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ABSTRACT
Brand Associations, one of central concepts in marketing,
describe customers’ top-of-mind attitudes or feelings toward
a brand. (e.g . what comes to mind when you think of Nike?)
Thus, this consumer-driven brand equity often attains the
grounds for purchasing products or services of the brand.
Traditionally, brand associations are measured by analyzing
the text data from consumers’ responses to the survey or
their online conversation logs. In this paper, we propose to
leverage large-scale online photo collections contributed by
the general public, given that photos are gaining popular-
ity as an important information modality on the Web. As
a first technical step toward photo-based brand association
study, we aim to jointly achieve the following two visualiza-
tion tasks in a mutually-rewarding way: (i) detecting and
visualizing core visual concepts associated with brands, and
(ii) localizing the regions of brand in images. With experi-
ments on about five millions of images of 48 brands crawled
from five popular online photo sharing sites, we demonstrate
that our approach can discover complementary views on the
brand associations that are hardly mined from text data.
We also quantitatively show that our approach outperforms
other candidate methods on both visualization tasks.

Categories and Subject Descriptors
I.4.9 [Image processing and computer vision]: Appli-
cations; J.4 [Computer Applications]: Social and behav-
ioral sciences—Economics

Keywords
Brand associations, summarization and visualization of mul-
timedia data, image segmentation

1. INTRODUCTION
Brand equity describes a set of values or assets linked to

a brand [1, 13]. It is one of core concepts in marketing since
it is a key source of bearing the competitive advantage of
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a company over its competitors, boosting efficiency and ef-
fectiveness of marketing programs, and attaining the price
premium due to increased customer satisfaction and loyalty,
to name a few. A central component of brand equity is
brand associations, which are the set of associations that
consumers perceive with the brand [13]. For example, the
brand associations of Nike may include Tiger Woods, shoes,
and basketball. Its significance lies in that it is a customer-
driven brand equity; that is, the brand associations are di-
rectly connected to customers’ top-of-mind attitudes or feel-
ings toward the brand, which provoke the reasons to pref-
erentially purchase the products or services of the brand.
For instance, if a customer strongly associates Nike with
golf shirts, he may tend to first consider Nike products over
other competitors’ ones when he needs one.

Traditionally, measuring brand associations is a challeng-
ing task because it should be built from direct consumer
responses to carefully designed questionnaires [2, 5, 24, 26].
With the recent emergence of online social media, it has
been developed to indirectly leverage consumer-generated
data on online communities such as Weblogs, boards, and
Wiki. Beneficially, resources on such social media are ob-
tainable inexpensively and almost instantaneously from a
large crowd of potential customers. One typical example
of such practice is the Brand Association Map developed
by Nielsen Online [2, 19], in which important concepts and
themes correlated with a given brand name are automati-
cally extracted from the data of online conversations.

In this paper, for the study of brand associations, we pro-
pose to go beyond textual media, and take advantage of
large-scale online photo collections, which have not been ex-
plored so far. Admittedly, pictures can be inferior to mine
subjective sentiments than texts (e.g . Nike is too expen-
sive). However, pictures can be a complementary infor-
mation modality to show customers’ experiences regarding
brands within a natural context. With widespread availabil-
ity of digital cameras and smartphones, people can freely
take pictures on any memorable moments, which include
experiencing or purchasing products they like. In addition,
many online tools enable people to easily share, comment,
or bookmark the images of products that they wish to buy.

A complete solution to photo-based brand associations
can be too challenging to be achieved in a single paper since
it requires not only technical algorithms but also sophisti-
cated user interfaces for marketers and general users based
upon thorough user studies. Thus, as a first technical step,
in this paper, we address the problem of jointly achieving the
following two levels of visualization tasks regarding brand



Figure 1: Motivation for two visualization tasks toward brand association study from Web community photos with

two competing brands of Nike and Adidas. (a) Task1: we perform exemplar detection and clustering to reconstruct

brand association maps (BAM). A more strongly associated cluster with the brand appears closer to the center of

the map. A higher correlated pair of clusters has a smaller angular distance. We show top 20 exemplars (i.e. cluster

centers) in the map. On the right, for some selected exemplars, we show the average images of 40 nearest neighbors

in their corresponding clusters. (b) Task2: we segment the most likely regions of brand in the images.

associations. (See the examples in Fig.1).
(1) Visualizing core pictorial concepts associated with brands:

It has been a key problem in brand association research
to concisely visualize important concepts associated with
brands in a form of networks or maps [2, 6, 24, 26]. There-
fore, our first task is, as shown in Fig.1.(a), to visualize
core visual concepts of brands by summarizing online pho-
tos that are tagged and organized by general users. This goal
involves three sub-problems: identifying a small number of
image clusters and exemplars (i.e. cluster centers), discover-
ing the similarity relations between clusters, and projecting
them into a low-dimensional space.

