at least one of the genes within the subgroup rather than all of the genes. In addition, SNPs in
a region of chromosome are often correlated with each other because of the non-random recombi-
nation process during inheritance, and this correlation structure, called linkage disequilibrium, has
been actively investigated. A promising future direction is to model this complex correlation pattern
in both the input and output space within our framework.
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