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Figure 1. GenAMap is a visual analytics system for structured association mapping. It incorporates several different visualizations in a novel 

way to lead biologists to relevant SNPs and their associated traits. GenAMap enables biologists to explore the structure of the genome 

and trait data while exploring association strengths.  

ABSTRACT 

Association mapping studies promise to link DNA mutations to 
gene expression data, possibly leading to innovative treatments 
for diseases. One challenge in large-scale association mapping 
studies is exploring the results of the computational analysis to 
find relevant and interesting associations. Although many 
association mapping studies find associations from a genome-
wide collection of genomic data to hundreds or thousands of 
traits, current visualization software only allow these associations 
to be explored one trait at a time. The inability to explore the 
association of a genomic location to multiple traits hides the 
inherent interaction between traits in the analysis. Additionally, 
researchers must rely on collections of in-house scripts and 
multiple tools to perform an analysis, adding time and effort to 
find interesting associations. In this paper, we present a novel 
visual analytics system called GenAMap. GenAMap replaces the 
time-consuming analysis of large-scale association mapping 
studies with exploratory visualization tools that give geneticists an 
overview of the data and lead them to relevant information. We 
present the results of a preliminary evaluation that validated our 
basic approach. 
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1 INTRODUCTION 

Understanding the specific interactions between DNA, genes, and 
traits holds the promise of innovative treatments for many 
diseases. Association mapping is a popular strategy for examining 
the complex relationships between DNA and genes. Although 
machine learning has provided several new, powerful tools for 
unraveling these connections, the output of today’s machine 
learning algorithms is itself a sea of data, challenging to analyze. 
We have developed an integrated visual analytics system to aid 
biological researchers in understanding and analyzing this data.  
    The motivation for association mapping comes from the central 
dogma of biology – DNA codes for mRNA, which is expressed as 
a gene, and then translated into the proteins that run the cell and 
the organism. Thus, mutations in the genome at the DNA level 
can directly affect the entire organism. Although much of the 
human genetic sequence is identical across individuals, there are 
many places in the genome where the sequence has been mutated, 
causing a genetic polymorphism between individuals in the 
population. If the DNA sequence is thought of as a string made up 
of nucleotides (characters), then a genetic polymorphism is a 
difference in the sequence between two individuals. The most 
common type of genetic polymorphism is a single-nucleotide 
polymorphism (SNP), an instance where one nucleotide is 
different between individuals. For example, some individuals may 
inherit a G at a particular location instead of the A that is common 
in the population. Although many SNPs make little or no 
difference to gene expression levels and normal function of a cell, 
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some SNPs can have a much larger effect. The inheritance of 
SNPs that turn off important genes, or change the coding 
sequence of important genes, can interact with other genes to lead 
to disease. Many human diseases or syndromes have a genetic 
component, and successful association mapping studies have 
found mutations in the genome associated with human diseases 
such as cancer [1], diabetes [2], and Alzheimer’s disease [3]. 
    As association mapping finds SNPs associated with disease it 
leads to insight into disease prevention, acquisition, and 
progression. Association mapping strategies can be divided up 
into two types, although they are similar in their approach. One 
type of association study is an expression quantitative trait locus 
(eQTL) study [4]. In an eQTL study, genome-wide SNP data is 
collected along with gene expression data for thousands of genes. 
Gene expression data indicate the expression level, or amount, of 
each gene in a cell. eQTL studies allow researchers to find 
associations between SNPs and the expression of genes. In a 
genome-wide association study (GWAS), genome-wide SNP data 
is also collected, but the association analysis is performed against 
one or more clinical traits, such as asthma or diabetes [5]. 
Although the two strategies are similar, eQTL studies have the 
promise of linking changes in the genome to the function of 
individual cells, while GWAS look primarily at genetic 
polymorphisms that affect the entire organism. Either approach 
can lead to insight into how biological systems can be affected by 
small changes in the DNA. 

Despite the promise of association studies, however, many 
SNPs that have been found in association studies only explain a 
small part of the genetic component of the disease. When 
associated SNPs only have a small effect, this suggests that other 
important contributing SNPs have not been found and that the 
heritability of the disease is not fully explained [5]. This so-called 
“missing heritability” is a challenge facing the association 
mapping community today. One approach to overcome the 
problem is structured association mapping. Structured association 
mapping is a machine learning approach that leverages structure 
in the data in order to enhance the discovery of weaker signals. 
Initial studies have suggested that structured association mapping 
could lead to increased insight and greater statistical power [6,7]; 
however, there remain several barriers before such algorithms can 
be widely used.  