(2) Localizing the regions of brand in images: Our second
task is the sub-image level visualization of brand associa-
tions, while the first task addresses the image-level one. We
aim to localize the regions that are most associated with
the brand in each image in an unsupervised way (i.e. with-
out any pre-defined models), as shown in Fig.1.(b). In our
algorithm, we perform pixel-level image segmentation to de-
lineate the regions of brand. Even though bounding boxes
may be better as the final output to the general users, they
can be trivially derived from segmentation results, by defin-
ing the minimum rectangle that encloses the segment while
ignoring tiny unconnected dots.

We choose the above two tasks as the most fundamental
building blocks for the study of photo-based brand associ-
ations for following reasons. The first task can provide a
structural summary of large-scale and ever-growing online
image data of brands, which otherwise are too overwhelm-
ing for human to grasp any underlying big picture. The
second task can not only suppress background clutters, but
also help reveal typical interactions between users and prod-
ucts in natural social scenes, which can lead a wide variety
of potential benefits, ranging from content-based image re-
trieval to online multimedia advertisement.

Importantly, jointly solving these two tasks are mutually
rewarding. The exemplar detection/clustering can group
similar images, which can promote the brand localization
since we can leverage the recurring foreground signals. In
the reverse direction, localizing brand regions can enhance
the similarity measurement between images, which subse-
quently contributes to better exemplar detection/clustering.

For evaluation, we collect about five millions of images
of 48 brands of four categories (i.e. sports, luxury, beer,
and fastfood) from five popular photo sharing sites, includ-
ing Flickr, Photobucket, deviantART, Twitpic, and
Pinterest. In our experiments, we show the picture-driven
brand association maps for some selected brands. We also
demonstrate that our approach outperforms other candidate
methods on both exemplar detection/clustering and brand
localization. Finally, we compare the results of our picture-
based brand associations with actual sales data of brands.

1.1 Relations to Previous work
We here introduce two lines of research that are remotely

related to our work.
Measuring brand associations by free association:

In almost all previous research for brand associations, the
surveys on customers are the main approach to collect source
data. Among many ways to conduct the survey, the free as-
sociation procedure has been one of the simplest but often
most powerful ways to profile brand associations [5, 6, 26].
In this technique, subjects are asked to freely answer their
feelings and thoughts about a given brand name without any
editing or censoring [18]. (e.g . What comes to mind when
you think of Nike?) Our research is also based on this free
association idea, because we view the Web photos tagged
with a brand name by anonymous users as their candid pic-
torial impressions to the brand. Therefore, from a viewpoint
of brand association research, the contribution of our work
is to introduce a novel source of data for the analysis.

In this line of research, the brand association map of
Nielsen Online [2, 19] is closely related to our work because
both approaches explore online data. However, our work is
unique in that we explore online image data, which convey
complementary views on the brand associations that can be
missed in texts. In addition, we localize the regions of brand
in every photo, which is another novel feature of our work.

Analysis of product images: Recently, with the ex-
ploding interests in electronic commerce, computer vision
techniques have widely applied to analyze product images
for commercial applications. Some notable examples in-
clude the product image search and ranking [11], the logo
and product detection in natural images [9, 12, 16, 23], and



Web sites Characteristics

Flickr/ Two largest and most popular photo sharing
Photobucket sites in terms of volumes of photos.
Pinterest Image collections bookmarked by users

deviantART Various forms of artwork created by users.
Twitpic Photos shared via Twitter.

Table 1: Five Web sites for crawling photos.

clothing parsing in fashion photos [28]. However, the ob-
jective of our work differs in that we aim to discover and
visualize the core concepts of brands from uncleaned online
images, whereas most of past work has focused on detect-
ing a fixed number of specified product models or logos in
the images. Therefore, in our work, it is important to mine
the visual topics that do not explicitly contain the products
but reflect general public’s thoughts, feelings, or experiences
over the brands (e.g . sponsored yacht competition scenes in
the Rolex images).

1.2 Summary of Contributions
The contributions of our work are summarized as follows:
(1) We study the problem of visualizing brand associations

in both image and sub-image levels by leveraging large-scale
online pictures. To the best of our knowledge, our work
is the first attempt so far on such photo-based brand asso-
ciation analysis. Our work can provide another novel and
complementary way to visualize general public’s impressions
or thoughts on the brands.

(2) We develop an algorithm to jointly achieve exemplar
detection/clustering and brand localization in a mutually-
rewarding way. In addition, we design an embedding algo-
rithm to visualize the top exemplars in a circular layout.

(3) With experiments on about five million images of 48
brands, we have found that the proposed algorithms can
comprehensively but succinctly visualize key concepts of large-
scale brand image collections. We also quantitatively demon-
strate that our approach outperforms other candidate meth-
ods on both visualization tasks.

2. PROBLEM FORMULATION

2.1 Image Data Crawling
Since we are interested in consumer-driven views on the

brands, we use the online photos that are contributed and
organized by general Web users. As source data, we crawl
images from the five popular photo sharing sites in Table
1. The characteristics of the pictures on the five sites are
different from one another as shown in Table 1. We exclude
the Google image search because much of the pictures
are originated from online shopping malls or news agencies.

We query the brand names via the built-in search engines
of the above sites to search for the pictures tagged with
brand names. We download all retrieved images without
any filtering. We also crawl meta-data of the pictures (e.g .
timestamps, titles, user names, texts), if available.

