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The complexity of the global organization and internal structure of motifs in higher
eukaryotic organisms raises significant challenges for motif detection techniques. To
achieve successful de novo motif detection, it is necessary to model the complex depen-
dencies within and among motifs and to incorporate biological prior knowledge. In this
paper, we present LOGOS, an integrated LOcal and GlObal motif Sequence model for

biopolymer sequences, which provides a principled framework for developing, modulariz-
ing, extending and computing expressive motif models for complex biopolymer sequence
analysis. LOGOS consists of two interacting submodels: HMDM, a local alignment
model capturing biological prior knowledge and positional dependency within the motif
local structure; and HMM, a global motif distribution model modeling frequencies and
dependencies of motif occurrences. Model parameters can be fit using training motifs
within an empirical Bayesian framework. A variational EM algorithm is developed for
de novo motif detection. LOGOS improves over existing models that ignore biological
priors and dependencies in motif structures and motif occurrences, and demonstrates
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superior performance on both semi-realistic test data and cis-regulatory sequences from
yeast and Drosophila genomes with regard to sensitivity, specificity, flexibility and

extensibility.

Keywords: Cis-regulatory system; Bayesian model; Dirichlet prior; hidden Markov
model; variational inference.

1. Introduction

The identification of motif structures within biopolymer sequences such as DNA and
protein is an important task in computational biology and is essential in advancing
our knowledge about biological systems. It is known that only a small fraction
of the genomic sequences in multi-cellular higher organisms constitute the protein
coding information of the genes (e.g. only 1.5% for human genomes1), whereas
the rest of the genome, besides playing purely structural roles such as forming the
centromeres and telomeres of the chromosomes, contains a large number of short
sequence motifs that make up an immensely rich codebook of the gene regulation
program, known as the cis-regulatory system. It is believed that this regulatory
program determines the level, location and chronology of gene expression, which
significantly, if not predominantly, contributes to the developmental, morphological
and behavioral diversity of complex organisms.7

The problem of de novo motif detectiona has been widely studied. Numerous
algorithmic approaches have been proposed, most of which use probabilistic gener-
ative models to model motifs as stochastic string patterns randomly embedded in a
simple background. In such a setting, motif detection can be formulated as a stan-
dard missing-value inference and parameter estimation problem (for motif locations
and position weight matrices, respectively), and standard methods such as EM and
Gibbs sampling can be applied. This literature is too large to survey here, but some
relevant examples include MEME,2 BioProspector,19 and AlignACE.21 A different
framework based on word segmentation and dictionary construction was proposed
in the MobyDick algorithm,5 which pointed out the importance of combinatorial
analysis of a large set of potential motifs jointly, so that some dependencies among
motifs can be captured. A similar “word-enumeration” idea also appeared in Ref. 20.
Recently, Gupta and Liu extended the dictionary model to a stochastic dictio-
nary (SD) model by replacing the words in the dictionary with probabilistic word
matrices,12 allowing stochasticity of motif instances to be modeled. Many of these
methods have been widely used and have been successful empirically for motif
detection in well curated bacterial and yeast gene regulatory sequences. However,
generalization of these successful results to longer, more complex and weakly char-
acterized input sequences such as those from higher eukaryotic genomes seems less
immediate. A recent survey by Eisen raises concerns over the inability of some

aNot to be confused with model-based motif scan, the task of searching known motifs based on
given position weight matrices, as addressed by Frith et al.10 and Huang et al.15
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contemporary motif models to incorporate biological knowledge of global motif dis-
tribution, motif structures and motif sequence composition.9

Several recent studies have tried to address these concerns from different per-
spectives. For example, some authors have proposed better objective functions for
motif detection, by scoring motifs based on the statistical significance of the infor-
mation content,14 and by considering cooperative motif binding between multiple
transcription factors.11 Van Helden et al. recently suggested using a signature con-
servation pattern to constrain the motif patterns.13 Bussemaker et al. proposed
incorporating gene expression data from microarrays for motif detection.6 Frith
et al. used an HMM in their motif scanner to model the possible presence of
clustered motif occurrences in complex cis-regulatory sequences.10 Although these
attempts head in the direction of more expressive motif models, it is not clear
whether these ideas can be integrated to assemble a powerful yet transparent and
computationally efficient motif detection algorithm.

We are interested in developing a principled general framework for motif mod-
eling, which is expressive (in terms of being able to describe internal structures,
inter-motif relations, motif abundances, etc., and readily incorporates prior knowl-
edge from experimental biology), yet mathematically and algorithmically trans-
parent and well-structured, hence simplifying model construction, computation
and extension. In a recent methodological paper, we briefly laid out a theoreti-
cal foundation for modular motif models where we made explicit the decomposi-
tion of a full motif model into the following two components: the global distribu-
tion model, which models the frequencies of different motifs and the dependencies
between motif occurrences in a sequence; and the local alignment model, which cap-
tures the intrinsic properties within motifs, including characteristic position weight
matrices (PWMs) and site dependencies.26 Based on this framework, we extended
the conventional motif-alignment model into a very expressive hierarchical Bayesian
Markovian model, called a hidden Markov Dirichlet-Multinomial (HMDM) model,
for local alignment, which successfully captures internal motif structure and incor-
porates prior knowledge from biologically known motifs using a structured Bayesian
prior model for the PWMs of motifs. In the current paper, we integrate the HMDM
model into a general framework for the modeling of motif-containing biopolymer
sequences and present a de novo motif detector developed based on this framework.
This framework uses the HMDM model as the local alignment submodel and uses a
newly designed HMM that we describe here for the global submodel. A variational
EM (VEM) algorithm is developed for efficient Bayesian learning and prediction.
We call our framework LOGOS, for integrated LOcal and GlObal motif Sequence
model.b

bNot to be confused with “logo,” a graphic representation of an aligned set of biopolymer sequences
first introduced by Tom Schneider22 to help visualizing the consensus and the entropy (or “infor-
mation”) patterns of monomer frequencies. A logo is not a motif finding algorithm, but is often
used as a way to present motifs visually.
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2. LOGOS: A Modular Generative Framework
for Motif Sequences

2.1. Preliminaries

Motifs are short stochastic string patterns scattered in biopolymer sequences such
as DNA and proteins. The characteristic sequence patterns of motifs and their
locations often relate to potentially important biological functions such as serv-
ing as the cis-elements for gene regulation or as the catalytic sites for protein
activities. Numerous biological studies have revealed rich architecture in the global
organization and the internal structures of motifs in higher eukaryotic organisms.
Taking DNA motifs as an example, it is well known that the cis-regulatory elements
often occur in clusters (referred to as cis-modules), possibly for eliciting synergistic
or more robust regulatory signals.7 The biophysical mechanisms of DNA-protein
interactions at the motif-binding sites further suggest that the sites within the
DNA motifs are not necessarily uniformly conserved.24,25 Rather, the conservation
pattern may be subject to a constraint imposed by the structure of the binding pro-
tein, resulting in the so-called ‘shape’ bias (Fig. 1). These meta-sequence features of
the motif structure raise significant challenges to conventional motif-finding algo-
rithms, which primarily rely on simplifying independence assumptions that decouple
(potential) associations among sites within each single motif and among multiple
instances of motifs. (For example, the conventional product multinomial model to
be described shortly assigns equal probability to both the original motif and its
permuted version in Fig. 1.)

