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ABSTRACT
Topic models are effective probabilistic tools for processing
large collections of unstructured data. With the exponential
growth of modern industrial data, and consequentially also
with our ambition to explore much bigger models, there is
a real pressing need to significantly scale up topic model-
ing algorithms, which has been taken up in lots of previous
works, culminating in the recent fast Markov chain Monte
Carlo sampling algorithms in [10, 22] for the unsupervised
latent Dirichlet allocation (LDA) formulations.

In this work we extend the recent sampling advances for
unsupervised LDA models to supervised tasks. We focus on
the Gibbs MedLDA model [26] that is able to simultane-
ously discover latent structures and make accurate predic-
tions. By combining a set of sampling techniques we are
able to reduce the O(K3 + DK2 + DN̄K) complexity in
[26] to O(DK +DN̄) when there are K topics and D docu-
ments with average length N̄ . To our best knowledge, this is
the first linear time sampling algorithm for supervised topic
models. Our algorithm requires minimal modifications to
incorporate most loss functions in a variety of supervised
tasks, and we observe in our experiments an order of mag-
nitude speedup over the current state-of-the-art implemen-
tation, while achieving similar prediction performances.

The open-source C++ implementation of the proposed
algorithm is available at https://github.com/xunzheng/

light_medlda.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Statistical Computing

General Terms
Algorithms, Experimentation, Performance

Keywords
Inference; MCMC; Topic Models; Large Margin Classifica-
tion; Regression; Scale Mixtures

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
KDD’15, August 11-14, 2015, Sydney, NSW, Australia.
c© 2015 ACM. ISBN 978-1-4503-3664-2/15/08 ...$15.00.

DOI: http://dx.doi.org/10.1145/2783258.2783371.

1. INTRODUCTION
Bayesian methods have been extremely influential in the

past twenty years, thanks to modern Markov chain Monte
Carlo sampling advances that free Bayesians from making
strong conjugacy assumptions and render posterior distri-
butions amenable to efficient analysis. One prominent ex-
ample is the topic models, such as the latent Dirichlet anal-
ysis [4, LDA]. Through explicitly modeling the latent prob-
abilistic relations among observed variables, topic models
can effectively reduce large unstructured categorical data
into semantically meaningful and interpretable low dimen-
sional representations. Partly due to its ability in resolving
the polysemy problem (i.e., the same word can have dif-
ferent meanings under different context), topic models have
been widely used in many practical applications, for instance
genetics [17], image analysis [11], text mining [4, 8], collabo-
rative filtering [5], prediction tasks [3, 23], and many more.

One significant challenge we face when applying topic
models on real industrial data is the scalability issue. On
one hand, technology innovations have made it possible to
collect very large amount of industrial scale data at an un-
precedented rate. On the other hand, the need to capture
more subtle information hidden in the data requires bigger,
more sophisticated mathematical models, leading eventually
to more unknown parameters. Consequently, there has been
a lot of recent work aiming at scaling up various topic models
to very large datasets and very big models. Sampling algo-
rithms, in particular, Markov chain Monte Carlo (MCMC)
methods, have played an eminent role in this direction.

Since in this work we mostly focus on the LDA model (and
related), and due to space limits, we can only mention a few
inspiring contributions in this regime. While the original
LDA model relied on the variational inference method [4],
soon [8] proposed the first efficient collapsed Gibbs sampling
algorithm that scales much better. Exploiting the observa-
tion that only few topics appear in a certain document and
few words are assigned to a certain topic, the SparseLDA
[21] further reduces the sampling cost of [8]. Another signif-
icant contribution is the AliasLDA [10], which made explicit
the crucial insight that model parameters only change slowly
during sampling. By a masterful combination of the inde-
pendent Metropolis-Hastings algorithm [9, 12] with Walker’s
alias method [20] for sampling discrete proposals in amor-
tized constant time, AliasLDA was able to enjoy even bet-
ter efficiency. Lastly, built on the insight of AliasLDA, the
very recent LightLDA [22] accomplished the first linear time
sampling algorithm for LDA. Impressive as they are, the
aforementioned works suffer one common drawback: they
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all work on the unsupervised LDA model, hence are not
able to exploit any supervised information (e.g . labels, tags,
annotations, etc.).

The Gibbs MedLDA [24], on the other hand, is a hy-
brid model that combines the unsupervised LDA represen-
tation and the supervised large-margin classifier under the
maximum entropy principle. Compared with other super-
vised LDA formulations [e.g . 3, 23], Gibbs MedLDA often
leads to better performance, and more importantly, it can
directly exploit modern MCMC techniques without posit-
ing any restrictive assumption on the posterior distribution.
The state-of-the-art implementation of Gibbs MedLDA, in
[24, 26], costs O(K3 + DK2 + DN̄K) when there are K
topics and D documents with average length N̄ . Although
still faster than existing supervised LDA alternatives, the su-
perlinear dependence on K prevents Gibbs MedLDA from
scaling up to very large datasets or even moderately large
models (e.g . K around a few tens to hundreds).

The main goal of this work is to extend the recent fast
sampling algorithms [10, 22] from the unsupervised LDA to
supervised tasks. Throughout we use the Gibbs MedLDA
as a running example to demonstrate the main ideas, for
a). Gibbs MedLDA has already been shown to be very ef-
fective in various supervised tasks [24]; b). Gibbs MedLDA
is very flexible, allowing a unified treatment of binary clas-
sification, multi-task learning, multi-label classification, re-
gression, etc.; c). The mathematical formulation of Gibbs
MedLDA imposes a fair amount of computational challenges,
thus makes up an ideal model for demonstrating the tech-
niques we have developed. More precisely, we make the
following contributions: 1). For the unsupervised latent
representation part, we extend the factorized proposal in
LightLDA [22] to regularized posterior distributions. This
requires building a local proposal per document and we show
that its complexity can still be amortized to O(1). 2). For
the supervised classifier part, we propose to apply the Gibbs
sampler to draw the large-margin classifier, completely by-
passing the costly need of forming and inverting the preci-
sion matrix. 3). By combing a set of sampling techniques
we are able to significantly reduce the complexity of Gibbs
MedLDA from O(K3 + DK2 + DN̄K) to O(DK + DN̄),
without altering the posterior distribution at all. To our best
knowledge, this is the first linear time sampling algorithm
for supervised LDA models. 4). Building on the classical re-
sult on scale-mixtures, we present a unified treatment of all
common loss functions in supervised tasks. With minimal
modifications this results in the fastest sampling algorithm
for a variety of losses in classification, multi-task learning,
regression, etc. 5). Through extensive experiments we verify
that our proposed linear time sampling algorithm converges
an order of magnitude faster than the current state-of-the-
art implementation while achieving similar prediction accu-
racy. The improvement is expected to be even larger when
the model size grows.