Structured association mapping methods are more complex than 
simple statistical methods normally employed by biologists, thus 
requiring greater specialization to run the method and interpret the 
results. These methods generally output a raw matrix of values 
representing associations between the genome and the traits. For a 
simple organism like yeast, a dataset will generally include a few 
thousand SNPs and up to six thousand gene measurements. For a 
human dataset, there might be hundreds of thousands of SNPs and 
over ten thousand gene expression measurements. These results 
are typically analyzed using command line tools and in-house 
scripts, which limits their availability to many geneticists.  

Training aside, it remains a difficult task to identify relevant 
signals from a vast amount of output involving hundreds of traits 
across a genome-wide scan of SNPs. Analysts must manually 
identify queries and code up their own implementation to find 
patterns in the data and explore specific interactions between a 
trait and the genome. Current visualization software available 
only allows for the exploration of association data on a trait-by-
trait basis, which is not sufficient to explore large datasets with 
thousands of traits. In this paper, we contribute a new visual 
analytics system called GenAMap. Our work with GenAMap has 
been motivated by the promise of structured association mapping 
strategies and the need for visualizations to explore the results 
from these machine learning algorithms. We present a 
comprehensive system for structured association mapping analysis 

including four visualizations that allow genetics researchers to 
explore results from structured association mapping algorithms. 
GenAMap is specifically designed to give geneticists an overview 
of the results then lead them to specific gene-genome interactions. 
Once a geneticist has used GenAMap to identify a significant 
interaction, they can explore the interaction in the tool that leads 
them to external links to biological databases such as UniProt [8] 
and dbSNP [9]. GenAMap specifically aids in the exploration of 
association mapping results through the integration of multiple 
views so that an analyst can explore the structure of the traits 
while considering their association to the genome.  

We have conducted a preliminary qualitative user study to 
assess the utility of our visualization techniques and to get 
feedback on the overall system. The results from this study 
suggest that GenAMap represents a dramatic improvement over 
current practice, saving time and effort in analysis.  

The outline of the paper is as follows: we first review the 
related work for association studies, structured association 
mapping methods, and the promise of visualization in biological 
problems. We present GenAMap through a discussion of a typical 
association analysis using the tool, followed by two case studies 
on real datasets. We report results from a preliminary user study 
that investigates the utility of the visualizations used in GenAMap 
and finish with a discussion of our conclusions and future work.  

2 RELATED WORK 

Today’s most advanced computational biology studies commonly 
employ machine learning to identify patterns in the data. Due to 
the vast amount of data produced by these algorithms and the 
sparseness of useful output, new strategies are required to help 
biology researchers identify the links between DNA and the genes 
that could eventually produce new treatments for diseases. 
    Although machine learning has carried us well so far, we 
believe that the next steps strongly indicate that visual analytics, 
which combines algorithmic analysis with visualization strategies 
to take advantage of the analytic capabilities of both machines and 
people, will advance the field still further.  Visual analytics are 
best employed when analysts need to explore their data, 
understand the overall structure of the data, discover weak 
patterns most easily recognized by humans, and retain the ability 
to perform detailed analysis [10]. 
    Our inquiry focuses on structured association mapping analyses 
for three primary reasons: first, they hold significant promise for 
impactful outcomes, second, they employ very large amounts of 
sparse data (classically suggesting the likely fruitfulness of a 
visualization approach), and finally, the data often conform to 
easily visualized structures that might support cognition by 
favoring exploration and investigation over direct query. 
    In a structured association study, researchers need to get an 
overall picture of the patterns of association in the data, and then 
they need to focus their attention on specific, important signals in 
the data – immediately suggesting a visualization strategy 
following Shneiderman’s well-known mantra: overview first, 
zoom and filter, details on demand [11]. 

2.1 Current methods for association mapping 

In a typical association mapping study, hundreds of thousands of 
SNPs are collected for a number of individuals. Clinical traits or 
gene expression measurements are also collected. Association 
algorithms are generally run one gene or trait at a time against 
genome-wide SNPs. These results are then explored trait-by-trait 
through a Manhattan plot (a logarithmically scaled scatter plot 
designed to highlight small variations from a normal range) or a 
summary table. For studies with only a handful of clinical traits, 
as is common in many GWAS, this approach can work quite well; 
there are excellent tools such as WGAViewer [12] and 



LocusZoom [13] that facilitate exploring these results. However, 
these visualization strategies fall quite short in larger studies with 
thousands of traits or genes, as in eQTL studies or GWAS studies 
on many related phenotypes.  

