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Related Work. In this article, we addressed the problem of
recovering the latent structure of time-varying networks from
time series of nodal states. In this section, we draw connections
to relevant contributions in both the fields of network analysis,
structure recovery, and spatiotemporal regression.

The field of network analysis is concerned with analyzing
networks data that describe the interconnection patterns be-
tween a set of actors in the network. Most of the work in network
analysis focuses on the case where the network structure is
observed, and seeks to characterize and model signature graph
statistics or patterns in such networks. For time-invariant net-
works, represented as a single directed or undirected graph, a
number of flexible statistical models have been proposed, in-
cluding the classic exponential random graph models (ERGM)
and extensions (1–3), latent space models that aim toward
clustering and community discovery (4), and mixed-membership
block models for role discovery (5). In the dynamic setting,
where a time series of observations of the network structure is
available, several formalisms have been proposed to model the
dynamics of topological changes of such networks over time,
including the continuous-time Markov process models (6) and
the discrete-time models (7–9). This progress notwithstanding,
the above techniques rely heavily on the availability of direct
observations of the network structures, which can be difficult or
impossible to obtain in reality, especially in a dynamic context,
as discussed in the introduction. In this article, our focus is on
recovering the latent time-varying networks rather than discov-
ering and modeling patterns in observed networks.

Our proposed method stems from and builds on recent surge
of interest in machine learning and statistical inference of the
structures in high-dimensional multivariate functions, in partic-
ular, structural estimation of graphical models over static net-
works of actors based on samples of actors’ (nodal) states. Earlier
approaches view structure learning as a discrete combinatorial
search problem and employ heuristic search methods (10, 11).
Recent trends treat the structure learning problem as a model
selection (also known as neighborhood selection) problem under
loss functions motivated by a regularized regression between
nodal states. These approaches build on the key insight that an
l1-regularization penalty over regression/classification coeffi-
cients can derive the coefficients corresponding to irreverent
nodes to zero, whereby a sparse but consistent estimate of the
structure can be recovered via solving a convex optimization
problem (12–15). The specific form of the optimization problem
depends on whether the nodal states are assumed to be contin-
uous (13, 16–19) or discrete (20, 21).

However, with a few exceptions (22, 23), little has been done
toward developing efficient learning techniques in dynamic
contexts for recovering latent network topologies from observed
attributes of entities constituting the network. The work pre-
sented in this article took a step toward bridging this gap.

Because TESLA inherently finds a temporally smoothed and
regularized solution to a time-varying regression problem, per-
haps it is beneficial to differentiate our work from contributions
in the areas of spatial, temporal, and spatiotemporal regression
that found a widespread use in ecology (24), social science (25),
econometrics (26), and survival analysis (27). The input to such
models is a known dependency network between a set of nodes
of interest. These nodes each represent an entity being analyzed:
for example, an individual, a city, a country, etc. Each of these
nodes is associated with a regression problem on a shared

covariate space; in other words, each of these nodes corresponds
to a response variable (the output of the regression problem),
along with a set of common covariates (the input to the
regression problem), and the goal of the model is to investigate
the effect of the dependency structure on the regression problem
at each node. Therefore, these models in general assume a fixed
structure over the nodes in the network in contrast to TESLA,
which aims toward recovering such structure. In temporal re-
gression, the goal is to allow the magnitude of the regression
coefficients to vary over time to account for the change in the
contribution of each covariate to the response variable (27).
Therefore, these models differ from TESLA’s formulation of
which the goal is to delineate the time period in which each
covariate is actually relevant to the response variable, which
allows for structural recovery of the time-varying network, as
opposed to merely the change of contribution of each covariate
over time, which does not facilitate structural recovery.

Hyperparameters Selection. The hyperparameters in Eq. 2 trade
off spareness, smoothness versus locally fitting the time-epoch
specific samples. Larger values of �2 degenerate the problem into
the static case in which all of the time-specific parameters are
equal to each other, while setting �2 to zero decouples Eq. 2 into
a set of independent T l1-regularized logistic regression prob-
lems, one at each epoch. Intuitively, the optimal value of �2
depends on both the evolution rate of the network and the
number of samples available at each epoch. A fast-evolving
network calls for lower values of �2, whereas a small number of
samples at each epoch calls for slightly larger values for �2 that
would tightly integrate all of the available samples in recovering
the time-varying network. On the other hand, �1 controls the
spareness of the resulting networks. For instance, setting �1 to
zero results in a complete network, and as �1 increases, fewer
edges are recovered until the empty network is reached for larger
values of �1. Thus, small values of �1 favor recall, whereas larger
values favor precision of the recovered edges. Moreover, these
regularization parameters can be used as knobs to be tuned
manually according to the data analyzer’s goal. To tune these
parameters automatically, we note that Eq. 2 can be regarded as
a supervised classification problem, and thus many techniques
can be used to select (�1, �2) among different candidates. When
there are enough data, cross-validation, or held-out datasets can
be used; alternatively, the BIC score can be used. We define the
BIC score for (� i
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where Dim(�) denotes the dimensionality of the estimated values.
Similar to Tibshirani et al. (30), we adopt the following defini-
tion, which counts the number of runs of nonzero parameter
values.
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Note that the above definition is lenient to perturbations to the
values of the actual edge weights (i.e., it counts the total number
of edges), whereas, the definition in ref. 30 strictly increases the
dimensionality of the model with these perturbations. Our
intuition here is that a nonzero parameter corresponds to an
edge, thus the above measure counts the total number of edges.