Paper Outline.
We first collect some background material on MCMC sam-

pling in §2.1 for later use. Then in §2.2 we recall the Gibbs
MedLDA model and in §2.3 we review some recent sampling
advances for LDA that inspired this work. We present in §3
our main result, a linear time sampling algorithm for super-
vised LDA models. Extensions and experiments are given
in §4 and §5, respectively. Finally, we conclude in §6.

2. PRELIMINARIES
We begin by briefly reviewing some MCMC background,

in particular the composition principle for transition kernels.
Next, we recall the Gibbs MedLDA model and review some
recent fast sampling advances for LDA.

2.1 MH and MCMC Sampling
For probability density functions p(·) that are (computa-

tionally) hard to sample directly, the Metropolis-Hastings
(MH) algorithm [9, 12] offers a very convenient alternative.
It repeats the following steps using a proposal density q(·|·):
• Draw Y ∼ q(·|X);
• Set X = Y with probability

A = A(X,Y ) = min

{
p(Y )q(X|Y )

p(X)q(Y |X)
, 1

}
. (1)

Of course, MH is efficient only when it is easy to draw from
the proposal density q(·|X) and when the acceptance prob-
ability A is large. The two, as defined, are at odds with
each other: the proposal that provides the largest accep-
tance ratio (i.e. A ≡ 1) is the density q(·|X) = q(·) = p(·),
which is what we avoid to draw directly in the first place.
Nevertheless, by carefully balancing the heaviness of draw-
ing from the proposal and the probability of accepting the
proposed sample Y , we can achieve great flexibility and ef-
ficiency. In this work we choose the independent Metropolis
algorithm, i.e. the proposal q(Y |X) = q(Y ) does not de-
pend on X. Since the target density p(·) appears in ratio
in the acceptance probability (1), we need only know it up
to a (multiplicative) universal constant, which can be very
convenient for Bayesian posterior analysis.

Underlying the MH algorithm is a Markov chain with a
specific transition kernel (e.g . transition probability matrix)

K(x, y) = A(x, y) · q(y|x) + (1− r(x)) · δx(y), (2)

where r(x) =
∫
A(x, y)q(y|x)dy and δx denotes the Dirac

point mass at x. By simulating the Markov chain the sample
X will eventually follow the (unique) stationary distribution
π(·) = p(·), under mild regularity conditions. More gener-
ally, under the name Markov chain Monte Carlo (MCMC),
one can simulate any Markov chain (not necessarily con-
structed as in the MH algorithm) as long as its stationary
density π(·) coincides (uniquely) with the target density p(·).
Here again we face the tradeoff between the convenience of
drawing from the chain K(·, ·) and its mixing rate of con-
vergence to the target density p(·). The modern success
of Bayesian inference, including this work, heavily relies on
carefully balancing this tradeoff.

One great flexibility of MCMC is that we can compose
different transition kernels, to achieve better performance.
The underlying idea is extremely simple:

Theorem 1 (Composition Principle, e.g. [19]). If
both transition kernels K1 and K2 have p(·) as stationary
density, so do K1◦K2 and γK1+(1−γ)K2 for any γ ∈ [0, 1].

The former kernel K1 ◦K2 corresponds to drawing cyclically
from K1 and K2 while the latter kernel γK1 + (1 − γ)K2

corresponds to drawing from K1 with probability γ or K2

otherwise. The point is that whenever it is convenient to
construct multiple good transition kernels for our problem,
we do not have to make a choice among them: we use them
all through composition. This can dramatically improve the
mixing property of the underlying Markov chain (without
complicating the sampling procedure much). It is clear that



the composition principle extends immediately to more than
two kernels, more precisely three in our case.

Perhaps the most famous example of the composition prin-
ciple is the Gibbs sampler [7]: In order to draw from the joint
density Z = (Z1, Z2) ∼ p(·) we sample cyclically from the
conditional kernel

K(f(X), Z) = Pr
(
Z | f(Z) = f(X)

)
, (3)

using two different functions f1(x1, x2) = x1, f2(x1, x2) =
x2, upon which we have the familiar rule:

X2 ∼ K1(X1, X2) = p(X2|X1), X1 ∼ K2(X2, X1) = p(X1|X2).

Note that neither kernel K1 or K2 has the target density
p(·) as the unique stationary density, but after composition
the uniqueness is often automatic. The Gibbs sampler also
opens the possibility for data augmentation [18]: Suppose we
want to sample from p(X), which is computationally inten-
sive. By augmenting with “virtual” data W we can sample
the joint density p(X,W ) using the Gibbs sampler, provided
that the conditional densities p(X|W ) and p(W |X) are easy
to sample from. Dropping W we get the desired sample X
that follows p(·) after burn-in.

Our main goal is to carefully combine the above MCMC
sampling techniques: (independent) MH, composition prin-
ciple, Gibbs sampler, and data augmentation, so as to sig-
nificantly speed up supervised topic model training on very
large datasets and very big models.

2.2 Gibbs MedLDA
Gibbs MedLDA [24] is a hybrid generative/discriminative

model that jointly learns the latent topic representations
(unsupervised) and large-margin classifiers for enhanced pre-
diction (supervised). To set up the model, let V = {1, . . . , V }
index the V words in our vocabulary, and D = {(wd, yd)}Dd=1

be the labeled training set, where wd = {wdi}Nd
i=1 is the set

of tokens appearing in document d, i.e., each wdi ∈ V. For
ease of presentation, yd ∈ Y = {−1,+1} indicates the (bi-
nary) label of document d. We will extend to the multi-class
and regression setting in §4.

