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Abstract
Multi-modal data is dramatically increasing with
the fast growth of social media. Learning a good
distance measure for data with multiple modalities
is of vital importance for many applications, in-
cluding retrieval, clustering, classification and rec-
ommendation. In this paper, we propose an effec-
tive and scalable multi-modal distance metric learn-
ing framework. Based on the multi-wing harmo-
nium model, our method provides a principled way
to embed data of arbitrary modalities into a sin-
gle latent space, of which an optimal distance met-
ric can be learned under proper supervision, i.e.,
by minimizing the distance between similar pairs
whereas maximizing the distance between dissimi-
lar pairs. The parameters are learned by jointly op-
timizing the data likelihood under the latent space
model and the loss induced by distance supervi-
sion, thereby our method seeks a balance between
explaining the data and providing an effective dis-
tance metric, which naturally avoids overfitting.
We apply our general framework to text/image data
and present empirical results on retrieval and clas-
sification to demonstrate the effectiveness and scal-
ability.

1 Introduction
Multi-modal data is ubiquitous in web. Especially, with the
vast prosperity of social media, data with multiple modalities
is enjoying explosive growth. For example, in user-centric
social networks (e.g., Facebook, Google Plus), users possess
blogs, photos, friends circles. In photo sharing websites (e.g.,
Flickr, Pinterest), photos can be described by image contents,
text tags and meta information like albums and groups. In
video sharing website (e.g., Youtube), videos can be char-
acterized by image frames, audio, and user comments. In
music social network (e.g., iTunes Ping), songs are accompa-
nied by acoustic features (e.g., rhythm and timbre), semantic
features (e.g., tags, lyrics) and social features (e.g., artist re-
views) [McFee and Lanckriet, 2011]. Information from dif-
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ferent sources (text, image, video, audio, meta and social in-
formation) jointly reveal the fundamental characteristics of
the study subjects from different views.

Choosing a proper distance function or similarity measure
for multi-modal data is crucial for many applications, includ-
ing retrieval [Zhang et al., 2011; Zhen and Yeung, 2012],
clustering [Bekkerman and Jeon, 2007; Qi et al., 2012], clas-
sification [Nishida et al., 2012] and recommendation [Aizen-
berg et al., 2012; Baluja et al., 2008]. While various metric
learning methods [Xing et al., 2002; Globerson and Roweis,
2006; Weinberger et al., 2006; Davis et al., 2007] defined on
single data modality have been proposed, learning distance
in the presence of multiple modalities remains largely un-
exploited. McFee and Lanckriet [2011] applied the multi-
ple kernel learning technique for integrating heterogeneous
feature modalities into a single unified similarity space. An
ensemble of kernel transformations are learned given the la-
beled relative similarity comparisons. To our best knowledge,
this is the only work regarding multi-modal distance metric
learning. However, their method enjoys very limited scalabil-
ity.

In this paper, we propose a multi-modal distance met-
ric learning framework based on the multi-wing harmonium
(MWH) model [Xing et al., 2005] for multi-model integra-
tion and the metric learning method by [Xing et al., 2002]
for distance supervision. Our method provides a principled
way to embed data of arbitrary modalities into a single latent
space where distance supervision is leveraged. This MWH is
a two-layer random field that jointly models the visible fea-
ture modalities and their latent semantic embeddings. Given
labeled “similar” and “dissimilar” pairs, we aim to minimize
the distance of similar pairs while separating dissimilar pairs
with a certain margin in the latent space. The embedding
from feature modalities to semantic space is learned by simul-
taneously maximizing random field induced data likelihood
and minimizing distance induced loss, with the goal to rea-
sonably explain data and provide an effective distance met-
ric. The data likelihood provides a natural regularizer to avoid
overfitting commonly suffered by most metric learning algo-
rithms. Unlike existing distance metric learning approaches
which requires costly semi-definite programming or kernel
embedding, our method is highly efficient and scalable.

The rest of the paper is organized as follows. Section 2
introduces related work. In section 3, we propose the multi-



modal distance metric learning framework based on multi-
wing harmonium model and present the optimization tech-
nique. Section 4 gives experimental results. Section 5 con-
cludes the paper.