In the following paragraph, we introduce the necessary notation for our presen-
tation. Note that to simplify the presentation, we use DNA motifs as a running
example, but it should be clear that our technique is readily applicable to protein
motifs.
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Fig. 1. An illustration of the shape bias. On the left-hand side are two genuine motif patterns.
On the right are artificial patterns resulted from a column permutation of the original motifs.
It is believed that for plausible biological motifs the conserved sites are more likely to occur
consecutively and possibly followed (or preceded) by heterogeneous sites that are also consecutive
(rather than interspersed). Such characteristic conservation patterns of the sites in a motif are
often reflected in the “contour shape” of the motif logo (e.g. U- or bell-shaped, as exhibited by
motifs gal4 and pho4, respectively), which reflects the spatial pattern of the information content
over all sites. It is important to note that “shape” is only associated with the conservation pattern
of a motif PWM, but not with any specific consensus sequences of the motif.
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We denote a regulatory DNA sequence by a character string y = (y1, . . . , yT ) ∈
{A,T,C,G}. An indicator string x signals the locations of the motif occurrences.
Following biological convention, we denote the multi-alignment of M instances of
a motif of length L by an M × L matrix A, of which each column corresponds
to a position or site in the motif. The multi-alignment of all instances of motif k
specified by the indicator string x in sequence y is denoted by A(k)(x, y). We define a
counting matrix h(A(k)) (or h(k)(x, y)) for each motif alignment, where each column
hl = [hl1, . . . , hl4]′ is an integer vector with four elements, specifying the number of
occurrences of each nucleotide (nt) at position l of the motif. (Similarly we define
the counting vector hbk for the background sequence y − A, where the somewhat
abusive use of the minus sign means excluding all motif sub-sequences in A from y.)
We assume that the nucleotides at position l of motif k admit a position-specific
multinomial distribution, θ(k)

l =
[
θ(k)

l1 , . . . , θ(k)

l4

]′. The ordered set of position-specific
multinomial parameters of all positions of motif k, θ(k) =

{
θ(k)
1 , . . . , θ(k)

L(k)

}
, is referred

to as a position weight matrix (PWM). It is clear that the counting matrix h(k)

corresponds to the sufficient statistics of PWM θ(k). Formally, the problem of motif
detection is that of inferring x = {x(1), . . . , x(N)} and estimating θ = {θ(1), . . . , θ(K)},
given a set of sequences y = {y(1), . . . , y(N)}. For simplicity, we omit the superscript
k (motif type index) of variable θ and the superscript n (sequence index) of variable
x and y in wherever it is clear from the context that we are focusing on a generic
motif type or a generic sequence.

2.2. The modular motif model

Without loss of generality, assume that the occurrences of motifs in a DNA
sequence, as indicated by x, are governed by a global distribution model
p(x|Θg,Mg), and for each type of motif, the nucleotide sequence pattern shared
by all its instances admits a local alignment model p(A(x, y)|x, Θl,Ml). We
further assume that the background non-motif sequences are modeled by a sim-
ple conditional model, p(y −A(y, x)|x, Θbk), where the background nt-distribution
parameters Θbk are assumed to be estimated a priori from the entire sequence. The
symbols Θg, Θl, Mg and Ml stand for the parameters (e.g. the PWMs) and model
classes (e.g. a product multinomial model) in the respective submodels. Thus, the
likelihood of a regulatory sequence y is:

p(y|Θ,M) =
∑

x

p(x|Θg,Mg)p(y|x, Θl,Ml)

=
∑

x

p(x|Θg,Mg)p(A|x, Θl,Ml)p(y − A|x, Θbk), (1)

where A � A(x, y). Note that Θl here is not necessarily equivalent to the PWMs
(θ) of the motifs, but is a generic symbol for the parameters of a more general
model of the aligned motif instances. (For example in the HMDM model to be
defined shortly, Θl refers to the hyperparameters that describe a distribution of
PWMs.)
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Equation (1) makes explicit the modular structure of the LOGOS framework
for generic motif models. The submodel p(x|Θg,Mg) captures properties such as
the frequencies of different motifs and the dependencies between motif occurrences.
On the other hand, the submodel p(A|x, Θl,Ml) captures the intrinsic properties
within motifs that can help to improve sensitivity and specificity to genuine motif
patterns. Depending on the value of the latent indicator xt (e.g., motif or not) at
each position t, yt admits different probabilistic distributions, such as a particular
nucleotide distribution inside a motif or a background distribution.

For example, the conventional uniform and independent (UI) model for motif
start-positions used in many motif finding algorithms is an instance of a sim-
ple global model, where the motif instances are assumed to occur indepen-
dently with uniform probability at all possible locations in a sequence. Therefore,
p(x) =

∏
M

m=1 p(xm), where p(xm = t) is the marginal probability of the m-th motif
at location t, which in this case is a uniform distribution over all t, and the same
for all M instances. Note that there is no model constraint to prohibit overlapping
motif instances.c The UI model does not appear to be problematic in de novo motif
finding tasks involving bacterial or even simple yeast sequence sets, in which the
input sequences are usually small in size and homogeneous in content (e.g. pre-
screened according to mRNA co-expression) and the motif occurrences tend to be
sparse. But some recent studies including our own experiments suggest that the
correctness of motif finding based on the UI assumption starts to break down for
less well pre-screened input sequences or for those with clustered motif occurrences,
such as the Drosophila gene regulatory sequences.4

An example of the local model is the standard product multinomial (PM)
model, where the position-specific nt-distributions within a motif are assumed
to be independent.19 Thus the likelihood of a multi-alignment A is: p(A|Θ) =∏L

l=1

∏4
j=1[θlj ]hlj . Although a popular model for many de novo motif finders, PM

nevertheless is sensitive to noise and random or trivial recurrent patterns (e.g. poly-
N or repetitions of short k-mers such as CpG islands), and is unable to capture
potential site dependencies inside the motifs. Various pattern-driven approaches
(e.g. using a fragmentation model,18 splitting a “two-block” motif into two cou-
pled sub-motifs,2,19 or imposing explicit “shape”13 or entropy constraints17), have
been developed to handle special patterns such as the U-shaped motifs, but gen-
eralization to other “shapes” seen from known motifs is not very straightforward.
The mixture of PWMs and tree-based Bayesian network models recently developed
by Barash et al. can capture positional dependencies within motifs.3 But these
models are motif specific and do not incorporate prior knowledges about typical
dependency patterns implied in the actual biologically identified motifs (we will

cHeuristics are generally employed — such as throwing away overlapping sampled motifs (in the
Gibbs sampler) or rescaling the joint posterior of x (in MEME) — to enforce the non-overlapping
constraint. Nevertheless, this results in inconsistencies between the computed motif distribution
and the one defined by the model, and incurs a sizable overhead due to wasteful computations.



April 15, 2004 0:45 WSPC/185-JBCB 00050

LOGOS: A Modular Bayesian Model for de novo Motif Detection 133

elaborate this point in later discussions). Dirichlet priors for θ have been used in
the PM setting,2,18 but they are primarily used for smoothing rather than for
explicitly incorporating prior knowledge about motifs.