Gibbs MedLDA consists of two components: a latent Dirich-
let allocation (LDA) [4] likelihood model that describes the

input documents W = {wd}Dd=1, and a stochastic classi-

fier that takes supervising signal y = {yd}Dd=1 into account.
Specifically, LDA [4] posits each document as an admixture
of K topics, where each topic Φk, k = 1, . . . ,K, represents a
multinomial distribution over the V words. The generative
process of the d-th document proceeds as:

1. Draw topic mixing coefficients θd ∼ Dir (α);
2. For each position i = 1, . . . , Nd, in the document:

(a) Draw topic assignment zdi ∼ Mult (θd);

(b) Draw token wdi ∼ Mult (Φzdi);

where Dir (·) denotes the Dirichlet distribution with the hy-
perparameter α ∈ RK+ controlling its shape, Mult (·) is the
single-trial multinomial distribution, and Φzdi denotes the
topic indexed by the current topic assignment zdi. In a fully
Bayesian treatment, topics themselves are considered as ran-
dom variables and assumed to be generated from the con-
jugate prior, i.e., for all k, Φk ∼ Dir (β). Throughout we

denote N̄ = 1
D

∑D
d=1Nd as the average number of tokens

appearing in documents.
Let Θ = {θd}Dd=1 be the set of topic proportions and Z =

{zd}Dd=1 be the set of topic assignments, where zd = {zdi}Nd
i=1

represents the topic assignments in document d. Since only
the tokens W are observed, LDA infers the posterior distri-
bution for other unobserved latent variables:

p(Θ,Z,Φ|W) ∝ p0(Θ,Z,Φ)p(W|Z,Φ), (4)

where p0(Θ,Z,Φ) = p0(Z|Θ)p0(Θ|α)p0(Φ|β) is the prior
distribution and p(W|Z,Φ) stands for the multinomial like-
lihood described above. Clearly, the posterior distribution
is the unique solution of the following variational problem:

minimizeq KL [q(Θ,Z,Φ)‖p(Θ,Z,Φ|W)] , (5)

where, and in the following, the minimization is performed
w.r.t. all probability densities, and KL [p‖q] measures the
Kullback-Leibler divergence between density p and q. Trivial
as it is, the variational form of Bayesian inference makes
it possible to add regularizations to the posterior. Using
this idea, Gibbs MedLDA incorporates a stochastic classifier,
represented as the random variable η, to the objective (5):

minimizeq L
(
q(η,Θ,Z,Φ)

)
+ 2λ · R

(
q(η,Θ,Z,Φ)

)
, (6)

where L(q) = KL [q(η,Θ,Z,Φ)‖p(η,Θ,Z,Φ|W)] is the term

in (5), and R(q) =
∑D
d=1 Eq [(1− ydf(η, zd))+] is the ex-

pected hinge loss induced by the stochastic linear discrim-
inant function1 f(η, zd) = η>z̄d built on normalized topic

counts z̄d = 1
Nd

∑Nd
i=1 zdi. Lastly, λ is the regularization

constant that balances the two objectives in (6).
The regularizer R in (6) couples the (unsupervised) latent

representation Z with the (supervised) classifier η, leading
to more pronounced prediction power. Importantly, since R
is simply a linear functional of the posterior distribution, we
can still derive a closed-form solution from (6):

q(η,Θ,Z,Φ) ∝ p(η,Θ,Z,Φ|W) · φ(y|Z,η), (7)

where p(·) is the usual posterior in (4), and

φ(y|Z,η) ∝
D∏
d=1

exp
(
− 2λ ·max{ζd, 0}

)
(8)

ζd = 1− yd · f(η, zd) = 1− yd · η>z̄d (9)

is the extra psudo-likelihood term induced by the regularizer
R. The inference of the latent variables η,Θ,Z,Φ consists
of repeatedly drawing samples from the (regularized) pos-
terior density (7). The key insight, originated from [8] for
LDA, is that the usual posterior p(η,Θ,Z,Φ|W) can be
efficiently sampled using the Gibbs sampler mentioned in
§2.1. For Gibbs MedLDA, the extra term φ(·) in (8) creates
additional difficulty: neither itself or its conditional given
all other variables can be easily sampled. Fortunately, as
shown in [15], using data augmentation with an extra scale
random variable ξ, the pseudo-likelihood can be written as
the marginal of the scale-mixture of normal densities:

φ(y, ξ|Z,η) ∝
D∏
d=1

1√
2πξ3d

exp

(
− (1 + λζdξd)

2

2ξd

)
, (10)

where recall that ζd is defined in (9). The conditionals of
the augmented density can then be easily sampled (more
details below). Overall, the state-of-the-art implementation

1In contrast, the original MedLDA in [23] considered the

expected linear discriminant function
∑D
d=1(1−ydEq[z̄>d η])+,

which, unfortunately, is computationally more challenging.
By Jensen’s inequality, it is clear that the objective of Gibbs
MedLDA upper bounds that of MedLDA.



in [24, 26] costs O(K3 + DK2 + DN̄K) for an entire cycle
of Gibbs sampling. We will significantly bring down this
complexity to O(DK+DN̄), based on a careful combination
of MCMC techniques and recent fast sampling algorithms
for LDA, which we briefly review next.

2.3 Previous Work on Fast Sampling for LDA
The original LDA formulation [4] was solved using vari-

ational inference, under restrictive mean field assumptions.
Later on [8] provided the first efficient sampling method,
which largely boosts the interest in topic models. More pre-
cisely, [8] noted that the latent variables Θ and Φ, due to
conjugacy, can be analytically integrated out, leaving only
the topic assignment Z. Then the (collapsed) Gibbs sam-
pler can be efficiently applied, leading to the (conditional)
multinomial distribution2:

p(zdi = k|rest) ∝ (n−dikd + αk) ·
n−dikw + βw

(n−dik + β̄V )
, (11)

where nkd counts the number of tokens in document d that
are assigned to topic k, nkw counts the number of word
w assigned to topic k, and nk counts the number of total
words assigned to topic k. The superscript −di means ex-
cluding the current token from the respective counts, and
β̄ = 1

V

∑V
w=1 βw is the average. Directly drawing from the

multinomial (11) costs O(K). This is costly when K is large
and a lot of recent work has tried to improve it.

The SparseLDA [21] decomposes the multinomial in (11)
into three parts in order to exploit the sparsity in the topic
counts nkd and nkw, i.e., only few topics appear in a certain
document and only few words appear in a certain topic. A
significant step is taken in AliasLDA [10] towards a constant
sampling cost. It used the independent MH algorithm with
a proposal consisting of two parts: the first part, essentially
pw(k) in (12) below, can be constructed using the alias table
[20] in O(K) time, and the second part exploits sparsity in
nkd hence has smaller complexity than O(K). Since the first
part, the word proposal pw(k), is shared by all documents,
it can be re-used K times, leading to the amortized O(1)
complexity. Overall the complexity is dominated by the av-
erage number of topics appearing in any document: smaller
than O(K) but still bigger than O(1). Finally, the recent
LightLDA [22] was able to achieve O(1) complexity, based
on the composition principle mentioned in §2.1. In words,
it considered the following factorized proposal in MH:

q(zdi = k|rest) ∝ (nkd + αk)︸ ︷︷ ︸
=pd(k)

× (nkw + βw)

(nk + β̄V )︸ ︷︷ ︸
=pw(k)

. (12)

As in AliasLDA [10], the word proposal pw(k) is shared by
all documents hence can be sampled using alias table in
amortized O(1) time. The document proposal pd(k) is lo-
cal to each document, but can be sampled almost for free:
simply picking a random token in document d and using its
topic assignment takes care of the nkd term. The constant
term αk has little influence on the effect and efficiency of the
sampling procedure. Using the composition principle (c.f .
Theorem 1), LightLDA cyclically samples from the word
proposal and the document proposal, and achieves amor-
tized O(1) complexity.
2The counts nkd for topic-document pairs and nkw for topic-
word pairs are different objects, hence we use slightly differ-
ent fonts for them to reduce confusion.