2 Related Work
Metric learning on single modality has been widely stud-
ied in [Xing et al., 2002; Globerson and Roweis, 2006;
Weinberger et al., 2006; Davis et al., 2007]. Xing et al [2002]
used semidefinite programming to learn a Mahalanobis dis-
tance metric for clustering under similarity and dissimilar-
ity constraints. They aim to minimize the distance of simi-
lar pairs while separating dissimilar pairs with a certain mar-
gin. Weinberger et al [2006] employed a similar semidef-
inite formulation for k-nearest neighbor classification. The
metric is trained with the goal that the k-nearest neighbors
always belong to the same class while examples from differ-
ent classes are separated by a large margin. Globerson and
Roweis [2006] proposed a formulation aiming to collapse all
examples in the same class to a single point and push exam-
ples in other classes infinitely far away. Davis et al [2007]
proposed information theoretic metric learning which min-
imizes the differential relative entropy between two multi-
variate Gaussians under the constraints on the distance func-
tion. These algorithms are primarily designed for single
feature representations and are not suitable for multi-modal
data. One naive way is to concatenate features from differ-
ent modalities into a single representation and subsequently
apply single-modal metric learning techniques to learn a dis-
tance measure. This strategy ignores the incompatibility of
heterogeneous information sources and fails to consider the
dependency and complementarity relationships among differ-
ent modalities, thereby leading to suboptimal performance.

To our best knowledge, the only work of distance met-
ric learning on multiple modalities is proposed by McFee
and Lanckriet [2011]. They integrate heterogeneous data
to learn a holistic similarity measure based on multiple ker-
nel learning, where each kernel encodes a different modal-
ity of the data. Their method learns a Mahalanobis distance
metric for each modality over the reproducing kernel Hilbert
space, which can be solved by semidefinite programming.
This method is computationally costly both in training and
testing. The training phase involves optimizing over multi-
ple high-dimensional positive semi-definite matrices, which
is hard to scale to large data set. In the test phase, to em-
bed query into the learned target space, it needs to evaluate
the kernel functions at query against the entire training set,
which can not meet real-time requirements when the training
set is large.

One closely related work is proposed in [Chen et al., 2010],
which integrates multi-wing harmonium model [Xing et al.,
2005] and large margin learning for the purpose of predic-
tively learning a latent subspace for multi-view data. In their
work, the available supervised information is class labels and
the major goal of their approach is classification. Our work
focuses on distance metric learning and the available super-
vision is “similar” and “dissimilar” pairs. Li et al [2009] pro-
posed a unified framework to estimate similarities by exploit-

1h 2h …….
Kh

…….
1x 2x Mx …….

1z 2z Nz

Figure 1: Dual-wing harmonium model

ing the interactions between objects of different modality. In
their work, similarity measure is learned in an unsupervised
manner. Our work exploits the problem of distance metric
learning which leverages supervised “similar” and “dissimi-
lar” pairs to learn a similarity measure.

3 Multi-Modal Distance Metric Learning
In this section, we first briefly describe the multi-wing harmo-
nium model (MWH). Based on MWH model, we introduce
the multi-modal distance metric learning (MMDML) frame-
work and the optimization technique.

3.1 Multi-Wing Harmonium Model
For simplicity, we start with dual-wing harmonium model,
which is a special case of multi-wing harmonium model and
can be easily extended to multi-wing case. The dual-wing
harmonium model (DWH) [Xing et al., 2005] is shown in
Figure 1, which consists of two modalities of input units
x = {xi}, z = {zj} and a set of hidden units h = {hk}.
In this undirected graphic model, there exist no connections
between two input modalities. Each modality of input units
and the hidden units form a complete bipartite graph where
units in the same set have no connections and are fully con-
nected to units in the other set. This topology induces three
conditional independence assumptions: given latent variables
h, the two modalities x and z are independent, p(x, z|h) =
p(x|h)p(z|h); given x and z, each unit in h is independent
from each other p(h|x, z) =