Recently, Xing et al.26 developed the HMDM model for motif alignment, which
captures site dependencies inside the motifs and incorporates prior knowledge of
nt-distributions of all motif sites from biologically known motifs. It shows improved
sensitivity (compared to PM) to true biological motifs in the presence of synthetic
false motifs in the motif detection setting. Frith et al.10 proposed an HMM model for
cis-element clusters in higher eukaryotic DNA, which shows promising performance
in motif scanning (for which the PWMs are given). Our goal in this paper is to
develop an expressive modular motif model that builds on these previous lines of
research.

We present a de novo motif detection algorithm using an HMM as the global
distribution model and an HMDM as the local alignment model. The resulting
composite LOGOS model is capable of: (1) performing formal and efficient infer-
ence of global motif occurrences under a flexible setting that allows clustered motif
instances, multiple motif types, and motifs on reverse complementary sequences;
(2) correctly enforcing the non-overlapping constraint; (3) capturing site depen-
dencies inside the motifs so as to bias prediction toward more biologically plausi-
ble motifs while remaining flexible with regards to motif shapes and lengths; and
(4) incorporating prior knowledge of nt composition at each motif site to provide
smoothed and robust Bayesian estimation of the PWMs.

2.3. The local model: An HMDM for motif alignment

The local alignment model is crucial for identifying the correct motif patterns in
a noisy background. As mentioned before, many motifs are not uniformly well-
conserved at all their sitesd (e.g. gal4 in Fig. 1). Biological evidence shows that
conserved sites are likely to occur consecutively.9 This is called site clustering,
one of the main motivations for the HMDM model. Obviously the PM model can
not model such patterns: given a length L motif for which only L

2 positions are
conserved, PM would assign the same probability regardless of the locations of
the conserved sites.

In the HMDM model (Fig. 2), we assume that there are I underlying latent
nt-distribution prototypes,e according to which position-specific multinomial dis-
tributions of nt are determined, and that each prototype is represented by a
Dirichlet distribution, which defines a probability distribution over the simplex of

dA possible reason could be that a binding protein only interacts with a DNA target through a
few highly specific aa-nt interactions, but is tolerant of variations in other sites.
eWe can roughly imagine that the set of prototypes should include prototypes corresponding to
four possible conserved nt-distributions (i.e. those having most of the probability mass at A, C, G,
T, respectively), as well as other prototypes corresponding to distributions that are less conserved
or even heterogeneous in different ways.
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q2 qL...

...

q1

θ2 θLθ1

Am,1 Am,2 Am,L

M M M

Fig. 2. The HMDM model for motif instances specified by a given x. The circles are random
variables and the boxes are plates representing replicates (i.e. M instances of a motif).

multinomial parameters (see Appendix A). Furthermore, the sequence of prototypes
at consecutive positions in the motif is governed by a first-order Markov process,
which defines a structural prior for the position weight matrices.

More precisely, a multi-alignment A containing M motif instances is generated
by the following process. (1) We first sample a sequence of prototype indicators
q = (q1, . . . , qL) from a first-order Markov chain with initial distribution π and
transition matrix B. Then we repeat the following for each column l ∈ {1, . . . , L}:
(1) A component from a Dirichlet mixture α = {α1, . . . , αI}, where each αi =
[αi1, . . . , αi4]′ is the parameter vector for a Dirichlet distribution, is picked (deter-
ministically) according to indicator ql. Say, ql = i, thus we picked αi. (2) A multi-
nomial distribution θl is sampled according to p(θ|αi), the probability defined by
Dirichlet component i. (3) All the nucleotides in column l are generated i.i.d. accord-
ing to the multinomial distribution parametrized by θl.

The complete likelihood of motif alignment AM×L characterized by a counting
matrix h is:

p(A, q, θ|x, Θl,Ml) = p(A|x, θ)p(θ|q, α)p(q|π, B), (2)

where (using the update properties of the Dirichlet distribution and denoting qi
l = 1

if ql is in state i and 0 otherwise):

p(A|x, θ)p(θ|q, α) =
L∏

l=1

I∏
i=1

Dir(αi + hl)qi
l , (3)

p(q|π, B) =
I∏

i=1

[πi]q
i
1

L−1∏
l=1

I∏
i,j=1

[Bi,j ]q
i
l qj

l+1 . (4)

The major role of the HMDM model is to impose dynamic priors for modeling
data whose distributions exhibit spatial dependencies.

As Fig. 2 makes clear, this model is not a simple HMM for discrete sequences.
In an HMM model the transitions would be between the emission models (i.e.
multinomials) themselves, and the output at each time would be a single data
instance in the sequence. In HMDM, the transitions are between different priors for
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the emission models, and the direct output of the HMM is the parameter vector of a
generative model, which will be sampled multiple times at each position to generate
random instances. This approach is especially useful when we have either empirical
or learned prior knowledge (e.g., from training motifs) about motif properties such
as site clustering or other positional dependencies that can be captured by a first
order Markov chain (Eq. (4)). We will see an example of this point in Sec. 4.1.

2.4. The global model: An HMM for motif indicators

The HMDM generative process only creates aligned multiple instances of a motif,
but does not complete the generation of the observed sequence set. We need a model
for the background sequences and another process that generates the positions of
the motif instances. For this we need a global model for the indicator variable
sequence x that can specify the locations of all motif instances.

Let x be the indicator variable sequence specifying whether each yt in a DNA
sequence is in the background or in a motif, and if in a motif, which motif and
where in the motif: x = (x1, . . . , xT ), where xt ∈ S. The indicator state space S

includes all possible identity labels of a monomer (nt) in a sequence: S = M∪M
′ ∪

{b0, b1, . . . , bk, d}, where M =
{
1(1) . . . L(1)

1 , 1(2) . . . L(2)
2 , . . . , 1(K) . . . L(K)

k

}
is the set

of all possible sites within a motif on the forward strand (i.e., states 1(1) to L(1)
1

correspond to the sites in motif type 1 on the forward strand, and so on); M
′ is

the set of all possible sites within a motif on the reverse complementary strand;
b0 corresponds to the inter-cluster background state; bk, k �= 0 corresponds to the
intra-cluster background states; and d represents dummy states. We model the
distribution of x with the first-order Markov process depicted in Fig. 3.

The motivation for this Markov model is that we expect to see occasional
motif clusters in a large ocean of global background sequences (represented by
state b0), and each motif instance in a cluster is embedded in a corresponding sea
of intra-cluster background sequences (bi). The model assumes that the distance
between clusters is geometrically distributed with mean 1/(1 − β0,0), and the dis-
tance between motif instances within cluster k is also geometrically distributed
with mean 1/(1−βk,0). As shown in Fig. 3, with equal probability βk,k/2, an intra-
background state bk reaches the start states 1(k) and L(k′)

k of motif k on the forward
or reverse strand, deterministically passes through all internal sites of motif k (thus
avoiding motif overlapping), and transitions back to the same background state
bk, thereby stochastically generating a cluster of occurrences of motif kf ; bk also
has a small probability βk,i/2 of transitioning to the start state of another motif i,
which terminates cluster k and leads into cluster i; all intra-background states also
have probability αk,0 of returning to the global background state. These param-
eters can in principle be fitted using a training set, or just specified empirically

fNote that such a scheme does not imply that the actual nucleotide-sites involved in protein
binding are all on the same strand, but merely means that we represent the motif using the
sequence pattern on one of the two complementary strands.
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Fig. 3. The global HMM. Labeled circles represent the functional states in DNA sequences.
Unlabeled circles are dummy states; arrows between nodes represent state-transitions that have
non-zero probabilities; numbers on the arrows represent transition probabilities, and so do
the parameter symbols accompanied the arrows (with the parameter subscripts denoting the
source and target of the transitions). A path that follows the arrows stochastically leads to a

state sequence that is reminiscent of a regulatory DNA sequence with motifs embedded in the
background.

based on a rough estimation of the motif or cis-module frequencies.g Note that
these parameters do not impose rigid constraints on the number of motif instances
or modules; the actual number of instances is determined by the posterior distri-
bution of the indicator sequence p(x|y).