We mention that another line of work tries to scale up
LDA by parallelization, see e.g . [1, 14, 22]. Conceivably our
sampling algorithm for Gibbs MedLDA below can also be
parallelized, and will be investigated in our future work.

3. LIGHTWEIGHT GIBBS MEDLDA
As mentioned above, the state-of-the-art implementation

of Gibbs MedLDA in [24] costs O(K3 + DK2 + DN̄K) in
a full cycle. The superlinear dependence on K, the num-
ber of topics, prevents Gibbs MedLDA from scaling to large
text corpus where a moderately large K is needed to catch
the long tail behavior. Moreover, a larger K, resulting in
more latent features, may also be beneficial for training the
large-margin classifier. Considering the excellent discrimi-
native power of Gibbs MedLDA and the recent impressive
advances for LDA, it is thus very desirable to develop a fast
linear time sampling algorithm for the former as well. We
provide such an algorithm in this section, effectively reduc-
ing the complexity to O(DK + DN̄), which is clearly the
best possible. As we demonstrate in the experiments (§5),
this improvement is already significant for K around a few
tens to hundreds.

3.1 The Regularized Posterior: Recalled
For ease of reference, let us first recall the regularized

posterior density in Gibbs MedLDA (c.f . §2.2):

q(η, ξ,Z|W) ∝ p0(η)

[
D∏
d=1

B(n·d + α)

B(α)

]
K∏
k=1

B(nk· + β)

B(β)

D∏
d=1

1√
2πξ3d

exp

(
− (1 + λζdξd)

2

2ξd

)
, (13)

where B(·) is the multivariate Beta function, nkd is the num-
ber of tokens in document d assigned to topic k, n·d =
{nkd}Kk=1 is the topic counts of document d, nkw is the num-

ber of word w assigned to topic k, and nk· = {nkw}Vw=1

is the word counts of topic k. Following [8] we have used
conjugacy to analytically integrate out the topic mixing co-
efficients Θ and topic distribution Φ. The augmented vari-
able ξ is introduced to help sampling the conditional den-
sity of η, the large-margin classifier. Recall from (9) that
ζd = 1 − ydη>z̄d represents the margin of the classifier on
document d. Lastly, we impose the normal distribution prior
p0(η) =

∏K
k=1N (ηk; 0, ν−1) on the classifier η.

As in [24], we will use the Gibbs sampler mentioned in §2.1
to sample from the posterior q(·). The individual sampling
steps for each conditional density, with substantial improve-
ments upon [24], are detailed in the next three subsections.

3.2 Sampling the Augmented Variable ξ

Recall that ξ is augmented, as “virtual data”, to help sam-
pling the classifier η below. Its conditional density, given
both Z and η, factorizes among documents with each coor-
dinate following the inverse Gaussian distribution:

p(ξd|Z,η) ∝ 1√
2πξ3d

exp

(
− (1 + λ|ζd| · ξd)2

2ξd

)
, (14)

whose mean and shape parameters are respectively 1
λ|ζd|

and

1. Using the root splitting technique in [13] we can draw
from the inverse Gaussian distribution in O(1) time. This
step is the same as in [24], and costs in total O(D) time.



3.3 Sampling the Topic Assignment Z

This part differs substantially from [24] and consists of the
first key component towards the claimed linear time sam-
pling algorithm. Writing out the conditional density again:

p(zdi = k|rest)∝(n−dikd +αk)·
n−dikw + βw

n−dik + β̄V
· exp (gd(ηk)) , (15)

where the following definitions are adopted throughout:

gd(ηk) = λ
yd(1 + λξd)ηk

Nd
− λ2ξd

η2k + 2ηkm
−di
d

2N2
d

(16)

m−did =

K∑
k=1

ηkn
−di
kd . (17)

Like other counts, the classifier re-weighted count m−did can
be incrementally updated in O(1) time within each docu-
ment d. Directly sampling the above multinomial, as is
done in [24], costs O(K). Instead, inspired by the recent
LightLDA [22], we turn to the independent MH (§2.1) with
the ideal factorized proposal:

f(zdi = k|rest) ∝ (ñkd + αk)︸ ︷︷ ︸
pd(k)

· ñkw + βw

ñk + β̄V︸ ︷︷ ︸
pw(k)

· exp {g̃d(ηk)}︸ ︷︷ ︸
pe(k)

. (18)

Note the similarity with the true conditional (15). However,
directly drawing from the ideal proposal f(·) is still costly.
The key is to “freeze” the proposal (explaining our tilde no-
tation) so that we can amortize computation [10]. In details,
we use Walker’s method [20] to build an alias table for the
proposal f(·). This takes O(K) time, but subsequent draw-
ing from the alias table costs only O(1). Thus if we recycle
the alias table for O(K) times the total complexity can be
amortized to O(1). The independent MH is then employed
to account for the “frozen” hence obsolete proposal, leaving
the stationary density unchanged. After recycling the alias
table for O(K) times, we rebuild it using the fresh counts.

The alias method we described above suffers from one
drawback though. It involves all three counts: the topic-
document pair ñkd, the topic-word pair ñkw, and the classi-
fier re-weighted count m̃d. Thus during sampling whenever
we switch to a different document or word, using the obsolete
proposal in (18) will result in low acceptance. To address
this issue, we follow the approach in LightLDA [22] to split
the proposal into three parts: the doc-proposal pd(k), the
word-proposal pw(k), and the exp-proposal pe(k). We build
an (independent) MH Markov chain for each proposal, and
use the composition principle (Theorem 1) to combine them.