∏
k p(hk|x, z); given h, units

within each modality are independent p(x|h) =
∏
i p(xi|h),

p(z|h) =
∏
j p(zj |h). Consider the case where all observed

and hidden variables are from exponential family, we have

p(xi) = exp{θTi φ(xi)−A(θi)}
p(zj) = exp{ηTj ϕ(zj)−B(ηj)}
p(hk) = exp{λTkψ(hk)− C(λk)}

(1)

where θi, ηj , λk are natural parameters, φ(·), ϕ(·), ψ(·) are
sufficient statistics andA(·), B(·), C(·) are log partition func-
tions.

We couple the random variables in the log-domain by in-
troducing an additional term and get the joint distribution

p(x, z,h) ∝ exp{
∑
i θ

T
i φ(xi) +

∑
j η

T
j ϕ(zj)

+
∑
k λ

T
kψ(hk) +

∑
ik φ(xi)

TWk
i ψ(hk)

+
∑
jk ϕ(zj)

TUk
jψ(hk)}

(2)
the log-partition function of the joint probability is not ex-
plicitly shown to emphasize the difficulty of its estimation.
If we examine the joint distribution from the random field



viewpoint, φ(xi), ϕ(zj), ψ(hk) define potentials over cliques
formed by individual nodes, φ(xi)ψ(hk) ,ϕ(zj)ψ(hk) de-
fine potentials over cliques consisting of pairwise linked
nodes and θi, ηj , λk,Wk

i ,U
k
j are the associated weights of

potential functions. We use Θ to denote all the parame-
ters (θ, η, λ,W, U). Θ is learned by maximum likelihood
method. From the joint distribution, we derive the conditional
distributions

p(xi|h) ∝ exp{θ̂Ti φ(xi)−A(θ̂i)}
p(zj |h) ∝ exp{η̂Tj ϕ(zj)−B(η̂j)}
p(hk|x, z) ∝ exp{λ̂Tkψk(hk)− C(λ̂k)}

(3)

with shifted parameters θ̂i = θi +
∑
kW

k
i ψ(hk),η̂j =

ηj+
∑
kU

k
jψ(hk), λ̂k = λk+

∑
iW

k
i φ(xi)+

∑
jU

k
jϕ(zj),

where the shifts are induced by the coupling between the ob-
served and hidden units.

Reversely, we can firstly specify the local conditional dis-
tributions in Eq.(3) according to specific applications, then
write the joint distribution in Eq.(2). This is called bottom-up
construction of the dual-wing harmonium model.

The dual-wing harmonium model can be readily extended
to multi-wing when multi-modal input feature set are ob-
served.

3.2 Multi-Modal Distance Metric Learning
In this section, we present how to employ MWH model to
learn a distance measure on multiple modalities. Given a data
point y = (x, z) with two feature modalities x and z, under
the dual-wing harmonium model framework, we can embed y
into the shared latent space and obtain its latent representation
t:

t = Ep(h|x,z;Θ)[h] (4)
Note that t is a function of Θ. Semantically, hidden units
h can be viewed as a set of latent topics. Observations of
different sources reflect the central theme from different per-
spectives and are generated from the shared topics.

Given a set of pairs labeled as “similar” or “dissimilar”, we
enforce similar pairs to be close to each other and dissimilar
pairs to be far from each other in the latent space. We sim-
ply use Euclidean distance as distance measure for embedded
points in this latent space. Let S = {(y(i),y(j))} denote
the set of similar pairs and D = {(y(i),y(j))} denote the set
of dissimilar pairs, we formulate the following optimization
problem:

minΘ

∑
(y(i),y(j))∈S ‖t(i) − t(j)‖2

s.t. ∀(y(i),y(j)) ∈ D, ‖t(i) − t(j)‖2 ≥ 1
(5)

where t(i) is the representation of y(i) in the latent space.
The goal is to minimize the distance between points labeled
as “similar” while keeping the “dissimilar” points separated
by a margin of 1 in the latent space. The parameter to be
learned is Θ which is explicitly embedded in t.