In accordance with the above framework, we introduce multinomial parameters
θb0 = [θb0,1, . . . , θb0,4]′ and θb1 = [θb1,1, . . . , θb1,4]′ for the inter- and intra-cluster
background nt-distributions, respectively (assuming all intra-cluster backgrounds
use the same multinomial model). Thus, given the PWMs Θ of motifs and the
background parameters Θbk = {θb0 , θb1}, we have the usual joint probability for a
conditional HMM model of a motif-containing sequence:

p(x, y|Θ, Θbk, Θg,Mg) = p(x1)
T∏

t=2

p(xt|xt−1)
T∏

t=1

p(yt|xt, Θ, Θbk) (5)

where p(yt|xt, Θ, Θbk) =
∏
i∈S

4∏
j=1

[θij ]δ(yt,j)δ(xt,i).

gWhen no strong knowledge about modular dependencies is available, it is better to just set
all bk-to-mt transitions βi,j , i, j �= 0, to the same small constant reflecting motif frequency, and
similarly for β0,k and αk,0 reflecting cluster frequency, to avoid overfitting. In our experiment,
we parametrize our HMM model in such a fashion. This reduced model is very similar to the one
used in Cister,10 but with unknown PWMs in our case.
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The locations of all motif instances encoded in x can be inferred from the global
model using Bayes rule.

The HMM model we proposed is not meant to capture fine details of the global
motif dependencies, because without a sufficiently large and well-characterized
training data set, we could risk overfitting to hypothetical structures and fail to
generalize to sequences bearing unknown (and possibly simpler) structures. But
within the LOGOS framework, if so desired, we can easily generalize to more elab-
orate models, such as one that models higher order dependencies, or one which
uses a more complex background (e.g. a higher-order Markov model) in a princi-
pled way. All that is needed is to simply expand the state space S, and either train
or empirically parametrize a more expressive initial and transition model in the
global HMM.

3. Inference and Learning Algorithm

3.1. Variational Bayesian learning

In order to do Bayesian estimation of the motif parameter θ, and to predict the
locations of motif instances via the indicator sequence x, we need to be able to
compute the posterior distribution p(θ|y), which is infeasible in closed form for a
complex motif model (because we have to marginalize out q and x in the joint
posterior p(θ, q, x|y,M)). A possible approach is to use a Markov Chain Monte
Carlo (MCMC) method, such as a Gibbs sampler, which performs “asymptoti-
cally exact inference.” However, concerns over likely slow mixing and difficulties
in detecting convergence motivate us to use variational Bayesian inference, which
has a more deterministic flavor similar to that of EM and is computationally more
efficient.

The variational Bayesian inference method developed in Ref. 26 for the HMDM
model is a special instance of the generalized mean field (GMF) algorithm.27 Briefly,
in the GMF framework, a complex joint distribution p, such as the joint posterior
p(θ, q, x|y,M), is approximated with a simpler distribution Q defined by the prod-
uct of inter-dependent local marginals over disjoint subsets of all domain variables,
e.g. Q(θ, q, x) = Ql(θ, q)Qg(x). The optimal form of each local marginal can be
obtained via minimizing the Kullback–Leibler (KL) divergence between Q and p

with respect to free distributions Ql and Qg.27 Omitting mathematical details, this
optimization results in the following coupled updates:

Qg(x) = p(x|Mg)p(y|x, φ̄(θ),Mg) (6)

Ql(θ, q) = p(q|Ml)p(θ|q, α, h̄(y),Ml) (7)

where, ED denotes expectation with respect to the distribution D, and h̄(y) =
EQg [h(x, y)], φ̄(θ) = EQl

[ln θ],h which are referred to as the generalized mean field

hln θ, where ln(·) is a componentwise operation, is called the natural parameterization of a
multinomial.
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messages exchanged between submodels conducting probabilistic influences of the
respective submodel.

A key property revealed in Eqs. (6) and (7) is the isomorphism of their right-
hand sides to those of the Eqs. (2) and (5). Essentially, the variational marginals
Qg(x) and Ql(θ, q) recover exactly the same form of the original global and local
submodels, except that the motif parameters θ on which the global submodel
is conditioned are replaced by their Bayesian estimates (in the natural parame-
ter form), and the sufficient statistics h propagated from the global submodel to
the local submodel are replaced by their posterior expectations. This means that
the locality of inference and marginalization in the composite LOGOS model is
preserved in both local and global submodels. We can easily obtain the optimal
approximate posterior distribution of θ by marginalizing Ql(θ, q) over q, and that
of x, using Qg(x). It can be further proved that the coupled updates (6) and (7)
actually optimize a lower bound of the likelihood p(y|Θ,M) and are guaranteed
to converge to a local maximum (as in standard EM).16 In the following section
we summarize the computation procedure involved in LOGOS, which we call a
“variational EM” algorithm (VEM), after its operational resemblance to conven-
tional EM.

3.2. The variational EM algorithm

Due to the locality of variational Bayesian inference, we can perform inference in
the local alignment model HMDM as if we have “observations” h̄ (to obtain a
distribution Ql(θ, q) that approximates the marginalized conditional p(θ, q|y)), and
in the global HMM model as if the position-specific multinomial distribution of a
motif φ̄(θ) is given (to obtain Qg(x) that approximates p(x|y)). Therefore, Bayesian
estimates of the multinomial parameters can be obtained via fixed-point iteration
through the following EM-like procedure:

3.2.1. Variational E step

Compute the expected sufficient statistics, the count matrix h̄ = EQg(x)[h], via
inference in the global motif model given φ̄(θ) and sequence set y:

h̄ =
N∑

n=1

Tn−L+1∑
t=1

h
(
y(n)

t:t+L−1

)
p
(
x(n)

t = 1|y(n), φ̄(θ), Θbk

)
, (8)

where superscript n indicates the nth DNA sequence; p
(
x(n)

t = 1|y(n), φ̄(θ), Θbk

)
is the posterior probability of position t in sequence n being the start site of a
motif given sequence y(n), Bayesian estimate of motif PWMs, and the background,
which can be computed using the standard forward-backward algorithm for HMMs
on Qg(x).
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3.2.2. Variational M step

Compute the posterior mean of the natural parameter, φ̄(θ) = EQl(θ,q)[φ(θ)], via
inference in the local motif alignment model given h̄:

φ̄(θl,j) =
I∑

i=1

p(ql = i|h̄)(Ψ(αij + h̄lj) − Ψ(|αi| + |h̄l|)), (9)

where Ψ(x) = ∂ log Γ(x)
∂x = Γ

′
(x)

Γ(x) is the digamma function; p(ql = i|h̄) is the posterior
probability of hidden state q given “observation” h̄, which can be computed using
the forward-backward algorithm on Ql(θ, q).