Doc-proposal: The doc-proposal pd(k) can be sampled
in O(1) time as follows. We further split it into two parts,
the ñkd term and the constant αk term. Since the sum ñd :=∑
k ñkd can be incrementally maintained in O(1) time, we

first flip a coin (with bias ñd/
∑
k αk) to decide which part

to sample from. For moderately large α, most time we will
be sampling the ñkd part, which is extremely simple: given
the topic assignments zd, we only need to draw a random
token in document d and use its topic assignment. For the
constant term αk, we use the alias method [20] that builds
the alias table in O(K) time but repeated re-cycling of the
table amortizes the complexity down to O(1). Note that
this alias table can even be shared between documents. The
acceptance probability required in the independent MH (c.f .

(1)), say transitioning from state s to state t, is given by

Ad=min

{
(n−ditd + αt)(n

−di
tw + βw)(n−dis + β̄V ) exp(gd(ηt))

(n−disd + αs)(n
−di
sw + βw)(n−dit + β̄V ) exp(gd(ηs))

× ñsd + αs
ñtd + αt

, 1

}
, (19)

which is easily evaluated in O(1) time after incrementally
bookkeeping the counts and the classifier re-weighted count
md (c.f . (16)). Thus the overall sampling time for the doc-
proposal is amortized to O(1) per token.

Word-proposal: The word proposal pw(k) is handled
using the alias method [20]. We construct its alias table in
O(K) time but can re-use the table for drawing K samples
in O(1) time each. Note that the word-proposal is shared
among all documents, thus even in the very unlucky case
where a certain word only appears say once in document d,
its alias table can still be re-used in other documents. There-
fore the O(K) time spent on building the table is amortized
again to O(1) per token. The acceptance probability

Aw=min

{
(n−ditd + αt)(n

−di
tw + βw)(n−dis + β̄V ) exp(gd(ηt))

(n−disd + αs)(n
−di
sw + βw)(n−dit + β̄V ) exp(gd(ηs))

× (ñsw + βs)(ñt + β̄V )

(ñtw + βt)(ñs + β̄V )
, 1

}
(20)

is evaluated inO(1) time similarly as that of the doc-proposal.
Exp-proposal: We use again the alias method for the

exp-proposal pe(k). The key observations here are: 1). The
classifier re-weighted count m−did can be easily evaluated in
O(1) time after bookkeeping md; 2). The alias table of the
exp-proposal, while local to each document, can be re-used
for other tokens in the same document, therefore the O(K)
time spent in building the table is amortized to O(1). The
acceptance probability

Ae=min

{
(n−ditd + αt)(n

−di
tw + βw)(n−dis + β̄V ) exp(gd(ηt))

(n−disd + αs)(n
−di
sw + βw)(n−dit + β̄V ) exp(gd(ηs))

× exp(g̃d(ηs))

exp(g̃d(ηt))
, 1

}
(21)

again is easily evaluated in O(1) time. Note that the ex-
ponential terms above do not cancel out because the tilde
terms rely on the slightly obsolete count m−did .

Proposal composition: After having the three propos-
als described above constructed, we use the composition
principle (c.f . Theorem 1) to combine them. In the ex-
periments, we will compare the cyclic combination and the
mixture combination (with equal odds). For each token, we
can even iterate the composed transition kernel for a small
number of times (say 3). The overall time is O(DK +DN̄),
where the first factor comes from building the alias table in
each document and the second factor is simply the number
of tokens we must process in each full cycle. We remind
that although each proposal only takes care of a part of the
full conditional, its acceptance probability in MH restores
stationarity, that is, we never alter the stationary density.
Thus after burn-in we are still sampling the true (regular-
ized) posterior. This well illustrates the flexibility of MCMC
and is the key to achieve linear time sampling here.

3.4 Sampling the Classifier η

Lastly we show how to sample the classifier weight η again
in linear time. Since we assume isotropic Gaussian prior



p0(η) = N
(
η; 0, ν−1I

)
, the conditional density of η, given

all other latent variables, is again Gaussian:

η|Z, ξ ∼ N
(
µ̃,Ξ−1) , (22)

where the posterior mean µ̃ = Ξ−1Zu and the precision ma-
trix Ξ = νI + λ2∑

d ξdz̄dz̄
>
d , where u ∈ RD with the d-th

entry ud = λyd(1 + λξd). Note that forming the precision
matrix Ξ costs O(K2D); inverting it to get the covariance
matrix costs O(K3); and sampling the Gaussian with the co-
variance matrix costs O(K3). This is the approach used in
[24], which is fine at the time since sampling the topic assign-
ment in [24] costs already O(DN̄K), dominating the overall
cost. Since we have successfully reduced the latter complex-
ity to O(DK +DN̄) in §3.3, the brute-force O(DK2 +K3)
cost for sampling the classifier can no longer be neglected.
In fact, we verified in our experiments that this step starts
to dominate the training time even for moderately large K.
Therefore, we need a faster sampling algorithm for the clas-
sifier part.

The idea is to use the Gibbs sampler. Indeed, we have the
following (univariate) conditional normal density:

ηk|rest ∼ N (τ−1
k µk, τ

−1
k ), (23)

where the (unnormalized) mean

µk =
∑
d

z̄dk
(
ud − λ2ξd

∑
j 6=k

z̄djηj
)

(24)

and the precision τk = ν+λ2∑
d ξdz̄

2
dk. The key observation

here is that both the mean vector µ and the precision vector
τ can be computed in O(KD) time by proper bookkeeping.
Note also that we completely bypass the need of forming the
precision matrix Ξ. After having the mean and precision,
drawing each univariate ηk costs O(1) time. Therefore, a full
iteration of all K weights costs O(KD). We point out that
there is no need to iterate the Gibbs sampler here many
times: even a single iteration would still preserve the sta-
tionary density. This very flexibility of MCMC is the key to
obtain our linear time sampling algorithm, without altering
the target posterior density at all.

3.5 Collecting the Pieces
We now have all ingredients for our linear time sampling

algorithm for the Gibbs MedLDA model defined in §2.2:
We cycle through the three components presented in the
above subsections: sampling augmented variable ξ in §3.2,
sampling topic assignment variable Z in §3.3, and sampling
classifier variable η in §3.4. We repeat the procedure M
times for burn-in, after which new samples Z and η can
be regarded as true samples from the regularized posterior.
The augmented variable ξ is simply discarded. As promised,
the overall time is O(DK+DN̄), a significant improvement
over the current state-of-the-art [24]. We point out that
our improvement on sampling complexity is obtained by po-
tentially slowing down the mixing rate of the underlying
Markov chain—the point, nevertheless, is that through a
more delicate balance between the two costs we can achieve
greater efficiency.