Let Y denote all data instances appearing in S or D. The
unsupervised dual wing harmonium model learns parameter
Θ by maximizing the likelihood of data observations Y . Θ is
learned in the sense of best explaining the data. In super-
vised multi-modal distance learning metric framework, we

combine distance metric learning and maximum likelihood
learning together and learn Θ by jointly maximizing data like-
lihood, minimizing distances of similar pairs and maximizing
distances of dissimilar pairs. The learned Θ not only explains
the data reasonably, but also facilitates good similarity com-
parison between data points. Specifically, we define the opti-
mization problem as

minΘ
1
|Y|L(Y; Θ) + λ 1

|S|
∑

(y(i),y(j))∈S ‖t(i) − t(j)‖2

s.t. ∀(y(i),y(j)) ∈ D, ‖t(i) − t(j)‖2 ≥ 1
(6)

where L(Y; Θ) is the negative log-likelihood of data Y pa-
rameterized by Θ and λ is the trade-off parameter. | · | denotes
the cardinality of a set.

3.3 Optimization
In this section, we present an efficient solver of the problem
defined in Eq.(6). The strategy is to use hinge loss to elim-
inate constraints, obtaining an unconstrained problem and
subsequently employ subgradient method to do optimization.

We use hinge loss to eliminate the constrains in Eq.(6) and
obtain:

minΘ
1
|Y|L(Y; Θ) + λ1

1
|S|

∑
(y(i),y(j))∈S ‖t(i) − t(j)‖2+

λ2
1
|D|

∑
(y(i),y(j))∈D max(0, 1− ‖t(i) − t(j)‖2)

(7)
where λ1 and λ2 are trade-off parameters. The problem de-
fined in Eq.(7) is a relaxed version of that in Eq.(6). When
constraints in Eq.(6) are satisfied, hinge loss in Eq.(7) is zero.
Otherwise, hinge loss is nonzero and is minimized to en-
force the constraints to be satisfied. Since hinge loss is non-
differential, we adopt sub-gradient method to do optimiza-
tion.

We use contrastive divergence [Hinton, 2002] method
to approximate the gradient of Θ w.r.t the negative log-
likelihood 1

|Y|L(Y; Θ). Gradients (or sub-gradients) w.r.t the
distance loss induced by similar pairs and distance loss in-
duced by dissimilar pairs can be easily derived. In summary,
the sub-gradients of parameters w.r.t the objective function
defined in Eq.(7) can be computed as

∇θi = Ep[φ(xi)]− Ep̂[φ(xi)]
∇ηj = Ep[ϕ(zj)]− Ep̂[ϕ(zj)]
∇λk = Ep[ψ(hk)]− Ep̂[ψ(hk)]

(8)

∇W k
i = Ep[φ(xi)ψ(hk)T]− Ep̂[φ(xi)ψ(hk)T]

+λ1
2
|S|

∑
(y(m),y(n))∈S

(t
(m)
k − t(n)

k )(
∂t

(m)
k

∂Wk
i

− ∂t
(n)
k

∂Wk
i

)

+λ2
2
|D|

∑
(y(m),y(n))∈D

I(‖t(m) − t(n)‖2 < 1)

(t
(n)
k − t(m)

k )(
∂t

(m)
k

∂Wk
i

− ∂t
(n)
k

∂Wk
i

)

(9)

∇Ukj = Ep[ϕ(zj)ψ(hk)T]− Ep̂[ϕ(zj)ψ(hk)T]

+λ1
2
|S|

∑
(y(m),y(n))∈S

(t
(m)
k − t(n)

k )(
∂t

(m)
k

∂Uk
j

− ∂t
(n)
k

∂Uk
j

)

+λ2
2
|D|

∑
(y(m),y(n))∈D

I(‖t(m) − t(n)‖2 < 1)

(t
(n)
k − t(m)

k )(
∂t

(m)
k

∂Uk
j

− ∂t
(n)
k

∂Uk
j

)

(10)



where Ep[·] is the expectation w.r.t the true distribution and
Ep̂[·] is the expectation w.r.t the empirical distribution. Exact
computation of Ep[·] is intractable. Ep[·] is approximated by
running a few step of Gibbs sampling starting from Ep̂[·]. The
sampling can be iteratively done as follows

E[hlk] = Ep(hk|x,z)[hk|E[xl−1],E[zl−1]]
E[xli] = Ep(xi|h)[xi|E[hl−1]]
E[zlj ] = Ep(zj |h)[zj |E[hl−1]]

(11)

where l is the index of iterations.