To date, there are very few tools built to explore the association 
signals from the genomic data to thousands of traits. eQTL 
Explorer [14] is one such tool that represents associations as 
arrows along chromosomes that the analyst can browse through. 
This approach makes it difficult to understand the overall patterns 
in association and does not scale well to larger datasets with many 
genes. Additionally, the relationships between genes, and the 
relationship between a gene and multiple loci, are obscured in this 
visualization. eQTL Viewer [15], on the other hand, provides a 
broad over-view of the associations with a heat map view, 
however, this display does not allow the analyst to explore 
interactions between genes, and the strength of eQTL signals is 
not available to the analyst. Thus, all published tools are limited in 
their capacity to explore the results from an eQTL study and are 
not extendable to a GWAS study with clinical traits.  

2.2 The promise of structured association mapping 

Structured association mapping algorithms are a new strategy to 
association mapping that can identify signals that could not be 
discovered with previous, simple methods. There are currently 
two types of structured association mapping algorithms available: 
those that leverage structure across traits, and those that leverage 
population structure.  

Mutations in the genome often do not affect just one gene or 
trait but multiple correlated traits. When looking for these SNPs, 
we can use the information from the correlation structure of the 
traits/genes in our analysis. For example, GFlasso [6] is a 
regression approach that finds associations from SNPs to a cluster 
of highly related traits or genes. Traits or genes that are highly 
correlated are likely to be under the regulation of the same genetic 
loci, and incorporating this information in the analysis can lead to 
greater statistical power and the detection of weaker signals [6]. A 
similar approach, the TreeLasso [16] takes advantage of the 
hierarchical structure of the trait data clustered as a tree.  

Another important dimension of the data is the population 
structure of the individuals in the study. Different subpopulations 
will respond to SNPs in different ways. For example, an Asian 
population might respond to the loss of an important gene 
differently than an American population due to the differences in 
the genome between the two populations. An algorithmic 
approach that takes advantage of this structure in the data is the 
MPGL algorithm [7], which uses the information in the different 
populations to find associations, while still recognizing their 
differences. 

Whether exploring the results of a population-structured 
association analysis, or a trait-structured association analysis, the 
structure of the data can provide further evidence to the geneticist 
of how a SNP might be involved in the association. For example, 
seeing the relationship between many correlated genes that are all 
associated to the same SNP could provide evidence on how that 
SNP affects all the traits; this information would not be available 
in a one-by-one visual analysis. This is especially important in 
eQTL analysis, and has been recognized by the figures in recent 
papers that show the correlation structure of the traits, colored by 
association [17,18]. These types of figures show the potential of a 
visualization system that guides the analyst to relevant signals 
through the structure of the data itself.  

Despite the improvements that we have seen in performing 
structured association mapping studies with thousands of SNPs 
and thousands of traits, in order to adequately explore the data, 
researchers still have to rely on in-house scripts, command line 
tools, and customized software [19]. The reliance on these types 

of tools limits the number of individuals who can perform these 
analyses to only the very specialized, and limits the insight that 
can be gleaned from exploring the structure of the data itself.  

In Figure 2, we show a typical workflow investigators would 
follow in a structured association mapping study. Data would be 
collected for SNPs and phenotypes (whether genes or traits). After 
quality control and preprocessing steps, the data would be 
formatted in order to run machine learning algorithms on the data 
to generate structure. Investigators would explore the structure 
using tools like Matlab or R in order to determine what structured 
association analyses were appropriate for the data and to initially 
identify interesting patterns. They would then reformat their data 
and run machine learning algorithms to find the structured 
association results. They would then write their own scripts or use 
Matlab and R in order to explore the data, observer interesting 
patterns, and find specific associations that were interesting to 
them. They would investigate the details of these associations 
using online databases and a handful of other tools in order to 
understand them. This analysis would lead the investigators to 
conclusions about the data and lead to other hypotheses to be 
tested in future studies. GenAMap’s integrated system is designed 
to guide researchers through steps C through I (as shown in Figure 
2).  

2.3 The promise of visualization in biology 

With improved technology, high-throughput methodologies are 
generating huge biological datasets. The integration of 
visualization into the analysis of these large datasets is becoming 
a popular and effective strategy.  