Generation of Simulation Data. In this section we provide more
details of the scheme used to generate the synthetic time-varying
network. The synthetic time-varying network is parameterized
by a 3-tuple (p, d, r), where p is the number of nodes in the
network, d is the average degree of nodes in the first network,
and r is the rate of change modeled as the number of added and
deleted edges at each change point. The generative process
proceeds as follows. We begin by generating the network at the
first epoch by selecting for each node a set of maximum d
neighboring nodes uniformly at random. We proceed from node
1 up to node p. To generate the neighborhood for node i that
already has ni incident edges to previously processed nodes, we
select uniformly at random max(0, d � ni) nodes from the set
{ji � j � p and nj � d}, and add edges between them and node
i. Once the first network is generated, we sample a weight for
each generated edge uniformly at random from the interval
[�1,�0.5] � [0.5,1]. To generate the time-varying networks of
subsequent time points, for every 10 epochs, we add r edges and
delete r edges from the set of existing edges. The probability of
adding an edge to a given node is inversely proportional to the
number of edges already added to or deleted from this node.
Moreover, to avoid unnecessary fragmentation of the lifespans
of the edges in the network, we set the probability of deleting an
existing edge to be proportional to its current lifetime (i.e., the
duration between the current epoch and the epoch in which this
edge was born). Once an edge is added, its weight is sampled
form the interval [�1,�0.5] � [0.5,1]. We run this process
consecutively for 10 times; thus, the number of total epochs is
T � 100, and the overall result of this process is a set of T MRFs:
one at each epoch. Finally, we generate a set of Nt samples of
nodes’ states at each epoch using Gibbs sampling with a 1,000
burn-in iterations and a lag of 200 iterations between collected
samples. These time-stamped samples constitute the input to the
static algorithm and TESLA. In our experiments, we fixed the
number of nodes in the network, p, at 50 nodes.

Network Visualization. To visualize the recovered time-varying
networks, we used an array of different layout strategies. Dif-
ferent layouts are tailored for different types of networks and for
different visualization purposes. For the biological network, we
used a circular layout with fixed ordering over the nodes, which
is one of the standard layouts for visualizing gene networks. For
the Senate data set, we used the organic layout as implemented
in the Sytoscape package (www.cytoscape.org). The organic
layout is tailored for undirected graphs, and is based on the
force-directed layout paradigm (31). This layout produces a
representation of networks that often exposes the inherent
symmetric and clustered structure of a graph, as well as a
well-balanced distribution of nodes and few edge crossings (32).
These characteristics make it a perfect choice to illustrate how
well TESLA recovers the political party structure in the
Senate dataset. For the NIPS dataset, we used the radial
layout (33) as implemented in the GraphViz software package
(www.graphviz.org). For this layout, one node, the focus node,
is chosen automatically as the center and put at the origin. The
remaining nodes are placed on a sequence of concentric circles
centered around the origin, each with a fixed radial distance
from the previous circle. The process is repeated for every
connected component of the graph that might result in different
focus nodes. This layout emphasizes the relationship between
nodes in the graph and the focus node(s), which makes it a

suitable choice to track the evolution of the neighborhood of
selected keywords and authors in the NIPS dataset.

Evolving Gene Networks During Drosophila melanogaster Develop-
ment. Preprocessing the gene networks. We used the microarray time
series data collected by Arbeitman et al. (34) in their study of the
gene expression patterns during the life cycle of D. melanogaster.
Approximately 9,700 Drosophila cDNA elements representing
5,081 different genes were used to construct the 2-color spotted
cDNA microarrays. The genes analyzed in this article consist of
a subset of 4,028 sequence-verified, unique genes. Experimental
samples were measured at 66 different time points spanning the
embryonic, larval, pupal, and adulthood periods. Each hybrid-
ization is a comparison of one sample to a common reference
sample made from pooled mRNA representing all stages of the
life cycle. Normalization is performed so that the dye-dependent
intensive response is removed, and the average ratio of signals
from the experimental and reference sample equals one. The
final expression value is the log ratio of signals. Missing values
are imputed in the same manner as in Zhao et al. (35). This is
based on the assumption that gene expression values change
smoothly over time. If there is a missing value, a simple linear
interpolation using values from adjacent time points is used, i.e.,
the value of the missed time point is set to the mean of its 2
neighbors. When the missing point is a start or end point, it is
simply filled with the value of its nearest neighbor. The expres-
sion values are quantitized into binary numbers using thresholds
specific to each gene in the same manner as in ref. 35. For each
gene, the expression values are first sorted; then the top 2
extreme values in either end of the sorted list are discarded; last,
the median of the remaining values is used as the threshold above
which the value is binarized as 1 and 0 otherwise. Here, 1 means
the expression of a gene is up-regulated, and 0 means down-
regulated.
A ‘‘movie’’ of the Drosophila development gene network aging. In Fig.
S1, we show a ‘‘movie’’ of the D. melanogaster developmental
gene network as the organism ages, where genes are ordered
according to their top level biological function. The dynamic
networks appear to rewire over time in response to the devel-
opmental requirement of the organism. For instance, in the
middle of embryonic stage (time point 4), most of genes selec-
tively interact with other genes which results in a sparse network
consisting mainly of paths. In contrast, near the end of the
adulthood stage (time point 23), genes are more active, and each
gene interacts with many other genes, which leads to visible
clusters of gene interactions.
Dynamics of known gene interactions. Different gene interactions
may follow distinctive temporal programs of activation, appear-
ing and disappearing at different time points during the life cycle
of the D. melanogaster. In turn, the transient nature of the
interactions implies that the evidence supporting the presence of
an interaction between 2 genes may not be present in all
microarray experiments conducted during different develop-
mental stages of the organism. Therefore, pooling all microarray
measurements and inferring a single static network can under-
mine the inference process rather than helping it. This problem
can be overcome by learning a time-varying network that
recovers transient interactions that are supported by a subset of
the experiments.