Fig.2 summarizes our dataset of 4,783,345 images for 48
brands, which can be classified into four categories: luxury,
sports, beer, and fastfood. The number of images per brand
varies much according to the popularity of the brand.

2.2 Overview of Our Approach
Fig.3 presents the overview of our approach. The input

of our algorithm is a set of photos for a brand of interest.

Let I = {I1, · · · , IN} be the set of input images, where N
is the number of images. As shown in Fig.3.(b), our first
step is to build a K-nearest neighbor (KNN) graph G =
(I, E) in which each image is connected with its K most
similar images in I. We will present our image descriptors
in section 3.1, similarity measures in section 3.2, and KNN
graph construction in section 3.3.

The next step is to perform exemplar detection and clus-
tering on the graph G, which will be discussed in section 3.4.
Its goal is to discover a small set of representative images
called exemplars A(⊂ I), and to partition I so that each
image is associated with its closest exemplar, as shown in
Fig.3.(c). Therefore, the clusters are the groups of contex-
tually and visually similar images, and the exemplars are
the most prototypical images of the clusters.

The clustering helps discover the coherent groups of im-
ages from extremely diverse Web images, which is beneficial
to detect the regions of a brand in the images (see examples
in Fig.3.(d)). In our setting, the brand localization is formu-
lated as the problem of cosegmentation [14, 15], which has
been actively studied in image segmentation research. Its
goal is to simultaneously segment out recurring objects or
foregrounds across the multiple images. Obviously, the im-
ages in the same cluster are likely to share the same themes
of the brand (e.g . bags in Fig.3.(d)), which can be discov-
ered by the cosegmentation approach. We summarize the
procedure of cosegmentation in section 3.5.

In our closed-loop approach, the segmentation can en-
hance the exemplar detection/clustering by promoting a more
accurate image similarity measure, which will be justified in
section 3.2 with an intuitive example. Hence, after finishing
the cosegmentation step, we can return to the KNN graph
construction and repeat the whole algorithm again with the
new segmentation-based image similarity metric.

The brand association map like Fig.1 can be constructed
from the exemplar detection/clustering output. The algo-
rithm will be presented in section 4.

3. APPROACH

3.1 Feature Extraction
For image description, we use one of common practices

in recent computer vision research: the dense feature ex-
traction with vector quantization. We densely extract two
most popular features from each image: HSV color SIFT
and histogram of oriented edge (HOG) feature on a regular
grid at steps of 4 and 8 pixels, respectively. Then, we form
300 visual words for each feature type by applying K-means
to randomly selected features. Finally, the nearest word is
assigned to every node of the grid. We use publicly available
codes1 for the whole process of feature extraction.

3.2 Image Similarity Measure
One prerequisite to accurate clustering is an appropriate

similarity measure between images, denoted by σ : I × I →
R. We assert that even imperfect segmentation helps en-
hance the measurement of image similarity, which can justify
our closed-loop approach. Fig.4 shows a typical example, in
which the two images are similar in that both include per-
sons with glasses of Guinness beer. For an unsegmented
1The SIFT and HOG feature extraction codes are avail-
able at http://www.vlfeat.org, and at http://www.cs.brown.
edu/∼pff/latent, respectively.



Figure 2: The dataset of 48 brands crawled from five photo sharing sites of Table 1. The brands are classified into

four categories: (a) luxury, (b) sports, (c) beer, and (d) fastfood. The total number of images is 4,720,724.

Figure 3: The overview of the proposed approach with an example of the Louis+Vuitton. (a) As an input, we crawl

the photos of the brand from the five photo sharing sites. (b) Next, we build a K-nearest neighbor (KNN) similarity

graph between images. (c) We perform the graph-based exemplar detection/clustering. (d) Finally, we cosegment the

images in the same cluster in order to discover the regions of a brand in each image. As a closed-loop solution, we can

return to the KNN graph construction with the new segmentation-based image similarity metric.

Figure 4: The benefit of segmentation for image simi-

larity measurement. (a) For an unsegmented image pair,

the spatial pyramid histograms are constructed on the

whole images, which may not correctly reflect the loca-

tion and scale variations. (b) After segmentation, the

image similarity is computed as the mean of the best

assigned segment similarities.

image pair, the image similarity is calculated from two-level
spatial pyramid histograms on the whole images [17], which
are not robust against location, scale, and pose variation as
shown in Fig.4.(a). On the other hand, as shown in Fig.4.(b),
this issue can be largely alleviated even with an imperfect
segmentation. Given the two sets of segments of the images,
we find the best matches between them by solving the linear
assignment problem. Then, we compute the image similar-
ity by the mean of similarities between matched segments.
For the segment similarity, we use the histogram intersection
kernel on the spatial pyramids of the segments.