4 Experiments
We have developed the general framework of large scale
multi-modal distance metric learning. To corroborate the ef-
fectiveness and efficiency of our method, we evaluate it on
tagged images data. Images tagged with textual tags are quite
prevalent in photo sharing websites (like Flickr, Pinterest, In-
stagram), where each image is associated with user tags, title,
description and comments.

4.1 MMDML on Tagged Images
To specialize the general MMDML framework to tagged im-
ages data, we need to specify the local conditionals defined in
Eq.(3) to concrete exponential family distributions according
to data characteristics. Specially, we consider two modalities:
a discrete bag-of-words representation x of text and a normal-
ized bag-of-words representation z of image based on SIFT
[Lowe, 2004] feature. We assume each xi is a Bernoulli vari-
able denoting whether the ith term of a tag dictionary appears
or not around an image. Each zj is a Gaussian variable de-
noting the normalized bag-of-words representation based on
SIFT feature.

We assume each hidden variable hk follows a Gaussian
distribution conditioned on both text modality x and image
modality z. We can define a dual-wing harmonium model in
a bottom-up manner by specifying the local conditionals

p(xi = 1|h) = 1
1+exp(−(θi+

∑
k Wikhk))

p(zj |h) = N (zj |ηj +
∑
kUjkhk, 1)

p(hk|x, z) = N (hk|
∑
iWikxi +

∑
jUjkzj , 1)

(12)
From the definition of the conditional distribution of h over
the observations x, z, we can easily infer the latent represen-
tation t

tk = Ep(hk|x,z;Θ)[hk] =
∑
i

Wikxi +
∑
j

Ujkzj (13)

Accordingly, the sub-gradients defined in Eq.(8-10) can be
specialized to

∇θi = Ep[xi]− Ep̂[xi],∇ηj = Ep[zj ]− Ep̂[zj ] (14)

∇W k
i = Ep[xitk]− Ep̂[xitk]

+ λ1
2
|S|

∑
(y(m),y(n))∈S

(t
(m)
k − t(n)

k )(x
(m)
i − x(n)

i )

+ λ2
2
|D|

∑
(y(m),y(n))∈D

I(‖t(m) − t(n)‖2 < 1)

(t
(n)
k − t(m)

k )(x
(m)
i − x(n)

i )
(15)

∇Ukj = Ep[zjtk]− Ep̂[zjtk]

+ λ1
2
|S|

∑
(y(m),y(n))∈S

(t
(m)
k − t(n)

k )(z
(m)
j − z(n)

j )

+ λ2
2
|D|

∑
(y(m),y(n))∈D

I(‖t(m) − t(n)‖2 < 1)

(t
(n)
k − t(m)

k )(z
(m)
j − z(n)

j )
(16)

The Gibbs sampling process defined in Eq.(11) can be spe-
cialized to

E[hlk] =
∑
iWikE[xl−1

i ] +
∑
jUjkE[zl−1

j ]

E[xli] = 1

1+exp(−(θi+
∑

k WikE[hl−1
k ]))

E[zlj ] = ηj +
∑
kUjkE[hl−1

k ]

(17)

4.2 Dataset
The dataset used in our experiments is NUS-WIDE-1.5K: a
subset selected from NUS-WIDE dataset [Chua et al., July 8
10 2009]. Images are downloaded from Flickr and each im-
age is associated with more than one user tags. We choose
30 classes and select about 50 images for each class. The
total number of images is 1536. The 30 classes are actor,
airplane, bicycle, bridge, buddha, building, butterfly, camels,
car, cathedral, cliff, clouds, coast, computers, desert, flag,
flowers, food, forest, glacier, hills, lake, leaf, monks, moon,
motorcycle, mushrooms, ocean, police, pyramid. We ran-
domly choose half of the images for training and the other
half for testing. For text modality, 1000 tags with top fre-
quency are selected to form the tag dictionary. For image
modality, we extract SIFT based bag-of-words representation
with a codebook of size 1024.