Testing: For inference on the test data, we follow the
same procedure as in [24]. First, we infer the topic distri-

bution using the point estimate: Φ̂kw ∝ nkw + βw. Then,
given a test document w, we infer its latent topic assign-
ment z by drawing samples from the conditional density:

p(zi = k|rest) ∝ Φ̂kwi(n
−i
k + αk). This Gibbs sampling pro-

cedure is repeated until some convergence criteria is met
(e.g . the relative change of the data likelihood falls below
some threshold). Finally we apply the classifier η (sampled
during training period) on the averaged topic assignment z̄d
to make prediction: ŷ = sign(η>z̄d). In practice, we keep
a few samples of η and use their average to predict. This
usually leads to more robust performance.

4. SOME EXTENSIONS
In this section we discuss how to extend the basic binary

classification setting in §3 to multi-class and regression tasks.

4.1 Multi-class/Multi-task Classification
Our algorithm easily extends to the multi-class setting

where the label space Y = {1, . . . , C}. There are at least
three ways. The first one is extremely simple: we use the
one-vs-all (or the one-vs-one) strategy and train a separate
classifier for each class while treating all other classes as neg-
ative. This results in C separate classifiers and for prediction
we follow the maximally confident one:

ŷ = argmax
c=1,...,C

(z̄c)>ηc. (25)

The nice part of this approach is that the C classifiers can
be trained in parallel.

The second strategy is to recast the multi-class problem
as an instance of multi-task learning. More specifically, we
train C classifiers ηc, c = 1, . . . , C on the shared latent topic
assignment Z. Define the regularizer for each class c:

Rc(q) =
∑D
d=1 Eq((1− y

c
dz̄
>
d η

c)+), (26)

where ycd is the binary label indicating whether the d-th
document belongs to the c-th class. Note that the same
topic assignment z̄d is shared among all classes. As before
we can derive the regularized posterior in closed-form:

q(η, ξ,Z|W) ∝ p0(η)

[
D∏
d=1

B(n·d + α)

B(α)

]
K∏
k=1

B(nk· + β)

B(β)

C∏
c=1

D∏
d=1

1√
2π(ξcd)

3
exp

(
− (1 + λζcdξ

c
d)

2

2ξcd

)
, (27)

where we have again integrated out the topic mixing coeffi-
cient Θ and topic distribution Φ, and introduced the aug-
ment variable ξc for each class to ease sampling its classifier
ηc. Using the product prior p0(η) =

∏C
c=1

∏K
k=1N (ηck; 0, 1/νc)

we can derive the fast sampling algorithm similarly as the bi-
nary setting. We omit the straightforward details but men-
tion one important implementation trick: When drawing
the topic assignment Z we need to evaluate the acceptance
probabilities which involves the following:

C∑
c=1

gcd(η
c
k)=

C∑
c=1

λycd(1 + λξcd)η
c
k

Nd
−λ2ξcd

(ηck)2 + 2ηck
∑K
κ=1 η

c
κn
−di
κd

2N2
d

.

Naively evaluating the above costs O(DN̄L) time in to-
tal while through careful bookkeeping we can reduce it to
O(DLK +DK2) time, which can be advantageous for long
documents. The overall sampling time is O(DLK +DK2 +
DN̄), significantly faster than the state-of-the-art: O(LK3+
DLK2 + DN̄K) in [24]. For prediction on the test set, we
use the following rule:

ŷ = argmax
c=1,...,C

z̄>ηc. (28)



Comparing with the one-vs-all prediction rule (25), the la-
tent topic assignments z̄ are shared here among all classes.

The third strategy is to use a genuine multi-class formula-
tion, e.g . [6]. The resulting sampling algorithm differs sub-
stantially hence we do not discuss it here.

4.2 Extension to Other Losses
In the above we have mainly focused on the hinge loss

`d(η) := (1− ydη>z̄d)+, but our linear time sampling algo-
rithm can be easily extended to other losses, thanks to the
classical result on scale-mixtures of the normal density:

Theorem 2 (scale-mixture of normal density, [2]).
Let the loss function ` : R+ → R+ be continuous. Then
for all λ > 0 we have the scale-mixture representation of
exp(−λ`(t)) w.r.t. some density function fλ : R+ → R+,
i.e.

exp(−λ`(t)) =

∫ ∞
0

1√
2πσ2

exp

(
− t2

2σ2

)
fλ(σ2)dσ2 (29)

=

∫ ∞
0

1√
2πξ3

exp

(
−1

2
ξt2
)
fλ(1/ξ)dξ, (30)

if and only if the function `(
√
t) is infinitely differentiable

on R++ with derivatives satisfying (− d
dt

)n`(
√
t) ≤ 0 for all

n ≥ 1, t > 0 .

When the derivative condition in Theorem 2 holds, we can
find the density function fλ(·) explicitly by computing the
inverse Laplace transform of the function exp(−λ`(

√
t)). Note

that any scale-mixture must be a symmetric function (c.f .
right-hand side of (29)), although extension to skewed scale-
mixtures that break symmetry is straightforward, i.e., allow-
ing the normal density in (29) to have nonzero mean that
may depend on t. The hinge loss we thoroughly discussed
above is skewed: exp(−2λmax{t, 0}) = exp(−λ|t|) exp(−λt),
where exp(−λ|t|) is a usual scale-mixture.

The scale-mixture of normal density is extremely useful
when the prior distribution is also normal. Indeed, the reg-
ularized posterior distribution q(·) derived from (6) have the
following more general form under any loss ` that admits the
scale-mixture representation in (29):

q(η, ξ,Z|W) ∝

[
D∏
d=1

B(n·d + α)

B(α)

]
K∏
k=1

B(nk· + β)

B(β)

× p0(η)
D∏
d=1

exp

(
−1

2
ξdζ

2
d − aζd

)
f̃λ(ξd), (31)

where ζd is a bi-affine function of the classifier weight η
and the normalized latent topic assignment z̄d, e.g ., ζd =
1−ydη>z̄d for binary yd or ζd = yd−η>z̄d for real-valued yd.
If we impose the normal prior p0(η) =

∏K
k=1N (ηk; 0, ν−1),

then η in the posterior (31), when conditioned on all other
variables, follows again the normal distribution hence can
be efficiently sampled.