The success of visualization strategies can be seen in many 
areas of biology. For example, Cytoscape [20] has become an 
extremely popular application for visualizing biological networks 
and exploring relationships between genes. By integrating 
information into a visualization that can handle thousands of 
genes, Cytoscape has become a standard tool for the analysis of 
biological networks [20]. In other domains, the recent 
development of ABySS-Explorer [21] has shown that 
visualization can enhance the analysis of complex biological tasks 
like genome assembly through visual representation of the 
contigs. Another recent approach to visualization, MulteeSum, 
demonstrated the potential for visualization to help researchers 
identify spatial and temporal patterns in gene expression data [22]. 
Thus, although the problems in biology are varied, visualization is 
proving to be a reliable tool to aid in the exploration of the vast 
amount of data available.  

3 AN ASSOCIATION STUDY WORKFLOW IN GENAMAP 

In this section, we will give an overview of GenAMap by 
discussing a typical structured association mapping workflow 
using GenAMap as shown in Figure 2. This workflow includes 
several machine learning and visualization steps; GenAMap is 
intended to integrate all analytic and visualization tools necessary 
to complete a structured association analysis.  

Figure 2. GenAMap is integrated into the workflow of a structured 

association mapping analysis.  

 



3.1 Data collection and structure analysis 

In an association study, two types of data must be collected from 
the individuals in the study. Genotype data is collected as SNPs 
for hundreds of thousands to millions of SNPs, and trait data is 
collected as gene expression data from a microarray or as clinical 
trait data collected in the office. Once the data has been 
preprocessed, it is ready to be imported into GenAMap. 
GenAMap will then provide tools to create and visualize the 
structure for both of these data types separately.  

GenAMap helps the analyst determine which structured 
association algorithms will be appropriate by providing 
visualizations to explore these data. We discuss the specific 
visualizations in Section 4; the purpose of these visualizations is 
to help the analyst decide on an appropriate analysis. For example, 
if the analyst notices strong population stratification in the data, 
he will want to perform a population analysis to find associations. 
If the analyst notices that the traits form many highly connected 
clusters, he will want to use an algorithm such as GFlasso to take 
advantage of this information. Once the analyst has explored the 
data and determined the appropriate structured analysis for their 
dataset, he is ready to run the actual association algorithm.  

3.2 Exploring structured association results 

GenAMap automatically runs all structured association mapping 
algorithms on an external cluster using parallelization. Once the 
results from the algorithms are available, the analyst has a number 
of tools to explore the associations in the data.  

GenAMap supports Shneiderman’s mantra: overview first, 
zoom and filter, and details on demand [11]. First, GenAMap 
allows the analyst to get an overview of the association results. 
For example, geneticists can quickly identify whether SNPs are 
generally association with many traits in the same part of the 
clustered network. Once the geneticist has gotten a feel for the 
overall network, they can start to zoom and filter to the most 
interesting patterns in the data. Geneticists will then identify 
specific trait clusters that are association with genetic loci. They 
will then zoom in to see the network and correlation structure of 
the traits of interest. Finally, once the geneticist has zoomed into a 
particular interaction, GenAMap provides details on demand to 
specifically characterize the association. Researchers can query 
online resources directly from the tool in order to find out the 
function of key genes in the network, and they can look up SNPs 
online to find out why they might be associated with the traits of 
interest.  

4 EXEMPLARY USE CASES 

We now present two case studies with real data to highlight the 
novel visualization strategies in GenAMap.  

4.1 A case study on a yeast eQTL dataset with trait 
structure 

In the first case study, we demonstrate an analysis in GenAMap 
using a yeast eQTL dataset [23]. This dataset is generated from a 
cross between the yeast BY4617 strain and the RM11-1a strain. 
The dataset has 5637 gene expression measurements and 1260 
SNP markers from the two parent and 112 progeny strains.  

A dataset from a genetic cross in a model organism like yeast 
allows us to understand how genetic variants affect gene 
expression globally. These datasets can also lead an analyst to 
new regulatory genes in specific biological processes.  

4.1.1 The network view 

An analyst loads the yeast gene expression and SNP data into 
GenAMap. The analyst believes that an association mapping 
algorithm leveraging gene structure might make sense for these 

data. In order to run this algorithm, the analyst needs to build a 
gene-gene network. The analyst can also use GenAMap to explore 
this network to ensure that a structured approach makes sense for 
these data. The analyst uses GenAMap to create a gene-gene 
network using a previously defined method [18] and then explores 
the network using GenAMap’s network view (Figure 3).  