3.3 Constructing K-Nearest Neighbor Graph
Given the image descriptors and similarity measures, the

construction of a KNN graph is straightforward. However, if
we naively compare all pairwise similarity by brute-force, it
takes O(N2), which can be prohibitively slow for a large I.
Fortunately, a large number of algorithms have been devel-

oped to construct approximate KNN graphs with avoiding
the quadratic complexity. In this paper, we use the idea
of multiple random divide-and-conquer [27], which allows
to create an approximate KNN graph of high accuracy in
O(N logN) time. The method is simple: we randomly and
recursively partition the dataset into subsets, and build an
exact neighborhood graph over each subset. This random
divide-and-conquer process repeats for several times, and
then the aggregation of all neighborhood graphs of subsets
can create a more accurate approximate KNN graph with
a high probability. The details of procedures and theoretic
analyses can be found in [27]. In our experiments, meta-data
of images are also exploited for recursive random division.
We repeat partitioning the image set into subsets according
to each type of meta-data (e.g . image sources, owners, titles,
or timestamps, if available). For example, in one partition,
each subset includes the images taken at similar time; in an-
other partition, each subset comprises the images owned by
the same user. The basic assumption is that if images are
taken at similar time or by the same user, they are likely to
share similar contents. In our experiments, this heuristics of
meta-data is efficient and effective to build KNN graphs.

3.4 Exemplar detection and clustering
Given a KNN graph G, our next step is to perform ex-

emplar detection. As a base algorithm, we use the diversity
ranking algorithm of [15], which can choose L number of
exemplars that are not only most central but also distinc-
tive one another, by solving submodular optimization on
the similarity graph G. Since the L exemplars are discov-
ered in a decreasing order of ranking scores, one can set
L to an arbitrary large number. In this paper, we do not
discuss the details of the algorithm, which can be found in
[15]. Instead, we denote the exemplar detection procedure
by A = SubmDiv(G, L) where A is the set of exemplars and



Algorithm 1: Exemplar detection and clustering.

Input: (1) Image graph G. (2) Number of exemplars L.
Output: (1) Exemplar set A and cluster set C.
1: Append a constant vector z ∈ R(N+1)×1 to the end
column of G and zT to the end row of G. (N = |G|).
2: A = SubmDiv(G, M).
3: {Cl}Ll=1 = ClustSrc(G, A).

/* Select M number of central and diverse exemplars A.
Function [A] = SubmDiv(G, M)

1: A ← ∅. u = 0 ∈ RN×1.
while |A| ≤ L do

2: for i = 1 : N do u(i) = TempSrc(G, {A ∪ i}).
3: A ← A∪ argmaxi u. Set u = 0.

/* Get marginal gain u from the G and the node set P.
Function [u] = TempSrc(G, P)

1: Solve u = Lu where L is the Laplacian of G under
constraints of u(P) = 1 and u(N + 1) = 0.
2: Compute the marginal gain u = |u|1.

/* Get cluster set C from the graph G and exemplars A.
Function C = ClustSrc(G, A)

1: Let L = |A| and L = |G|. V is vertext set of G.
2: Compute the matrix X ∈ R(L−L)×L by solving
LuX = −BT Is where if we let X = V\A, Lu = L(X ,
X ), B = L(A,X ), and Is is an L× L identity matrix.
3: Each vertex v∈V is clustered cv= argmaxk X(j, k).

G ∈ RN×N is the adjacency matrix of the graph G. The
pseudocode is summarized in the step 1–2 of Algorithm 1.

Next, the clustering is performed using the random walk
model [10]; each image i is associated with the exemplar
that a random walker starting at i is most likely to reach
first. Then, we cluster the images that share the same ex-
emplar as the most probable destination. This procedure is
implemented as a function ClustSrc of Algorithm 1.

3.5 Brand Localization via Cosegmentation
As the clustering output, we obtain the groups of coherent

images C = {Cl}Ll=1. The brand localization is achieved by
separately applying the cosegmentation algorithm to each
cluster. This separate cosegmentation scheme is more ben-
eficial not only for parallelization but also for performance.
Especially, for performance, it prevents cosegmenting the
images of no commonality, which contradicts the basic as-
sumption of cosegmentation algorithms. For instance, given
the Prada brand, cosegmenting bag and jewelry images could
be worsen than individually segmenting each image.

The goal of cosegmentation is to partition each image into
foreground (i.e. the regions recurring across the images like
bags in Fig.3.(d)) and background (i.e. the other regions).
We select the MFC method [14] as our base cosegmenta-
tion algorithm, since it is scalable and has been successfully
tested with Flickr user images. The MFC algorithm consists
of two procedures, which are foreground modeling and region
assignment. The foreground modeling step learns the ap-
pearance models for foreground and background, which are
accomplished by using any region classifiers or their com-
binations. We use the Gaussian mixture model (GMM) on
the RGB color space. The foreground models compute the
values of any given regions with respect to the foregrounds
and background, based on which the region assignment al-

Algorithm 2: Brand localization via cosegmentation.

Input: (1) Cluster set C = {Cl}Ll=1. (2) Image graph G.
Output: (1) Set of segmented images F for each i ∈ I.
foreach Cl ∈ C do

1: Find central image c = SubmDiv(Gl, 1) where
Gl = G(Cl) is the subgraph of Cl.
2: Apply the unsupervised MFC algorithm [14] to
{c ∪Nc} where Nc is the neighbor of c in the graph
Gl. As a result, we obtain segmented images Fc∪Nc .
3: Let Ul ← Cl\{c ∪Nc}. F ← Fc∪Nc .
while Ul 6= ∅ do

4: Sample an image i from {Ul ∩NF}.
5: Get foreground model {vi} = FM ({Ni ∩ F}).
6: Segment the image Fi = RA (i, {vi}).
7: Ul ← Ul\i. F ← F ∪ Fi.