The fast sampling algorithm we developed so far extends
immediately to the more general regularized posterior (31):
• Sampling the augmented variable ξ reduces to repeatedly

sample the univariate density exp(− 1
2
ξdζ

2
d)f̃λ(ξd). The

efficiency of this step of course depends on the density f̃λ.
We have extensively discussed the hinge loss that leads
to the inverse Gaussian density. We mention two more
examples. For the ε-insensitive loss `(ζd) = (|ζd| − ε)+

used in regression [24], we are sampling again the inverse
Gaussian, which can be done in O(1) time [13]. For the
logistic loss `(ζd) = −ydζd + log(1 + exp(ζd)), we need to
sample the Pólya-Gamma distribution, which again can
be done efficiently [16].
• Sampling the topic assignment Z is almost the same as in
§3.3, except some minor change on the acceptance proba-
bility and the exp-proposal: we need to compute −γdη2k+
δdηk −ψdm−did ηk, where the coefficients γd, δd, ψd depend
on the exact form of ζd. Importantly, the classifier re-
weighted count m−did can be incrementally maintained in
O(1) time as before.
• Sampling the classifier η needs to be done using again

the Gibbs sampler as in §3.4. As mentioned above, the
conditional posterior of η for any scale-mixture loss ` is
again normal, but its precision matrix is computationally
expensive to form. Instead, we use the Gibbs sampler and
through careful bookkeeping we can draw the K classifiers
in all documents in total time O(KD).

Cycling through the above three steps for M burn-in steps
we get samples from the true (regularized) posterior. The
overall time remains O(DK +DN̄).

5. EXPERIMENTS
We now present empirical results to verify the efficiency

of the proposed linear time sampling algorithm, referred
as LightMedLDA. Its C++ implementation is available at
https://github.com/xunzheng/light_medlda. We will fo-
cus on comparing against the current state-of-the-art im-
plementation in [24], referred as GibbsMedLDA. As shown
previously in [24], GibbsMedLDA outperforms most existing
supervised topic models, and we refer the interested readers
to [24] for detailed comparisons.

Datasets: We conduct experiments on three benchmark
datasets3: the 20Newsgroups for binary and multi-task clas-
sification, a hotel review dataset for regression, and a Wikipedia
dataset with 1.1 million documents for multi-label classifi-
cation. See Table 1 for their summary statistics.

Setup: For all experiments, if not mentioned explicitly,
the tuning parameters are set as follows: the regulariza-
tion constant λ = 102.4; the number of inner MH steps
for sampling the topic assignment (§3.3) Smh = 6 (i.e., ap-
plying each proposal twice); the number of Gibbs sampling
sub-iterations for sampling the classifier (§3.4) Sgibbs = 2.
We use symmetric Dirichlet priors with hyper-parameter
αk ≡ 6.4/K, βw ≡ 0.01. Experimental results are aver-
aged over multiple runs with the standard deviation pro-
vided. Except for the large Wikipedia dataset, performance
is measured on a standard desktop with a 3.30 GHz CPU.

Table 1: Summary statistics for the benchmark
datasets. Both 20NG and Wiki have 20 classes.

# train # test # word type
20NG 11,269 7,505 61,188 multi-class
Hotel 2,500 2,500 12,000 regression
Wiki 1,100,000 5,000 917,683 multi-label

3Available at: http://qwone.com/~jason/20Newsgroups,
http://bigml.cs.tsinghua.edu.cn/~ningchen/data.htm,
http://lshtc.iit.demokritos.gr/, respectively.

https://github.com/xunzheng/light_medlda
http://qwone.com/~jason/20Newsgroups
http://bigml.cs.tsinghua.edu.cn/~ningchen/data.htm
http://lshtc.iit.demokritos.gr/
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Figure 1: Classification accuracy (left) and training
time (right) of LightMedLDA and GibbsMedLDA
on the binary 20Newsgroups sub-dataset.

5.1 Binary Classification
We pick two subgroups alt.atheism and talk.religion.misc

from the 20Newsgroups dataset to form a binary classifica-
tion task. This sub-dataset consists of 856 documents for
training and 569 documents for testing. Similar to the set-
tings in [24], we set λ = 262.4 and the number of burn-in
steps to M = 10. As shown in Figure 1 (left), when we
vary the number of latent topics K from 10 to 100, both
LightMedLDA and GibbsMedLDA achieved consistent pre-
diction accuracies around 80% on the test set, with slightly
better performance from LightMedLDA. This is expected
since both algorithms are solving the same problem (whereas
the slight difference may be caused by different convergence
speed). Shown on the right panel of Figure 1 are the train-
ing times of LightMedLDA and GibbsMedLDA. We observe
that even on this small sub-dataset, the training time of
GibbsMedLDA increased sharply w.r.t. the number of latent
topics (x-axis). This confirms the superlinear dependence of
GibbsMedLDA’s complexity on the model size. In contrast,
LightMedLDA converged much faster, and kept the training
time under 1s even for 100 topics (the largest we tried on
this small dataset).

We then tried classifying all 20 classes on the full 20News-
groups dataset. We used the one-vs-all strategy mentioned
in §4.1 to train 20 separate binary classifiers and used the
prediction rule in (25). The results are shown in Figure 2,
along with the multi-task results described in the next sub-
section. On the left we see that again LightMedLDA and
GibbsMedLDA achieved similar accuracies, with slightly bet-
ter performance for LightMedLDA (due possibly to its faster
convergence). We observe that the classification accuracy
starts to decrease once the number of topics exceeds 150.
This can be explained by: First, for larger K both algo-
rithms need more iterations to converge while we capped the
number of iterations toM = 25 andM = 20 for LightMedLDA
and GibbsMedLDA, respectively; Second, the algorithms
may start to overfit when K is large. On the right of Figure 2
we observe similar behavior of the training time when we
vary the number of topics: GibbsMedLDA increases sharply
due to its superlinear dependence on K while LightMedLDA
is only slightly affected even when K = 400 (the largest we
tried on the full dataset).

5.2 Multi-task Classification
In this subsection we test the multi-task formulation de-

scribed in §4.1, again on the full 20Newsgroups dataset. We
train all 20 classifiers simultaneously on the same latent

100 200 300 400
0.65

0.7

0.75

0.8

# Topics

A
cc

ur
ac

y

 

 

LightMedLDA (1−vs−all)
GibbsMedLDA (1−vs−all)
LightMedLDAmt

GibbsMedLDAmt

100 200 300 400
0

2000

4000

6000

8000

10000

12000

# Topics

T
ra

in
−

tim
e 

(s
ec

)

Figure 2: Classification accuracy and training
time of LightMedLDA, GibbsMedLDA, multi-task
LightMedLDA and multi-task GibbsMedLDA on
the full 20Newsgroups dataset. One-vs-all strategy
is used for binary classifiers.
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Figure 3: F1-measure and training time of
LightMedLDAmt and GibbsMedLDAmt on the multi-
labeled Wikipedia dataset.

representation, and we use the prediction rule in (28) to
combine the classifiers. The results are shown in Figure 2,
along with the previous one-vs-all results for comparison.
The conclusions are similar to the one-vs-all setting: Both
LightMedLDA and GibbsMedLDA achieved similar accura-
cies on the test set, but LightMedLDA is much faster in
terms of training time, in particular when the number of
topics is large. From the right panel it is also clear that the
multi-task formulation took significantly less time than the
one-vs-all strategy. This is not surprising as the one-vs-all
essentially repeats the computation 20 times (one for each
separate classifier). Note that we did not explore paralleliza-
tion in this work.