By default, the network graph is visualized in a hierarchically 
clustered matrix, showing a heat map of all edges between genes 
(overview first). For the yeast data it is a 5637x5637 matrix 
(Figure 3A). GenAMap weights the edges between traits, thus 
strong edges are shown as dark gray or black in the heat map, 
weak edges are shown as light gray, and no edge is represented as 
white. The hierarchical clustering ensures that strongly connected 
genes are shown next to each other in the heat map. GenAMap 
also identifies gene modules in the network, outlined in color in 
Figure 3A. Gene modules are regions of the network with many 
strongly-connected genes. The analyst clicks on the modules in 
the heat map to view results from a gene-ontology (GO) 
enrichment test for the module; the GO enrichment test allows the 
analyst to identify the common function of the different gene 
modules. Because the gene modules are enriched for common GO 
categories in this case, the analyst concludes that this gene 
network is appropriate to use in a structured association analysis 
to find SNPs associated with functionally coherent groups of 
genes.  

The analyst notices a gene cluster that is enriched for the GO 
category ribosome (p-value = 2.6e-102). He is intrigued by the 
low p-value so he zooms into this region of the network in the 
heat map (Figure 3B). He wants to explore the relationship 
between these genes, and so he switches to a node-edge view of 
the first 150 genes in this region. The analyst performs a GO 
analysis on these genes and finds that this specific set of genes are 
highly enriched for ribosome (p-value = 8.5e-163). He colors the 
genes by GO category (Figure 3C) and notices that almost every 
gene in the module is a ribosome gene. Because these genes are 
clustered together in the network, the analyst concludes that this 
module is made up of co-expressed ribosomal genes. 

In order to identify the key genes in the network, the analyst 
uses the dynamic query controls [24] in the network view to 
adjust the network threshold to add and remove edges. He moves 
the highest connected genes to the center of the network (Figure 

Figure 3. Exploring a gene network in GenAMap. (A) An overview of 

the entire network, with gene modules identified. (B) Zoomed in 

regions of the network with GO functional enrichment. (C) 

Node-edge representation of specific regions in the network 

colored by GO category.   

 



3C). He right-clicks on these genes to look them up in UniProt for 
further analysis.   

4.1.2 The network association view 

After exploring the network, the analyst uses GenAMap to run a 
structured association mapping algorithm, GFlasso, using the 
SNP, gene expression, and network data. Once the algorithm has 
completed, the analyst uses the network association view to 
explore the results (Figure 4 and 5).  

The network association view is similar to the network view, 
integrated with the genome view. As with the network view, the 
analyst can explore the overview of the data, zoom in and filter, 
and then get details on demand. The network association view 
incorporates tightly coupled coordinated views [25], allowing the 
analyst to interactively correlate between SNPs and the network. 
The analyst will use this view to get a feel for the data and find 
specific SNP-gene associations for further investigation.  

The analyst first considers GenAMap’s overview of the 
association results shown in Figure 4. This heat map shows a 
matrix of the association values. SNPs are shown along the y-axis, 
and the genes are shown along the x-axis; the traits have been 
clustered by hierarchical clustering. In this case, the yeast data 
associations are represented by a 1260x5637 matrix. Black 
represents a strong association, and white represents no 
association. For both this heat map view and the network heat 
map, the analyst can zoom in and out of the matrix through a 
series of resolutions. Each resolution is a 200 pixel by 200 pixel 
matrix; the association results initially displayed to the analyst in 
Figure 4 is at a resolution where each pixel represents six SNPs 
and 30 genes. Because the data is inherently sparse, GenAMap 
colors the pixel by the maximum association value between all 
SNPs and traits represented. This ensures that the analyst can 
focus on the signals in the data; the signals are preserved even at 
lower resolutions.  

The analyst looks at the heat map shown in Figure 4, and 
quickly gains insight into the yeast regulation patterns present in 
these results. The analyst notices the series of long (and short) 
horizontal black lines in the matrix. These lines represent 
associations between a SNP and a cluster of genes. The presence 
of such patterns indicates to the analyst that gene clusters in the 
yeast network are associated with a common SNP. Because these 
lines overlap, the analyst concludes that some gene clusters are 
associated with multiple SNPs, representing a case where multiple 
mutations affect the same set of genes.  

This view has made it visually obvious which of the gene 
clusters are associated with multiple genetic locations and 
approximately where in the genome these association lie. The 
analyst can now use his knowledge of the gene network he 
obtained from the network view to zoom into clusters of traits that 
are associated with different SNPs. Because the analyst has 
previously identified the 150 ribosome genes, he zooms into the 
part of the heat map associated with these genes and switches to 
the node-edge representation of the associations shown in Figure 
5. From the heat map view, the analyst knows that these genes are 
associated with SNPs on two chromosomes and he wants to 
explore these associations.  