To show the advantage of recovering a dynamic network over
a static network, the recovered interactions (i.e., edges) by these
2 types of networks are compared against a list of known
undirected gene interactions recorded in Flybase. TESLA re-
covers 50% more known gene interactions than the gene inter-
actions in the static network. Furthermore, the static network
provides no information on when a gene interaction starts or
ends. In contrast, TESLA pinpoints the temporal on-and-off
sequence for each recovered gene interaction. In Fig. S2, we
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visualize the onset of the activation patterns of known gene
interactions recorded in Flybase. To ease visualization, hierar-
chical clustering is performed on these sets of recovered gene
interactions based on their activation patterns. It can be seen that
all these interactions are transient and very specific to a certain
stage of the life cycle of the D. melanogaster.

Transient network hubs. We also examined the recovered net-
works for hub transcription factor (TF) nodes. Hubs are high-
degree nodes in the networks. They may represent the most
influential elements of a network and tend to be essential for the
developmental processes of the organism. The top 20 hubs are
identified and tracked over time in terms of their degrees, and
this evolution is visualized as a color map in Fig. S2 A. The
degrees of the transcriptional factors peak at different stages,
which suggests that they may differentially trigger targeted genes
based on the biological requirements of the developmental
processes. In Fig. S2 B and C, a functional decomposition and

enrichment analysis is performed on the target genes regulated
by 2 example transcriptional factor hubs. For instance, peb, the
protein ejaculatory bulb, mainly interacts with extracellular
region genes and genes involved in structural molecular activity.
Another example is the spt4, which seems to trigger many binding
genes. This is consistent with its functional role in chromatin
binding and zinc ion binding.

Again, because this microarray dataset covers only a limited
fraction of all of the Drosophila genes and misses many of the
important Drosophila developmental genes such as the gap genes
and pair-rule genes, our preliminary analysis above is by no
means intend to suggest significant biological findings. Instead,
we use this as an example to demonstrate the potential utility of
TESLA in offering a perspective of natural networks not receiv-
ing much attention before—the latent dynamic rewiring pattern
of connectivities among nodes, which may shed light on the
mechanisms of evolving behaviors of complex systems supported
by the nodes.
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Fig. S1. The 23 snapshots of the dynamic gene interactions networks during the life cycle of the D. melanogaster are visualized by using a circular layout and
a scatter plot of the network adjacency matrix. For both layouts, genes are ordered according to their top level functions (either related to cellular component,
molecular function or biological process). Furthermore, 2 snapshots are further visualized using a spring layout algorithm and displayed in the last column of
the figure.
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Fig. S2. A set of known gene interactions recovered by the inferred dynamic networks. The onset and duration of these interactions follow different temporal
patterns. The activation of each gene interaction over time is represented as one column. Within each column, if a gene interaction is active a blue dot is drawn
otherwise the space is left blank. Hierarchical clustering is performed on the gene interactions and clustering results are displayed on the top of the activation
patterns which enables the visualization of block of gene interactions with similar activation patterns that deserves further biological investigations. The specific
names of the genes involved in the interactions are not shown to avoid overcrowding the figure. E, L, P, and A stand for D. melanogaster’s developmental stages:
embryonic, larval, pupal, and adulthood, respectively.
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Fig. S3. (A) The top 20 TF hubs are tracked over time in terms of their degrees. Each row represents 1 hub, and each column represents a time point with the
color code corresponds to the degree of the hub. (B and C) Examples of functional decomposition of the genes regulated by the transcriptional factor hub peb
and spt4, respectively. E, L, P, and A stand for D. melanogaster’s developmental stages: embryonic, larval, pupal, and adulthood, respectively.
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Fig. S4. Illustration of the NIPS academic social network from 1987 to 1999. Tracked words are highlighted, and authors are drawn in rectangles.
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