We further performed a multi-labeled prediction task on
the massive Wikipedia dataset that has 1.1 million doc-
uments. Due to the multi-label nature we used the F1-
measure (the harmonic mean of the precision and recall)
to evaluate the performance. We only considered the multi-
task formulation for this dataset as the one-vs-all strategy
would take too long. We set the number of inner Gibbs steps
Sgibbs = 4 (for drawing classifiers, see §3.4) and the number
of burn-in steps M = 80 for LightMedLDA and M = 40
for GibbsMedLDA. The larger number of burn-in steps is
caused by the large size of this dataset. The results are
shown in Figure 3, from which we conclude that both al-
gorithms consistently achieved the F1-measure around 0.55
while LightMedLDA converges substantially faster. With
200 topics, GibbsMedLDA already took 33 hours on this
large dataset while LightMedLDA, with 400 topics, took
only 11 hours. GibbsMedLDA with 400 topics was too slow
to converge.
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Figure 4: Classification accuracy and training time
of Light-sLDAmt and Gibbs-sLDAmt on the full
20Newsgroups dataset.
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Figure 5: Predictive-R2 and training time of
LightMedLDAr and GibbsMedLDAr on the hotel
review dataset.

5.3 Extension to Other Losses
All previous experiments were performed under the hinge

loss. In this part we explore other loss functions for classi-
fication and regression. We tried the logistic loss for multi-
task classification on 20Newsgroups and the ε-insensitive loss
for regression on the hotel review dataset. See §4.2 for the
algorithmic modifications needed for these losses. For the
logistic loss, we set αk ≡ 5.6/K, λ = 204.8, and M = 40
for both our method, denoted as Light-sLDA, and the com-
petitor Gibbs-sLDA in [25]. We used the more efficient
multi-task formulation. For the ε-insensitive loss used for
regression, following [3, 24] we used the predictive-R2 as
the performance measure (the larger the better). We set
ε = 1e − 3, λ = 262.4, and the number of burn-in steps
M = 15 for LightMedLDA and M = 10 for GibbsMedLDA.
The results are shown in Figure 4 and Figure 5 respectively.
Again, we observe that both algorithms achieved compara-
ble performance while LightMedLDA consumed significantly
less training time than GibbsMedLDA over the entire range
of topic numbers.

5.4 Sensitivity Analysis
In this last part of experiments we conduct a thorough

sensitivity analysis of the proposed LightMedLDA algorithm
w.r.t. the different proposal compositions, the number of MH
steps, and the number of Gibbs sub-iterations. We record
both the classification accuracy and the training time on the
full 20Newsgroups dataset.

Proposal compositions: Recall from §3 that the regu-
larized posterior is factorized into three parts, and based on
each we constructed the doc-proposal, the word-proposal,
and the exp-proposal. Note that each proposal, equipped
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Figure 6: Classification accuracy and training
time of LightMedLDAmt on the full 20Newsgroups
dataset with mixture of proposals, cycle of propos-
als, word-proposal only, doc-proposal only, and exp-
proposal only.
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Figure 7: Classification accuracy and training
time of LightMedLDAmt on the full 20Newsgroups
dataset with different number of MH steps.

with its correct acceptance probability, e.g . (19), (20), and
(21), respectively, are all bona fide MCMC algorithms and
should lead to the same stationary density eventually. How-
ever, their rate of convergence to the target posterior may
be different. As verified in the left panel of Figure 6, using
the mixture of all three proposals (i.e. uniformly randomly
choosing one of them for Smh = 6 times) leads to the best
test accuracy, consistently on all topic numbers we tried. Us-
ing the exp-proposal alone leads to the poorest result, mostly
because the exp-proposal is derived from the classifier part
and contains the least information for drawing the topic as-
signment. Using the word-proposal alone is better than the
exp-proposal but worse than the doc-proposal alone, possi-
bly because the word-proposal is shared among documents
hence may incur a longer lag while the doc-proposal refreshes
more frequently (every time we switch documents). Interest-
ingly, cyclically sampling the three proposals performs sub-
stantially worse than the mixture of proposals, even though
in each iteration they used each of the proposals twice (on
average). Another observation we draw from Figure 6 is
that when the number of topics is small, all combinations of
proposals seem to perform equally well. Moreovoer, we ob-
serve from the right panel of Figure 6 that the exp-proposal
alone and the doc-proposal alone leads to substantially less
training time.

Number of MH steps: Figure 7 shows the influence of
the number of MH steps in drawing the topic assignments
(§3.3). For space limits, we only present the result for the
mixture of proposals (for its best accuracy verified above).
It is clear that using more MH steps improves the accuracy
but also increases the training time. In practice we found
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Figure 8: Classification accuracy and training
time of LightMedLDAmt on the full 20News-
groups dataset with different number of Gibbs sub-
iterations.

that using six MH steps (two for each proposal) seems to
lead to the best tradeoff.

Number of Gibbs sub-iterations: Figure 8 shows the
influence of the number of Gibbs sub-iterations in drawing
the classifier (§3.4). Again we only present the result for
the mixture of proposals. We observe that the prediction
accuracy stays relatively constant while more Gibbs sub-
iterations clearly increases the training time. In practice it
seems 1 or 2 Gibbs sub-iterations would suffice.

6. CONCLUSION
Topic models such as LDA are excellent tools in process-

ing large collections of unstructured data, and a lot of re-
cent work has devoted to scaling them to large industrial
data and big models. Building on these recent sampling
advances for unsupervised LDA formulations, we have pre-
sented the first linear time sampling algorithm for the su-
pervised topic model, Gibbs MedLDA, that can exploit the
large supervision information to achieve better predictions.
Our algorithm easily extends to a variety of losses in binary
classification, multi-task learning, multi-label classification
and regression, and we observed in our experiments an or-
der of magnitude speedup over the current state-of-the-art
implementation, while obtaining comparable accuracy. For
future work we plan to explore nonparametric extensions
and parallel implementations.
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