In the node-edge representation of the network, the analyst can 
explore the gene structure of the network while identifying 
associations. The view is integrated with a simple genome 
browser where nodes represent SNPs [26] (bottom of Figure 5). 
The analyst can use this genome browser to switch between 
chromosomes and zoom into certain chromosomal regions.  

In this particular analysis, the analyst colors the nodes in the 
genome view by their association to the genes in the network. 
This allows him to identify the white colored SNP on 
chromosome 5, ignoring the rest of the SNPs in the genome that 
are not associated with these genes. He adjusts the network 
threshold on the network to find the highest connected genes. 
After adjusting the threshold and removing unconnected genes, he 
finds 25 highly connected genes, shown in Figure 5. The analyst 
colors these genes by their association to the SNP located on 
chromosome 5 and also consults the Manhattan plot of these 
genes. The analyst is able to recognize that all of these genes have 
some association to this SNP (because they are not colored black), 
although the signal is much stronger for many of the genes as 
some are white or light gray and some are colored darker, 
representing weaker associations. The analyst queries UniProt for 
information about these genes, and finds that YER074W is a gene 
located near this SNP in the genome. Through this analysis, the 
analyst gains important information about this SNP and genes 

Figure 4. GenAMap gives an overview of the association results 

through a heat map view where SNPs are plotted on the y axis 

and genes are plotted on the x axis.  

 

 

Figure 5. In the network association view, GenAMap shows 

interaction between genes, integrated with the association 

strengths of the genes to SNPs in the genome. 

 



associated with this SNP, directing the next steps in his 
investigation.  

4.1.3 Exploring association results through the 
association tree view 

In the previous example, the analyst was interested in associations 
to gene clusters. Often geneticists will want to explore the 
associations of a particular SNP or SNP region to find out if the 
genes associated with a SNP are actually in a gene cluster, or to 
find the strongest associations from a SNP to genes. GenAMap’s 
association tree view allows for these types of explorations 
(Figure 6). 
    In the tree view, the leaves of the tree represent genes, and other 
nodes represent the aggregation of genes descending from them. 
Each non-leaf node is labeled by the number of aggregated genes 
below the node and by a GO enrichment annotation (if the genes 
have a significant functional enrichment). By default, the nodes 
are colored by this GO annotation. The tree view only shows three 
to eight levels of the tree at a time and allows the analyst to 
browse through the tree. In the association tree view, the tree view 
is integrated with the genome view.   
    An analyst is specifically interested in a genomic region on 
chromosome 2 (base-pair 560000) in the GFlasso results. From 
the association tree view, the analyst browses to this genomic 
location, selects several SNPs in the region, and colors the tree by 
association to these SNPs. Each node in the tree is then colored by 
strength of association to these SNPs, white represents a strong 
association to the genome location and black represents no 
association. As seen in Figure 6, a non-leaf node is colored by the 
strength of the strongest association of all the traits it represents.  
   The analyst is interested to find the genes with the strongest 
associations to these SNPs. From the root of the tree, the analyst 
follows the white nodes to browse down the tree until he finds the 
genes (leaves, shown in Figure 6). Interestingly, this part of the 
tree only had two genes associated to this genomic locus. The 
analyst looks these genes up in UniProt through GenAMap’s links 
to find out what they are and why they might be affected by 
mutations in this genomic location. He also uses the genome 
browser to link to the SNP location in the Saccharomyces 
Genome Database (SGD) [27]. Further exploration in the tree will 
allow the analyst to find associations between the genes and 
SNPs, identify whether other related genes in the tree are also 
associated, and discover the common GO enrichment of 
associated branches in the tree.  

4.2 A case study on a mouse GWA dataset 

The second dataset that we consider is a mouse dataset [28]. This 
dataset has measurements for 179 clinical traits and 12546 SNPs 
for 269 mice. Using a dataset with clinical traits and SNPs allows 
geneticists to identify SNPs that are associated with a particular 
disease trait of interest. In this example, we will focus on traits 
related to asthma in mice.  

4.2.1 The population structure view 

After the analyst loads the data into GenAMap, he is ready to 
begin his analysis. From the analyst’s knowledge of the data 
source, he believes that there is population structure in the data. 
He explores the population structure through the population 
structure view (the population structure view is integrated into the 
top half of Figure 7) after running machine learning to generate 
population structure [29] and eigenvalues from the data. 
Individuals are plotted according to their eigenvalues, and colored 
according to population assignment. The analyst dynamically 
colors the plot for different numbers of populations. He can see 
the number of individuals assigned to each population using a pie 
chart. The analyst finds that the mice split up into four distinct 
subpopulations across the first five eigenvalues.  