This modular inference procedure provides a framework that scales readily to
more complex models. For example, the motif distribution model p(x) can be
made more sophisticated so as to model complex properties of multiple motifs such
as motif-level dependencies (e.g. co-occurrence, overlaps and concentration within
regulatory modules) without complicating the inference in the local alignment
model. Similarly, the motif alignment model can also be more expressive (e.g. a mix-
ture of HMDMs) without interfering with inference in the motif distribution model.

The Dirichlet parameters and HMM transition matrix of the HMDM are fitted
from a training dataset via empirical Bayes estimation8 (see Appendix B for details).

4. Experiments

In a prior work,26 we systematically examined the performance of the HMDM
model by implementing a prototype motif detector using HMDM as the local model
and testing it on semi-realistic datasets in which biologically identified motifs are
planted in a random background, possibly in the presence of artificially produced
“false motifs” as decoys. The major advantage of using such a test system is that
we know the ground truth, i.e. the true locations and PWMs of the motifs to
be detected, and hence can reliably compare performance of different models. We
showed that HMDM has a notably higher specificity (than PM) to the genuine
motifs in the presence of an artificial decoy, and significantly out-performs the
PM-based MEME algorithm in the one-motif-per-sequence scenario.

The LOGOS model developed in the current paper integrates HMDM as a sub-
component, which models the motif alignments, accompanied with an expressive
HMM model, which models the global distribution of motifs in a biologically more
realistic way than the UI model. In the following sections, we examine the perfor-
mance of LOGOS using both semi-realistic datasets and real genomic sequences
from yeast. All yeast motif sequences are obtained from the Promoter Database of
Saccharomyces cerevisiae (SCPD), 15 of which are used to fit the hyperparameters
of the HMDM, and others (independent of the training set) are used for testing. We
compare three variants of LOGOS, ordered with decreasing model expressiveness,
HMDM+HMM (LOGOShh), PM+HMM (LOGOSph) and PM+UI (LOGOSpu),
as well as the MEME and AlignACE program (both of which are essentially the



April 15, 2004 0:45 WSPC/185-JBCB 00050

140 E. P. Xing et al.

same as LOGOSpu in terms of model assumptions, but are enhanced by addi-
tional pattern-driven submodels, i.e. gapped motifs, and a more sophisticated
implementation).

4.1. Learning the HMDM parameters

We learn our HMDM model using a motif collection from the SCPD. Our dataset
contains 15 training motifs. Each has 6 to 32 instances all of which have been
identified via biological experiments.

We begin with an experiment showing how HMDM can capture intrinsic prop-
erties of the motifs. The prior distribution of the position-specific multinomial
parameters θ, reflected in the parameters of the Dirichlet mixtures learned from
data, can reveal the nt-distribution patterns of the motifs. Examining the transition
probabilities between different Dirichlet components further tells us about depen-
dencies between adjacent positions (which indirectly reveals the “shape” informa-
tion). We set the total number of Dirichlet components to be eight based on an
empirical model selection decision to strike a balance between the expressiveness
and complexity of the HMDM model. Intuitively, it can be understood as a prior
choice of the size of the collection of nt-distribution prototypes needed to cap-
ture all conserved patterns (i.e., prototypes centered at a specific nucleotide), the
non-conserved patterns (i.e., uniform nt-distribution prototypes), and the interme-
diate patterns. Figure 4a shows the Dirichlet parameters fitted from the dataset
via empirical Bayes estimation. Among the eight Dirichlet components, compo-
nents 1–4 favor highly concentrated multinomial distributions centered at each
possible single nucleotides A, T, G, and C, respectively, suggesting they corre-
spond to “homogeneous” prototypes, whereas components 7 and 8 favor a near
uniform distribution of all 4 nt-types, hence “heterogeneous” prototypes. Compo-
nents 5 and 6 are somewhat in between. Such patterns are consistent with the
biologically possible nt-distributions anticipated for motif sites, and suggest that
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Fig. 4. (a) Dirichlet hyperparameters. Each of the eight panels represents the 4-dimensional param-
eter vector of a Dirichlet component (the height of the bar represents the magnitude of the cor-
responding element in the vector); (b) Markov transition matrix. Each element in the transition
matrix B specifies the color of a rectilinear patch in the image.
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the choice of eight components offer sufficient expressive power to accommodate
the necessary prototypes (as the homogeneous prototypes are already somewhat
redundant). Interestingly, from the learned transition model of the HMM (Fig. 4b),
it can be seen that the transition probability from a homogeneous prototype to a
heterogeneous prototype is significantly less than that between two homogeneous
or two heterogeneous prototypes, confirming an empirical speculation in biology
that motifs have the so-called site clustering property. Of course, with an HMM,
we can only capture first-order dependencies. To model higher-order dependencies,
more complex models, such as tree models, are needed.

4.2. Performance on semi-realistic sequence data

4.2.1. Single motif, and multiple instances per sequence

Under a realistic motif detection condition, the number of motif instances is
unknown. Rather than trying all possible numbers of occurrences suggested by the
user or decided by the algorithm and reporting a heuristically determined plausible
number, LOGOS uses the global HMM model to describe a posterior distribu-
tion of motif instances, which depends on both the prespecified indicator state
transition probabilities and the actual sequence y to be analyzed. Currently, the
transition probabilities are empirically set at a default value to reflect our rough
estimates of motif frequencies (i.e. 5%). But as more training data of annotated reg-
ulatory sequences are collected, we plan to fit these parameters in a genome-specific
fashion. Due to modularity of variational inference in LOGOS, the locations of all
instances, which are specified by the indicator sequence x, can be efficiently inferred
from the variational marginal distribution Q(x), a standard HMM, using posterior
decoding, which computes the posterior expectation of x.

Table 1 summarizes the performance of three variants of LOGOS for single
motif detection, with an unknown number of instances per sequence. We present
the median false positive (FP) and false negative (FN) rates (in terms of finding
each instance of the motifs within an offset of 3 bp) of motif detection experiments
over 20 test datasets. Each test dataset consists of 20 sequences, each generated by
planting (uniformly at random) 0–7 instances of a motif (real sites from SCPD),

Table 1. Performance of LOGOS for single motif detection, with unknown
number of instances per sequence.

Motif name LOGOShh LOGOSph LOGOSpu

FP FN FP FN FP FN

abf1 0.3115 0.2116 0.6774 0.1957 0.7917 0.9123
gal4 0.1569 0.1569 0.1895 0.1534 0.2917 0.7939
gcn4 0.1820 0.2355 0.6142 0.2821 0 0.9594
gcr1 0.1962 0.2134 0.3371 0.2038 0.3333 0.9437
mat 0.0723 0.0337 0.3563 0 0.5000 0.9643
mcb 0.3734 0.0910 0.3628 0.0792 0.3333 0.9431
mig1 0.0774 0 0.0854 0 0.9764 0.1000
crp 0.3768 0.3398 0.2727 0.5294 0 0.9487
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together with its permuted “decoy,” in a 300–400bp random background sequence.
As Table 1 shows, LOGOSpu yields the weakest results, losing in all eight motif
detections (in terms of (FP + FN)/2), suggesting that the conventional PM + UI
model, which is used in MEME, and with slight variation, in AlignACE and Bio-
Prospector, is not powerful enough to handle non-trivial detection tasks as posed
by our testset. LOGOSph improves significantly over LOGOSpu, even yielding the
best performance in one case (for mcb), suggesting that the HMM global model we
introduced indeed strengthens the motif detector. Finally, as hoped, LOGOShh

yields the strongest results, performing best on 7 of the 8 motifs, convincingly
showing that capturing the internal structures of motifs and making use of prior
knowledge from known motifs, combined with the use of the HMM global model,
can yield substantially improved performance. Our results are reasonably robust
under different choices of the global HMM parameters.