Following [Davis et al., 2007; Xing et al., 2002], we sam-
ple “similar” pairs by picking up two instances from the same
class and “dissimilar” pairs by choosing two instances from
different classes. We randomly sample about 10K “similar”
pairs and 10K “dissimilar” pairs from the training set.

4.3 Experiment Setup
We compare with the following baselines:

• Xing+Original. We concatenate original feature vectors
of text modality and image modality into a single repre-
sentation and subsequently learn a Mahalanobis distance
using the metric learning method proposed in [Xing et
al., 2002].

• ITML+Original. We combine features of text and image
into a whole and feed it to the ITML [Davis et al., 2007]
method.

• Xing+MWH. We use the unsupervised MWH model to
embed data from text and image modalities to the latent
space and learn distance measure on the latent represen-
tations using the method proposed in [Xing et al., 2002].

• ITML+MWH. We use ITML [Davis et al., 2007] to
learn distance on the latent feature vectors obtained from
MWH model.

• MKE. We compare with the multiple kernel embedding
method proposed in [McFee and Lanckriet, 2011].



Table 1: Average precision (AP) of image retrieval on NUS-WIDE-1.5K dataset

Method Xing+Original ITML+Original Xing+MWH ITML+MWH MKE Our method
AP 0.5482 0.4078 0.7673 0.6907 0.4972 0.8409

Table 2: k-NN classification accuracy on NUS-WIDE-1.5K dataset

Method Xing+Original ITML+Original Xing+MWH ITML+MWH MKE Our method
1-NN 0.8995 0.8995 0.8995 0.9286 0.8056 0.9352
3-NN 0.8108 0.6653 0.8849 0.8929 0.6944 0.9021
5-NN 0.6971 0.4868 0.8426 0.8519 0.5860 0.8849

10-NN 0.4775 0.2394 0.7646 0.7394 0.4405 0.8333
20-NN 0.1548 0.0450 0.6230 0.4841 0.1746 0.7130
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Figure 2: Precision-recall curve for image retrieval on NUS-
WIDE-1.5K dataset

All parameters are tuned by 5-fold cross validation. In our
method MMDML, the dimension K of latent variables is set
to 100. Trade-off parameters λ1, λ2 are set to 100. Coupling
matrices W and U defined in Eq.(12) are initialized using
SVD. Partial SVDs are performed on the design matrices over
text features and image features respectively. Singular vec-
tors corresponding to the top K singular values are selected
as initial values of W and U. We run stochastic gradient de-
scent with a fixed step size of 0.000001 and 200 iterations.
The Gibbs sampling iterations in contrastive divergence is set
to 1. For unsupervised MWH used in two baseline methods
Xing+MWH and ITML+MWH, the parameters are the same
as those in MMDML. For ITML, the trade-off parameter is
set to 10. For MKE, we use Gaussian kernel with bandwidth
1 to compute the kernel matrices. The trade-off parameter is
set to 10000.

After obtaining the learned parameters, we infer the latent
representation for each test image using Eq.(13). We use Eu-
clidean distance computed on latent representations as dis-
tance measure. Next, we report experimental results on image
retrieval and classification.

4.4 Retrieval and Classification
For image retrieval, each test image is treated as query and
the other images in the test set are ranked according to their
distances with the given query. An image is considered rele-

vant to query if it share the same class label with query image.
We use average precision (AP) [Smeaton and Over, 2003] and
precision-recall curve to measure retrieval performance.