4.2.2 The population association view 

In the population association view (Figure 7), the analyst explores 
the results from MPGL on the mouse data with four populations. 
GenAMap integrates the population structure view, the network 
view, and the genome view to help the analyst explore these 
associations. The analyst has explored the overall network and 
identified seven traits related to asthma for further exploration.   

The analyst wants to find the SNPs associated with these traits. 
He colors the genome by association to these traits, and identifies 
a SNP on chromosome 19 that is strongly associated to at least 
one trait. He selects this SNP, able now to ignore the rest of the 
genome, and colors the traits in the network that are associated to 
this SNP. Each trait is colored by the color of the population with 
the largest beta value (association). The analyst finds four asthma 
traits associated with this SNP, with the strongest association in 
each case being the association to population #4. The analyst 
investigates the association of each of these traits one-by-one by 
adding the Manhattan plot to the genome view. For the trait 
“breath frequency,” the analyst finds that population #4 and #1 are 
strongly associated with this SNP, more than population #2 and 
#3. The analyst investigates this association by linking to dbSNP 
through GenAMap. He suspects that this SNP on chromosome 19, 
or one close-by, plays a role in asthma in mice.  

5 IMPLEMENTATION 

GenAMap is implemented using Java SE. GenAMap 
visualizations are built by the integration and expansion of three 
visualization toolkits publically available [30, 31, 32].  

6 USER STUDY 

We performed a preliminary qualitative user study to assess the 
utility of our visualization techniques and to get feedback on steps 
we could take to improve the visualizations. We recruited PhD 
students and post-docs with specific research interests in genetics 
from two universities. We had eight volunteers participate in the 
study: seven PhD students and one post-doc. There were four 
male participants, and four females. All of the participants are 
involved in genetics research with an emphasis on machine 
learning development. We assessed the level of expertise in 
association mapping of the candidates based on three criteria: 1) 
self-rated expertise in association mapping, 2) self-reported 
participation in an association mapping project before, and 3) the 

Figure 6. In the association tree view, the analyst explores genes 

structured as a tree in order to identify functionally relevant 

branches of the tree that are associated with a genomic region. 



ability to explain what an eQTL study entails. Using these criteria, 
our participants consisted of four experts in association mapping 
(met two or more criteria) and four non-experts. 

Each participant met with an investigator privately in a standard 
office space. The investigator guided them through five different 
tutorials. GenAMap was run on a standard desktop-computer with 
a 22-inch screen. Participants were encouraged to think-aloud as 
they used GenAMap; they were given semi-structured tasks to 
explore the tools with guidance and on their own. We asked for 
verbal feedback at each stage of the study. Sessions lasted about 
an hour; the investigator took notes of all comments throughout 
the session, and users filled in a survey upon completing the 
evaluation.  

6.1 Survey results 

Our post-survey had twelve questions where the user had to rate 
the software on a scale from 1-to-5. Overall, the users reported 
that GenAMap allowed them to explore association results better 
than other tools (average score 5.0) and that GenAMap allowed 
them to get an overall feel for the structure in the data (4.75). 
They all agreed that GenAMap lead to insight that was not 
available using other tools (4.71), and that they would recommend 
GenAMap to other researchers (4.75). The lowest scores from the 
survey were in regards to the usability of the system. While the 
utility scores just mentioned were high, the participants did not 
agree as strongly that GenAMap was easy to learn (average score 
3.75), or that the visualization strategies were always easy to 
understand (4.0). However, the lowest rating that we had from any 
user was a score of 3 for any of these questions.  

In the free response part of the survey, the users were prompted 
for the most useful part of GenAMap that they explored. Four of 
the users specifically mentioned the incorporation of outside data, 
including GO category analysis and external databases. In fact, 
when asked specifically about external links, seven of the 
participants responded very positively. When asked what views 
led to the greatest insight, seven participants specifically 
mentioned a visualization strategy that incorporated multiple 
views that allowed them to explore the association results between 
the genome and the traits represented in some structure.  

6.2 Think-aloud comments and results 

We presented three integrated views to explore the results of 
association analysis to the users: the association tree view 
(Section 4.1.3), the population association view (Section 4.2.2), 
and the network association view (Section 4.1.2). None of the 

users had seen association results presented in such a way 
previously.  