4.2.2. Simultaneous detection of multiple motifs

Detecting multiple motifs simultaneously is arguably a better strategy than detect-
ing one at a time followed by deleting or masking the detected motifs, especially
when motif concentrations are high, because the latter strategy mistakenly treats
the other motifs as background, causing potentially suboptimal estimation of both
motif and background parameters. The global HMM model we propose readily han-
dles simultaneous multiple motif detection: we only need to encode all motif states
into the state space S of the motif indicator x, and perform standard HMM infer-
ence. The locations of all motifs can be directly read off from the state configuration
of x. Table 2 summarizes the results on 20 testsets each containing 20 sequences
harboring motifs abf1, gal4 and mig1 (0–6 total instances/seq). The upper panels
show the predictive performance based on the optimal (in terms of maximal log-
likelihood of y from 50 independent runs of the VEM) posterior expectation of x.
Note that with a HMDM local model, LOGOShh exhibits better performance. In
the lower panels, we show the best result out of the top three predictions made by
LOGOS (note the “k-at-a-time” prediction yields a total of 3k possibly redundant

Table 2. Simultaneous multiple motif detection (median
FP-FN rate over 20 testsets containing three motifs).

LOGOShh LOGOSph

FP FN FP FN

abf1 0.3591 0.3274 0.7778 0.7434
gal4 0.1259 0.1714 0.3751 0.1491
mig1 0.3849 0.2243 0.3481 0

abf1 0.3841 0.2400 0.4721 0.3972
gal4 0.0926 0.0986 0.2609 0.1255
mig1 0.1250 0.0333 0.2318 0
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Table 3. Simultaneous detection of three motifs, with
lengths improperly specified (18, 22, and 20 bp, respec-
tively, instead of the actual 13, 17, and 11 bp).

LOGOShh LOGOSph

FP FN FP FN

abf1 0.7295 0.6667 0.8021 0.7680
gal4 0.1167 0.2042 0.2357 0.1325
mig1 0.4183 0.2128 0.8150 0.8381

abf1 0.3310 0.2804 0.5742 0.4821
gal4 0.0955 0.1222 0.1882 0.1250
mig1 0.2124 0.1327 0.3218 0.1623

motif patterns). This is close to the stochastic dictionary scenario where the pre-
dicted motif is to be identified from the optimal dictionary of the patterns resulting
from the motif detection program.12 It is expected that a human observer could eas-
ily pick out the biologically more plausible motifs when given a visual presentation
of the most likely motifs suggested by a motif finder.

4.2.3. Detecting motifs of uncertain lengths

A useful property of the HMDM submodel is that it actually does not need to know
the exact lengths of the motifs to be detected, since HMDM allows a motif to start
(and end) with consecutive heterogeneous sites. Thus, a blurred motif boundary
is permissible, especially when the resulting window is large enough to cover at
least the entire length of the motif. As a result, we do not have to know the exact
length of the motif, but just need to roughly guess it conservatively, during de novo
motif detection. This is another appealing feature of LOGOS, which extends its
flexibility. As shown in Table 3, even in simultaneous multiple motif detection, with
improperly specified motif lengths, HMDM+HMM performs nearly as well as when
motif lengths are precisely specified, whereas PM + HMM is not as good.

4.3. Performance on real genomic sequence data

4.3.1. Motif detection in yeast promoter regions

In this section we report a performance comparison of LOGOS (HMM + HMDM)
with two popular motif detection programs, MEME and AlignACE, on 12 yeast
genomic sequence sets gathered from the SCPD database (the selection is based on
having at least a total of 5 motif instances in all sequences and the motif being inde-
pendent of our training set). Each sequence set consists of multiple yeast promoter
regions each about 500 bp long and containing on both strands an unknown num-
ber of occurrences of a predominant motif (but also possibly other minor motifs) as
specified by the name of the dataset (Table 4, where the rightmost column gives the
number of sequences in each dataset). Note that both the relatively large sizes of the
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Table 4. Comparison of motif detectors on yeast promoter sequences.

Set name LOGOS MEME AlignACE Seq no.

FP FN FP FN FP FN

abf1 0.7949 0.6522 1.0000 1.0000 0.5294 0.6087 20
csre 0.4444 0.1667 0.7778 0.5000 0.8000 0.5000 4
gal4 0.1333 0.0714 0.1667 0.2857 0.3333 0.1429 6
gcn4 0.3529 0.1852 1.0000 1.0000 0.3333 0.5556 9
gcr1 0.2859 0.6154 1.0000 1.0000 0.4545 0.4615 6
hstf 0.8571 0.5556 0.6000 0.5556 0.8500 0.6667 6
mat 0.4194 0 0.3750 0.5625 0.2500 0.2500 7
mcb 0.4706 0.2500 0.2000 0.3333 0.2500 0.2500 6
mig1 0.8077 0.2857 1.0000 1.0000 0.8333 0.7857 22
pho2 0.9024 0.5000 1.0000 1.0000 1.0000 1.0000 3
swi5 0.7647 0.5000 1.0000 1.0000 0.9412 0.7500 2
uash 0.8250 0.6818 1.0000 1.0000 0.9231 0.9545 18

input sequences and the possible presence of motifs other than what has been anno-
tated make the motif finding task significantly more difficult than a semi-realistic
test data or a small, well curated real test data. We use the following command to
run MEME: “meme $efile -p 2 -dna -mod tcm -revcomp -nmotifs 1.” In practice,
this means that we search for a DNA sequence on both strands for at most one
motif, which can occur zero or more times in any given sequence. AlignACE is run
with default command-line arguments nearly identical to those for MEME, with
the only difference that AlignACE can return multiple predicted motifs (of which
we select the best match from the top five MAP predictions). LOGOS is set in the
multiple-detection mode and is used to make two motif predictions simultaneously.
As shown in Table 4, for this non-trivial de novo motif detection task, LOGOS
outperforms the other two programs by a significant margin.

4.3.2. Motif detection in Drosophila regulatory DNAs

In this section we report on a preliminary de novo motif discovery analysis of the
regulatory regions of the 9 Drosophila genes involved in body segmentation. The
input data consists of 9 DNA sequences ranging from 512 to 5218bp, as described
in Berman et al.4 Biologically identified motifs include bcd, cad, hb, kni and kr. For
comparison, we provide the PWMs postulated by Berman et al. for these five motifs,
which were used in their motif scan analysis (Fig. 5). The sources of all PWMs are
biologically identified sequence segments from the literature (which are unaligned,
ranging from 5 to 93 instances per motif, and about 20 ∼ 40 bases in length). The
PWMs are derived from an alignment of all these identified motif sequences.

We apply LOGOS (which is set to identify four motifs at a time) to the
Drosophila dataset and Fig. 6 gives a partial list of the top-scoring motif patterns
(of the top three runs out of a total of 50 runs, evaluated by the likelihood under the
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Fig. 5. Berman et al.’s Drosophila motif patterns derived from multi-alignments of biologically
identified motif instances.
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Fig. 6. Motif patterns detected by LOGOS in the regulatory regions of 9 Drosophila genes.