/* {vi} = FM (Fi) is the function to learn foreground
model {vi} of MFC [14] from the segmented images Fi.
/* Fi = RA (i, {vi}) is the function to run region assign-
ment of MFC [14] on image i using {vi}.

locates the regions of an image via a combinatorial-auction
style optimization to maximize the overall allocation values.
More details of the algorithm can be referred to [14].

For each cluster Cl, we perform the cosegmentation by iter-
atively applying the foreground modeling and region assign-
ment steps under the guidance of the subgraph G(Cl) whose
vertex set is Cl. Its basic idea is that the neighboring images
in G(Cl) are visually similar, and thus they are likely to share
enough commonality to be segmented together. Therefore,
we iteratively segment each image i by using the learned
foreground models from its neighbors in the graph. Then,
the segmented image i is subsequently used to learn the fore-
ground models for its neighbors’ segmentation. That is, we
iteratively run foreground modeling and region assignment
by following the edges of G(Cl). The overall algorithm is
summarized in Algorithm 2. For initialization, as shown in
step 1–2 of Algorithm 2, we run the unsupervised version of
the MFC algorithm to the exemplar of Cl and its neighbors,
from which the iterative cosegmentation starts.

4. BRAND ASSOCIATION MAPS
We visualize the clusters (or exemplars) in a circular lay-

out in order to concisely represent both short-range and
long-range interactions between them. We place the visual
clusters by using two different metrics, the radial distance
and angular distance, inspired by the Nielsen’s method [2]:

1. The radial distance of a cluster reflects how strongly
it associates with the brand. A larger cluster appears
closer to the center of the map.

2. The angular distance between a cluster pair shows
their closeness. The smaller the angular distance be-
tween the two is, the higher the correlation is.

Since Nielsen’s mapping algorithm is unknown and no
photo-based brand association mapping has been developed
yet, we design a new embedding algorithm that satisfies the
above requirements. Our objective is to calculate (r,θ) ∈
RL×2, which are the polar coordinates of all clusters of C.
Algorithm 3 summarizes the whole mapping procedure.

Radial distances of clusters: According to the require-
ment 1, a larger cluster has a smaller radial distance (i.e.



Algorithm 3: Computing polar coordinates of clusters.

Input: (a) Cluster set C = {Cl}Ll=1. (b) Image graph G.
(c) Image sizes to be drawn t ∈ RL×1.

Output: Polar coordinates (r,θ) ∈ RL×2 of C.
/* Radial coordinates. */
1: Compute transition matrix P by row-normalizing G.
2: Solve Eq.(1) to get stationary distribution π ∈ RN×1.
3: foreach Ca ∈ C do compute πa =

∑
i∈Ca π(i).

4: Let πmin = mina∈C πa and πmax = maxa∈C πa.
5: foreach Ca ∈ C do obtain r(a) by solving Eq.(2).
/* Angular coordinates. */
6: Obtain the cluster similarity S ∈ RL×L from Eq.(4).
7: Initialize θ by polar dendrogram of hierarchical
clustering on S, J = 0, Jold = a large number.
while |J − Jold| > ε do

8: Calculate ∂
∂θ
J ∈ RL×1. For each a ∈ C,

∂
∂θa

J =
∑
b∈C

(
S(a, b)− γ|θa − θb|γ−1

)
G where G =

−2(1− cos(θa − θb))−1/2(− sin θa cos θb + cos θa sin θb).
9: θnew = θ + µ ∂

∂θ
J.

10: Jnew =
∑
a

∑
b S(a, b)|θa − θb| −

∑∑
|θa − θb|γ .

11: Update Jold = J, J = Jnew,θ = θnew.

/* Force-directed refinement. */
12: Obtain Cartesian coordinates x ∈ RL×2 from (r,θ)
and a pariwse distance matrix D. Store the original x0.
while x is updated do

13: Set the displacement vector d = 0. Set attractive
and repulsive forces: fa(x) = x2/k and fr(x) = k2/x.
foreach pair (a, b) if D(a, b) < γ(t(a) + t(b)) do

14: d(b)+ = fr(|x(b)− x(a)|).
15: foreach a ∈ C do d(a)− = fa(|x(a)− x0(a)|).
16: foreach a ∈ C do x(a)+ = d(a).

17: Obtain the final (r,θ) from x.

closer to the center). In order to estimate the cluster sizes,
we first compute the stationary distribution π ∈ RN×1 of
the graph G, where π(i) indicates a random walker’s visit-
ing probability of node i. We assume that the size of cluster
Ca is proportional to the sum of stationary distribution of
the nodes in Ca, which means the portion of time that a
random walker traversing the graph stays in the cluster Ca.
That is, in a larger cluster, a random walker stays longer.