All the users reported that they liked each of the visualizations. 
The tree view was met with some reservation, but in the end users 
found that they could think of different uses for it. The users gave 
us many ideas of different queries they wanted to be added to 
explore the tree, and one user specified that the tree view was 
their favorite visualization technique. All the users mentioned that 
GenAMap was an improvement over how they would normally do 
these types of studies. For example, six of the users mentioned 
that the tree view was a more convenient way to explore the 
results than MATLAB or another command line interface.  

Users also liked the integration of the different views of the 
structure of the data. Five users specifically mentioned that they 
would have had to use a combination of tools or done the work by 
hand in order to complete a similar analysis. One user remarked, 
“By myself I would have to go back and forth between the human 
genome browser and a network viewer. It is really nice that it is 
integrated into the software.” Five of the users specifically 
mentioned that they liked being able to explore the genome and 
the gene-gene network in the same integrated tool. One user said, 
“The ability to interact with the network and the genome is 
excellent,” and another commented that “it really puts it into 
perspective.” Five users specifically mentioned that using 
GenAMap was easier, more convenient, and saved time by 
allowing them to more systematically explore the data.  

Many of the feature requests the users offered were related to 
documentation and exporting data. Five users wanted better 
documentation and links incorporated into the software so they 
could more easily identify what different plots and charts 
represented. Additionally, five users mentioned that they would 
have liked the ability to export data from GenAMap for further 
analysis using more specialized tools.  

7 CONCLUSIONS AND FUTURE WORK 

Structured association mapping is a powerful machine learning 
approach to discover weak signals in association mapping 
datasets. Because the results from these analyses are complex, 
adequate visualization techniques are necessary to explore the 
structure of the traits and genome to find important association 
signals. We have developed visualizations and integrated machine 
learning into a visual analytics system called GenAMap, which 
enables analysts to explore the results from structured association 
mapping studies. GenAMap’s visualizations give analysts an 
overview of the results and lead them to focus on important 
signals. We demonstrated these visualizations through case 
studies, and have provided further support through a user study.  

The results from our user study suggest that GenAMap made 
analyzing results from structured association mapping easier and 
saved time, while providing additional insight. The users in the 
study liked how GenAMap incorporated multiple views to provide 
a feel for the structure of the genome and the traits while 
exploring the associations. They felt that the coordinated 
visualization helped to put things into perspective and avoided 
unnecessary and awkward integration of specialized tools. Users 
also felt that GenAMap helped them to focus their attention on 
important associations and that GenAMap was an improvement 
over the command line scripts they normally use. GenAMap also 
has several resources to link to outside information such as GO 
annotation, SNP pages, and UniProt. These proved to be a key 
feature in GenAMap to aid researchers in the analysis of the data. 
GenAMap was able to help the users focus their attention on the 
important signals, and then quickly direct their attention to the 
outside sources that could explain the signals.  

Despite the improvement that GenAMap has over current 
applications, we feel that there is still room for improvement. 

Figure 7. The population association view is an integrated view 

enabling the exploration of association strengths across 

different populations.  

 



Specifically, we plan to continue to develop GenAMap to add 
more links to outside information, as requested by the users. 
Additionally, even though GenAMap incorporates much of the 
pipeline for association analysis, the participants in our study 
suggested that they need to export the data for additional 
specialized analysis. We plan to incorporate this feature into the 
tool in future releases. Additionally, we plan to work to provide 
more legends, keys, and consistency to the tool based on user 
feedback. Although users were able to understand the 
visualization strategies in GenAMap, many felt that with a few 
more legends, color bars, and tooltips, the tool would be easier to 
pick up and use without consulting documentation or tutorials.  

Our experience with GenAMap therefore suggests these five 
general rules for building an adequate biological visualization 
system: 1) the ability to focus the user’s attention on the important 
information in a complex data sets, especially large arrays of 
multi-dimensional data, 2) the ability to coordinate multiple views 
when analyzing connections between different data types, 3) the 
ability to link out directly from the tool to outside information and 
biological databases in order to strongly integrate into existing 
work flows, 4) the ability to export intermediate results for further 
specialized analysis, and 5) intuitive displays with legends, 
tooltips, and color bars to enable the user to understand the data as 
it is presented to them. We hope that these guidelines will prove 
useful in the development of future biological visualizations. 

We further expect that the development of GenAMap will make 
the analysis of structured association mapping available to more 
genetics researchers by moving the analysis away from command 
line scripts into a visual system where users can explore 
associations, structure, and small-scale interaction.  
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