LOGOS model at convergence). Note that the logos shown here are not the con-
ventional sequence logos based on counts of aligned nucleotides; instead we use the
logo visualization software to graphically present the Bayesian estimate of the
position-specific multinomial parameters θ of each motif, so they are not necessarily
equal to the usual nt frequencies of aligned sequences, but represent a more robust
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Fig. 7. Motif patterns detected by MEME in the regulatory regions of the Drosophila eve-skipped
gene.

probabilistic model of the motif sequences. A visual inspection reveals that pat-
terns 1 and 5 correspond to the hb and cad binding sites, respectively (as confirmed
by the matching of the locations of our results and the sequence annotations).
Part of pattern 2 agrees with the reverse complement of the kr motif (containing
-CCCxTT-), but this motif seem to be actually a “two-block” motif because the
pattern we detected under a longer estimated motif length contains an additional
co-occurring conserved pattern a few bases upstream. Part of pattern 7 is close to
the bcd motif (containing -AATCC-) but also contains additional sites (i.e., the three
highly conserved C’s upstream), which turned out to be resulted from a number
of false positive substrings picked up together with the true bcd motifs. A careful
examination of pattern 6 suggests that it may be actually derived from putative
motif subsequences that correspond to the kni binding site. This is not obvious at
first because it appears quite different from the kni logo in Fig. 5. But after seeing
an example kni site in stripe2/7: 5′agaaaactagatca3′, starting at position 35, we
realized that the answer might be plausible. The discrepancy is likely due to the
artifacts in the original generation of the alignment data supporting the kni logo:
only 5 biologically identified instances were used and they are quite diverse; the
resulting multiple alignment is visually sub-optimal in that homogeneous sites are
severely interspersed with heterogeneous sites. Patterns 3, 4, and 8 are putative
motifs not annotated in the input sequences. We also ran the same dataset through
MEME (also four patterns to be found a time) and the output is in general weaker
and harder to interpret. Figure 7 shows the best three patterns, from which one
could recognize a hb (pattern 1) and a cad (pattern 3). Note that the motif logos
given in Fig. 5 are based on the nucleotide-frequency profiles of biologically identi-
fied instances from many sources. Thus it is not surprising that some of the patterns
we found are similar but do not match the logos in Fig. 5 exactly since our logos
are derived from Bayesian estimates of the motif parameters and our data source
consists of a small number of regulatory regions of the Drosophila genome, which
might be smaller and less representative compared to the data source underlying
Fig. 5 (except for kni).
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5. Conclusions

We have presented a generative probabilistic framework for modeling motifs in
biopolymer sequences. A modular architecture is proposed, which consists of a local
submodel of motif alignment, and a global submodel of motif distribution.

We use an HMDM model for local motif alignment, which captures site depen-
dencies inside motifs and incorporates learnable prior knowledge from known motifs
for Bayesian estimation of the PWMs of novel motifs in unseen sequences. We use an
HMM model for the global motif distribution, which introduces simple dependen-
cies among motif instances and allows efficient and consistent inference of motif
locations. A deterministic algorithm, variational EM, is developed to solve the
complex missing value and Bayesian inference problems associated with our model.
VEM allows probabilistic inference in the local alignment and the global distribution
submodels to be carried out virtually separately with a proper Bayesian interface
connecting the two processes. This divide and conquer strategy makes it much easier
to develop more sophisticated models for various aspects of motif analysis without
being overburdened by the daunting complexity of the full motif problem.

As discussed at length in a previous paper,26 HMDM is a hierarchical Bayesian
model that describes a structured prior distribution of PWMs, so that depen-
dencies between sites within a motif can be modeled in the finite space of “nt-
distribution prototypes.” A recent paper by Barash et al. proposed several expres-
sive Bayesian network representations (e.g. tree network, mixture of trees, etc.)
for motifs, which also aimed at modeling dependencies between motif sites.3 An
important difference between these two approaches is that, in Barash’s Bayesian
network representations, the site-dependencies are modeled directly at the level of
site-specific nt-distributions in a “sequence-context dependent” way; whereas in the
HMDM model, the site-dependencies are modeled at the level of the prior distri-
butions of the site-specific nt-distributions in a “conservation-context dependent”
way. Thus, Barash’s motif models have one-to-one correspondence with particu-
lar motif consensus patterns, and need to be trained on an one-model-per-motif
basis. On the other hand, the HMDM model corresponds to a generic signature
structure at the meta-sequence level, and is not meant to commit to any specific
consensus motif sequence, but aims at generalizing across different motifs bearing
similar conservation structures (e.g. a bell-shape). In terms of the resulting compu-
tational task in de novo motif detection, Barash’s model needs to be estimated in an
unsupervised fashion and makes no use of the biologically identified motifs in the
database, whereas HMDM helps to turn the model estimation task into a semi-
unsupervised learning problem that draws connection between novel motifs to be
found and the biologically identified motifs via a shared Bayesian prior, so that
the patterns to be found are biased toward biologically more plausible motifs. It is
interesting to note that these two approaches are complementary in that Barash’s
models provide a more expressive likelihood model of the motif instances, and the
HMDM model can be straightforwardly generalized to define a prior distribution
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for these more expressive models (e.g. replacing the Markov chain for the prototype
sequence in HMDM with a tree model and/or introducing Dirichlet mixture priors
for the parameters of Barash’s models).

Due to the functional diversity of the DNA motifs, we expect that there could
exist more complex dependencies and regularities in the structures of motifs, thus
further investigations into these properties and more powerful local models for
motifs (e.g. the combination of HMDM to expressive motif representations proposed
above) are needed. Similarly, the HMM global model we propose is only a first step
beyond the conventional UI model, and is only able to capture dependencies between
motifs and motif clusters at a very limited level (e.g. it cannot model higher order
dependencies such as hierarchical structures and long-distance influence between
motifs). More expressive models are needed to achieve these goals. Nevertheless,
under the LOGOS architecture, extensions from baseline models are modular and
the probabilistic calculations involved can also be handled in a divide-and-conquer
fashion via generalized mean-field inference. We are in the process of developing
more expressive versions of LOGOS. In particular, recent work by Gupta et al.12

have motivated us to pursue combination of the dictionary-based models with our
approach to capture richer motif properties in complex sequences. We are optimistic
that LOGOS can serve as a flexible framework for motif analysis in biopolymer
sequences.
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Appendix A. Multinomial Distributions and Dirichlet Priors

To model a categorical random variable z, which can take J possible discrete values
(e.g. all four possible nucleotides, A, C, G and T, in a DNA sequence), a standard
distribution is the multinomial distribution: p(z = j|θ) = θj , |θ| =

∑J
j=1 θj = 1,

θj > 0, ∀j, where j represents one of the J possible values. The (column) vector
θ = [θ1, . . . , θJ ]′ is called the multinomial parameters.i For a set of M i.i.d. samples
of z, z = (z1, . . . , zM ) (e.g. a whole column of nucleotides in a multi-alignment A),
the sufficient statistics are the counts of each possible value: hj =