Given the transition matrix P obtained by normalizing the
rows of G, the stationary probability vector π can be com-
puted by solving π = PTπ with ‖π‖1 = 1. However, it is
well known from the success of PageRank that a regularized
stationary distribution is more robust and can incorporate
a prior knowledge; it can be obtained by solving

π = P̃Tπ where P̃ = λP + (1− λ)1vT (1)

where v ∈ RN×1 is the teleporting probability such that
vi ≥ 0, ‖v‖1 = 1. It can supply a prior ranking to each node;
without it, one can let v = [1/N, · · · , 1/N ]T be uniform. 1
is an all-one vector, and λ is a regularization parameter to
weight the random walker’s behavior between edge following
and random transporting. We set λ = 0.9 in all experiments.

Once we have π, then we compute the stationary proba-
bility πa of each cluster Ca by summing over the values of
vertices in the cluster: πa =

∑
i∈Ca π(i). Let rmax and rmin

be max and min radius of the circular layout, and πmax and
πmin be max and min cluster stationary probability, respec-

tively. Finally, the radial coordinate r(c) of cluster Ca is

r(a) =
rmax − rmin
πmax − πmin

(πmax − πa) + rmin. (2)

Angular coordinates of clusters: In order to obtain
the angular coordinates θ of clusters C, we first compute
all pairwise similarities S ∈ RL×L between the clusters, and
then apply the modified spherical Laplacian Eigenmap tech-
nique [3, 4] to project the clusters on a circular manifold.

We use the random walk with restart (RWR) algorithm [25]
to define the cluster similarity on a graph. The similarity
values of all nodes sa with respect to cluster Ca is defined as

sa = λPsa + (1− λ)vTa with va(i) =

{
1/|Ca| if i ∈ Ca
0 otherwise

(3)

The score sa(i) means the probability that a random walker
stays at node i when the walker follows the edge of graph
with probability λ and return to uniformly random nodes of
cluster Ca with 1 − λ. It is straightforward to compute the
similarity score from Ca to Cb, denoted by S(a, b), as follows:

S(a, b) =
∑
i∈Cb

sa(i)/Sa where Sa = 1−
∑
i∈Ca

sa(i). (4)

Next, we project the clusters on a unit circle from the S.
Our circular embedding is based on the Spherical Laplacian
Information Maps (SLIM) [4], which extends the Laplacian
eigenmap (LEM) optimization [3] with an additional con-
straint of embedding data on the surface of sphere.

Conceptually, if a pair of clusters is similar to each other,
then their angular difference in embedding should be small.
Hence, the objective is formulated as finding θ to minimize

θ = argmin
∑
a∈C

∑
b∈C

S(a, b)|θa − θb| −
∑
a∈C

∑
b∈C

|θa − θb|γ . (5)

The LEM objective (i.e. the first term of Eq.(5)) enforces
nearby points in the graph to be as close together as possible
in the angular representation. However, the optimization
using only the LEM objective attains a trivial solution to
collapse all data to the same point. Therefore, the regular-
izer (i.e. the second term) is included in order to spread the
embedded clusters on a circle. It leads the optimization to
prefer large angular distances between all pairs of clusters.
We set the constant γ = 0.5 in our experiments.

Since the optimization problem in Eq.(5) has no closed-
form solution, we employ a gradient descent procedure, as
summarized in step 7–11 of Algorithm 3. By nature, the
final embedding highly depends on the initialization, for
which we first perform hierarchical clustering on the S, and
then use its polar dendrogram. This initialization enables
similar nodes to have small geodesic distances.

Layout refinement: We slightly update the coordinates
of clusters (r,θ) so that the final visualization is more vi-
sually pleasant. More specifically, we separate any pair of
exemplars that are too much overlapped, by using Fruchter-
man and Reingold’s method, one of popular force-directed
drawing algorithms. The cluster positions are updated to
reach equilibrium states by the attractive and repulsive forces.
The attractive forces encourage the updated positions to be
as similar to the original (r,θ) as possible, while the repul-
sive forces take part severely overlapped exemplars. This
refinement is summarized in step 12–17 of Algorithm 3.



5. EXPERIMENTS
In our experiments, we first present the brand association

maps for several competing brands in section 5.1. Then,
we quantitatively evaluate the proposed approach from two
technical perspectives: exemplar detection/clustering in sec-
tion 5.2, and brand localization via image cosegmentation in
section 5.3. Since the main goal of this paper is to achieve
the two technical visualization tasks for brand associations,
we focus on validating the algorithmic performance over
other candidate methods instead of user study. Finally, we
examine the correlation between our findings from commu-
nity photos and the actual sales data of brands in section
5.4. We plan to make public our MATLAB code.

5.1 Visualization of Brand Association Maps
We present the brand association maps of six compet-

ing brands of the luxury category in Fig.5. We show top
20 exemplars (i.e. cluster centers) in the map. We make
several interesting observations as follows. First of all, our
algorithm successfully discovers brands’ characteristic visual
themes (e.g . watch clusters in the Rolex and the iconic check
patterns of the Burberry). Second, much of highly ranked
clusters attribute to some specific scenes where photo-taking
is preferred. For example, in the Rolex, the clusters of horse-
riding and auto-racing events that are sponsored by the
Rolex are as dominant as those of its main product watches.
Such event topics are more favorable to be recorded as pic-
tures rather than texts. In the Louis+Vuitton, there are lots
of wedding related clusters, which makes sense because the
wedding is not only an event where the products of luxury
brands are purchased much, but also a memorable moment
where the photos are taken a lot.

Although our photo-based brand association map is novel
and promising, there are several issues to be explored fur-
ther. First, we may need to correctly handle highly redun-
dant or noisy clusters, which are mainly caused by the im-
perfection of image processing and clustering. Second, we
also need to deal with polysemous brand names; for exam-
ple, the Mont+Blanc is also the name of the mountain, and
the Corona indicates the astronomical phenomenon as well.
If we use additional keywords during image crawling to filter
them out, the volume of retrieved images decreases severely.

5.2 Results on Clustering
Task: We evaluate the performance of our algorithm for

the exemplar detection/clustering task, by comparing with
several candidate methods. For quantitative evaluation, we
first choose 20 brands (i.e. five brands per category), and
generate 100 sets of groundtruth per brand as follows. We
randomly sample three images (i, j, k) from the image set of
a brand, and manually label which of j and k is more similar
to image i. We denote j � k|i if j is more similar to i than
k. Although the labeled sets are relatively few compared
to the dataset size, in practice this sampling-based annota-
tion is commonly adopted in standard large-scale benchmark
datasets such as ImageNet [7] and LabelMe [22].

After applying each algorithm, suppose that Ci, Cj , and
Ck denote the clusters that include image i, j, and k, re-
spectively. Then, we compute the similarity between clus-
ters σ(Cj , Ci) and σ(Ck, Ci) by using the RWR algorithm in
section 4. Finally, we compute the accuracy of the algorithm
using the Wilcoxon–Mann–Whitney statistics:

ACC :=

∑
(i,j,k) I(j � k|i ∧ σ(Cj , Ci) > σ(Ck, Ci))∑

(i,j,k) I(j � k|i)
(6)

where I is an indicator function. The accuracy increases only
if the algorithm can partition the image set into coherent
clusters, and the similarities between clusters coincide well
with human’s judgment on the image similarity.

Baselines: We compare our algorithm with four base-
lines. The (KMean) and the (Spect) are the two popular
clustering methods, K-means and spectral clustering, re-
spectively. The (LP) is a label propagation algorithm for
community detection [20], and the (AP) is the affinity propa-
gation [8], which is a message-passing based clustering algo-
rithm. Our algorithm is tested in two different ways, accord-
ing to whether image segmentation is in a loop or not. The
(Sub) does not exploit the image cosegmentation output,
whereas the (Sub-M) is our fully geared approach. That is,
this comparison can justify the usefulness of our alternating
approach between clustering and cosegmentation. We set
L = 300, and use the same image features in section 3.1 for
all the algorithms.

Quantitative results: Fig.6 reports the results of our
algorithm and four baselines across 20 brand classes. The
leftmost bar set is the average accuracies of 20 classes. In
most brand classes, the accuracies of our method (Sub-M) are
better than those of all the baselines. The average accuracy
of our (Sub-M) is 62.0%, which is much higher than 51.7% of
the best baseline (AP). In addition, the average accuracies of
the (Sub-M) are notably better than (Sub), which implicates
that the cosegmentation for brand localization can improve
the clustering performance as expected.

5.3 Results on Brand Localization
Task: The brand localization task is evaluated as fol-

lows. As groundtruths, we manually annotate 50 randomly
sampled images per brand, for the same 20 brands in the
previous experiments. We do not label too obvious images
depicting products on white background, since they can-
not correctly measure the performances of algorithms. The
accuracy is measured by the intersection-over-union metric
(GTi ∩Ri)/(GTi ∪Ri), where GTi is the groundtruth of im-
age i and Ri is the regions segmented by the algorithm. It
is a standard metric in segmentation literature [14, 15]. We
compute the average accuracy from all annotated images.

Baselines: We select two baselines that can discover and
segment the regions of objects from a large number of im-
ages in an unsupervised manner (i.e. with no labeled seed
images). The (LDA) [21] is an LDA-based unsupervised lo-
calization method, and the (COS) [15] is a state-of-art sub-
modular optimization based cosegmentation algorithm. Our
algorithm is tested in three different versions, according to
whether exemplar detection/clustering is in a loop or not.
The (MFC) runs our cosegmentation without involving our
clustering output (but using a random partitioning instead),
in order to show the importance of the clustering step when
segmenting highly diverse Web images. The (MFC-S) is a sin-
gle loop of our exemplar detection/clustering and cosegmen-
tation, and (MFC-M) iterates this process more than twice. In
almost all cases, it converges in two iterations. Hence, this
comparison can quantify the accuracy increase by the iter-
ative algorithm. We run all algorithms in an unsupervised
way for a fair comparison. Since it is hard to know the best



Figure 5: Examples of brand association maps for six brands of the luxury category.

Figure 6: Clustering accuracies of two variants of our approach (Sub-*) and four baselines for the 20 selected brands.