∑M
m=1 δ(zm, j),

iNote that for simplicity, in this section, we reuse the symbol θ (and also h and α in the sequel)
to denote a single column vector, whose elements are singly subscripted (e.g. θj); whereas in the
main text and the next section, these symbols each denotes a two-dimensional array consisting of
a sequence of columns vectors, whose elements are consequently doubly subscripted (e.g. θlj).
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where δ(a, b) = 1 if a = b and 0 otherwise. Under a multinomial distribution, the
likelihood of a single sample zm is:

p(zm|θ) =
J∏

j=1

[θj ]δ(zm,j), (A.1)

and the joint likelihood of the i.i.d. sample set z is:

p(z|θ) =
M∏

m=1

J∏
j=1

[θj ]δ(zm,j) =
J∏

j=1

[θj ]hj . (A.2)

To model uncertainty about the multinomial parameters, we can treat θ as a
multivariate continuous random variable, and use a Dirichlet Density to define
a prior distribution Dir(α) for θ:

p(θ|α) = C(α)
J∏

j=1

[θj ]αj−1, (A.3)

where the hyperparameters α = [α1, . . . , αJ ]′, αj > 0, ∀j are called the Dirichlet
parameters, and C(α) is the normalizing constant which can be computed
analytically:

C(α) =
Γ(|α|)∏J

j=1 Γ(αj)
. (A.4)

Now we can calculate the joint probability p(θ, z|α):

p(θ, z|α) = p(z|θ)p(θ|α) = C(α)
J∏

j=1

[θj ]αj+hj−1. (A.5)

Integrating Eq. (A.5) over θ, we obtain the marginal likelihood:

p(z|α) =
∫

p(θ, z|α)dθ =
Γ(|α|)

Γ(|α| + |h|)
J∏

j=1

Γ(αj + hj)
Γ(αj)

. (A.6)

From Eq. (A.6) we can see that the quantity αj − 1 represents the number of
imaginary counts that event (z = j) has already occurred. Furthermore, we have
posterior distribution p(θ|z, α) = p(θ, z|α)/p(z|α) = Dir(α+h), which is isomorphic
to the prior distribution, thus analytically integrable. This isomorphism between
the prior and posterior is called conjugacy and priors of such nature are called
conjugate priors.

Appendix B. Estimating Hyper-Parameters in HMDM

We can compute the maximum likelihood estimation of the hyper-parameters
Θ = {π, B, α} of the HMDM model from a training dataset of known motifs using
an EM algorithm. This approach is often referred to as empirical Bayes parameter
estimation.
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Following Sjölander et al.,23 for a given set of multi-alignment matrices
{A(1), . . . ,A(K)}, where each A(k) represents a multiple alignment of Mk biolog-
ically identified instances of motif k of length Lk, the likelihood of the count vector
h(k)

l summarizing the column of aligned nucleotides at site l of motif k, under
Dirichlet prior αi, is

p
(
h(k)

l |αi

)
=

Γ
(|h(k)

l | + 1
)
Γ(|αi|)

Γ
(|h(k)

l | + |αi|
) 4∏

j=1

Γ
(
h(k)

lj + αij

)
Γ
(
h(k)

lj + 1
)
Γ(αij)

. (B.1)

Note that this formula is slightly different from Eq. (A.6) because h(k)

l can be

resulted from
Γ
(
|h(k)

l |+1
)

Q4
j=1 Γ

(
h
(k)
l j+1

) distinct permutations of the Mk nucleotides. Since no

particular ordering of the motif instances in multi-alignment matrices is assumed
for the training data, it is more appropriate to model the probability of the count
matrices h resulted from A than that of A themselves.23

Thus, the complete log likelihood of the count matrices h(k) =
{
h(k)

1 , . . . , h(k)
Lk

}
,

∀k, and the latent HMDM state sequences q(k) =
{
q(k)
1 , . . . , q(k)

Lk

}
, ∀k, can be

obtained by replacing the A(k)’s in Eq. (2) with h(k)’s, integrating over each θ(k)

(which results in a term like Eq. (B.1) for each count vector), and taking the
logarithm of the resulting marginal:

lc(Θ)

= log p(h(1), . . . , h(K), q(1), . . . , q(K)|Θ)

= log

{
K∏

k=1

[
p(q(1)

1 |Θ)
Lk−1∏
l=1

p(q(k)

l+1|q(k)

l , Θ)
Lk∏
l=1

p(h(k)

l |q(k)

l , Θ)

]}

=
K∑

k=1

I∑
i=1

δ
(
q(k)
1 , i

)
log πi +

K∑
k=1

Lk−1∑
l=1

I∑
i,i′=1

δ
(
q(k)

l , i
)
δ
(
q(k)

l+1, i
′) log Bi,i′

+
K∑

k=1

Lk∑
l=1

I∑
i=1

δ
(
q(k)

l , i
)(

log
Γ
(|h(k)

l | + 1
)
Γ(|αi|)

Γ
(|h(k)

l | + |αi|
) +

4∑
j=1

log
Γ
(
h(k)

lj + αij

)
Γ
(
h(k)

lj + 1
)
Γ(αij)

)
.

(B.2)

The EM algorithm is essentially a coordinate ascent procedure that maxi-
mizes the expected complete log likelihood EQ(q)(lc(Θ)) (also written as 〈lc(Θ)〉Q)
over the distribution Q(q) and the parameter Θ. In the E step, we seek Q(q) =
arg maxQ 〈lc(Θ)〉Q, which turns out to be Q(q) = p(q|h, Θ) =

∏
k p(q(k)|h(k), Θ).

Thus the E step is equivalent to computing 〈lc(Θ)〉p(q|h,Θ), which reduces to replac-
ing the sufficient statistics dependent on q(k) in Eq. (B.2) by their expectations
with respect to p(q(k)|h(k), Θ). In the M step, we compute Θ = arg maxΘ 〈lc(Θ)〉Q.
Specifically, we iterate between the following two steps until convergence:

E step:

• Compute the posterior probabilities p
(
q(k)

l |h(k)
)

of the hidden states, and the
matrix of co-occurrence probabilities p

(
q(k)

l , q(k)

l+1|h(k)
)

of each motif k, using
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the forward-backward algorithm in a hidden Markov model with initial and
transition probabilities defined by {π, B} and emission probabilities defined by
p
(
h(k)

l |q(k)

l = i
)

= p
(
h(k)

l |αi

)
(i.e., Eq. (B.1)).

M step:

• Baum–Welch update for the HMM parameters {π, B} based on expected suffi-
cient statistics computed from all the p

(
q(k)

l |h(k)
)

and p
(
q(k)

l , q(k)

l+1|h(k)
)
:

πi =

∑
k,l p

(
q(k)

l = i|h(k)
)

∑
k Lk

(B.3)

Bi,j =

∑
k,l p

(
q(k)

l = i, q(k)

l+1 = j|h(k)
)

∑
k,l

∑
j p
(
q(k)

l = i, q(k)

l+1 = j|h(k)
) (B.4)

• Gradient ascent for the Dirichlet parameters: (To force the Dirichlet parameters
to be positive, we reparameterize the Dirichlet parameters as αij = ewij , ∀i, j, as
described by Sjölander et al.23)

wij = wij + η
∂〈lc(Θ)〉

∂wij
(B.5)

where
∂〈lc(Θ)〉

∂wij
=

∂〈lc(Θ)〉
∂αij

∂αij

∂wij

=
K∑

k=1

Lk∑
l=1

αijp
(
q(k)

l = i|h(k)
)

×(Ψ(|αi|) − Ψ
(|h(k)

l | + |αi|
)

+ Ψ
(
h(k)

lj + αij

)− Ψ(αij)
)

and η is the learning rate, usually set to be a small constant.
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