The average accuracies over the 20 brands, shown in the leftmost bar set, are (Sub-M): 62.0%, (Sub): 57.8%, (Kmean):

50.5%, (Spect): 49.2%, (LP): 51.4%, and (AP): 51.7%.

number of foregrounds K in advance (e.g . multiple fore-
grounds may exist in each image), we repeat each method
by changing K from one to five, and report the best results.

Quantitative results: Fig.7 shows that our method out-
performs other candidate methods in almost all classes. Es-
pecially, our average accuracy is 49.5%, which is notably
higher than 36.7% of the best baseline (COS). In addition, the
average accuracy of the (MFC-M) is also higher than those of
(MFC-S) and (MFC), which demonstrates that the clustering
and cosegmentation are mutually-rewarding.

Qualitative analysis: Fig.8 shows six sets of brand lo-
calization examples. The images of each set belong to the
same cluster, and thus are cosegmented. We observe that the
subjects of pictures and their appearances severely vary even
though they are associated with the same brands. However,
our approach is able to quickly cluster a large-scale image
set and segment common regions in an unsupervised and
bottom-up way, which can be an useful function for various
Web applications, including detecting regions of brand for
online multimedia advertisement.

5.4 Correlation with Sales Data
Since our work is the first attempt on exploring online

photo collections for brand associations, we additionally re-
port the statistics of correlations between image data and
sales data of the brands. We conduct two different compar-
isons. First, we observe how the photo volumes of brands
are correlated with their market shares. For example, the
average annual revenue of the Nike is higher than that of
the Adidas by about 40% from 2006 to 2011. We examine
whether the Nike is also dominant over the Adidas in the vol-
umes of Web photos. Second, we study in-depth correlation
between the product groups of each brand. For example, the
annual reports of the Louis+Vuitton classify their business
into several product groups such as leather goods, perfume,
jewelry, and wine. We compare between the proportions of
product groups in image data and sales data of the brand.

We obtain the sales data from the annual reports that are
publicly available on the companies’ webpages. We ignore
the brands held by private companies (e.g . Chanel), because
it is often hard to know accurate financial information. In
this analysis, we use image and sales data from 2006 to 2011.



Figure 7: Brand localization accuracies of three variants of our approach (MFC-*) and two baselines. The average

accuracies of the leftmost bar set are (MFC-M): 49.5%, (MFC-S): 46.8%, (MFC): 41.7%, (COS): 36.7%, and (LDA): 30.6%.

Figure 8: Six groups of brand localization examples. We sample four or five images per group that belong to the

same cluster, and thus are jointly segmented. We show input images (top) and their segmentation output (bottom).

Correlation between photo volumes and market
shares: Fig.9 shows the proportions of photo volumes and
market shares for the brands per category. The ranking of
the brands in the two data types are roughly similar, but
the percentages do not agree each other because the pre-
ferred scenes or situations of photo taking are different from
those of product purchase. For example, the Guinness has
a larger percentage value in the photo volume than in the
sales thanks to its positioning as premium beer. On the con-
trary, Taco+Bell occupies a small portion of photo volumes.
It may be because the Taco+Bell is a cheap fastfood brand,
which hardly attracts people to take pictures for the brand.

Correlation between product groups: Now we turn
to the comparison between product groups in each brand.
The main challenge here is that it is difficult for both hu-
man and computers to correctly classify millions of images
into the predefined product groups. For human, the data
size is too large to manually classify them. For computers,
there is no classifier applicable to noisy Web images with
high accuracies. Thus, we take advantage of our exemplar
detection/clustering results. We manually classify each ex-
emplar into one of predefined groups, and all the images in
the same cluster are labeled as the same. The classification
of product groups is based on the brand’s annual reports.

Fig.10 shows the results of product group analysis for four
luxury brands. We first label exemplar images by one of
three groups: product, company, and personal. The prod-
uct group comprises the photos whose main contents are
the products of the brand. The company group includes the
images that are directly relevant to the brand not to any
particular products. It consists of four subgroups: adver-
tisement, logo, shop, and event. The final one is the per-

sonal group for the private pictures whose contents are not
explicitly associated with brands.

We summarize several observations as follows. First, in
most brands, the personal group is the first or second largest
one, which may result from that people usually take pictures
on personal matters. Second, the company group is also very
popular; for examples, people are interested in luxurious
Louis+Vuitton’s stores as much as its products. Moreover,
the events hosted by brands are also popularly taken such as
fashion shows, music concerts, and sports activities. Third,
in the product group, one or two leading product types take
the majority of photo volumes while some product segments
like wines, perfume, and jewelry rarely appear.

6. CONCLUSION
In this paper, we addressed a problem of visualizing the

brand associations by leveraging large-scale online photo col-
lections. We developed a novel approach to jointly perform-
ing exemplar detection/clustering and brand localization in
a mutually-rewarding way. With the experiments of about
five millions of images for 48 brands, we have shown the su-
periority of our approach for the two visualization tasks over
other candidate methods. The empirical results assured that
our method can be a fundamental component to achieve our
ultimate goal: inferring in-depth brand associations from
Web images, which is a next direction of our future work.
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