The AP result is summarized in Table 1. The precision-
recall curve is shown in Figure 2. As can be seen from Table
1 and Figure 2, our method MMDML significantly outper-
forms baseline methods. MMDML achieves an average pre-
cision score of 0.8409, which is greatly higher than the sec-
ond best method Xing+MWH. Note that, Xing+MWH and
ITML+MWH both achieve substantial improvements com-
pared with Xing+Original and ITML+Original. The reasons
are two folds. First, Xing+MWH and ITML+MWH oper-
ate in a space with much lower dimension than the orig-
inal feature space. Thereby the risk of overfitting is re-
duced. Second, MWH model maps two different modali-
ties into a single latent space, which captures the correla-
tion and complementary relationships between modalities.
Xing+Original and ITML+Original naively concatenate het-
erogeneous modalities into a whole, where the hidden struc-
ture of modalities is not explored. However, compared with
our method, Xing+MWH and ITML+MWH are suboptimal.
In these two methods, multi-modal embedding and distance
metric learning are performed separately. MWH is employed
to project different modalities into the latent space and subse-
quently distance measure is learned in this latent space. In our
method, multi-modal embedding and distance metric learning
are jointly performed to achieve the overall optimality, thus
yielding much better performance.

We also apply the learned distance measure for k-nearest
neighbor (k-NN) classification. Table 2 summarizes the clas-
sification accuracy for k=1, 3, 5, 10, 20. Under varying k, our
method consistently outperforms other methods.

4.5 Parameter Sensitivity
We test the sensitivity of MMDML to different choices of the
dimension K of latent space and the tradeoff parameter λ1,
λ2. Throughout the experiments, we set λ1 and λ2 to the same
value to indicate equal importance of “similar” pairs and “dis-
similar” pairs. When evaluating one parameter, the other pa-
rameters are fixed to values reported in Section 4.3. Figure
3(a) shows the variation of average precision (AP) with vary-
ing K. As can be seen, the retrieval performance is robust to
the choice of K. For K larger than 10, the average precision
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Figure 3: Retrieval performance sensitivity with respect to K
and λ1

almost remains the same. This suggest that we can choose
a sufficiently small K to reduce computational cost and stor-
age cost without degrading retrieval performance. Figure 3(b)
shows how AP varies with different λ1. λ1 has a strong in-
fluence on MMDML. A larger λ1 means more emphasis over
distance metric learning loss. For small λ1 (0.01, 0.1, 1), the
average precision is very low. As λ1 increases to 10 and 100,
AP is dramatically improved. However, further increasing
λ1 results in performance decreasing. When λ1 is increased
from 10 to 10000, the average score drops from 0.8433 to
0.7928. The possible reason is that too large λ1 makes the
model overfitted to training data.

4.6 Computational Efficiency
To evaluate the efficiency of MMDML, we compare its run-
ning time with Xing+Original, ITML+Original, MKE. The
comparison is performed on a machine with 3.3GHz quad-
core Intel processor and 8GB memory. Table 3 summa-
rizes the results. ITML is substantially time-consuming. It
takes about 6.5 hours to converge. Considering its com-
putational complexity grows quadratically with feature di-
mension and linearly with number of constraints, we can
conclude this method is not applicable for large scale prob-
lems. Xing+Original takes reasonable time to converge. This
method requires eigen-decomposition over the Mahalanobis
matrix, which is of size 2024 in NUS-WIDE-1.5K dataset.
However, in problems of high feature dimension, eigen-
decomposition will be extremely computationally demand-
ing, if possible. MKE takes the least time in this experiment.
However, this does not imply that this method is scalable. In
MKE, each iteration of the projected gradient solver requires
eigen-decompositions, whose complexity is O(mn3), where
m is the number of modalities and n is the number of train-
ing examples. Clearly, MKE is not scalable for large dataset
whose n can be very huge. Our method takes about 6.5 min-
utes for learning. It requires no eigen-decompositions and fa-
cilitates efficient stochastic gradient descent optimization. In
our method, we mainly need to compute Eq.(8-10) which in-
volves simple arithmetic operations and one step Gibbs sam-
pling which turns out to be very efficient [Hinton, 2002].

5 Conclusions
We introduce a general framework of multi-modal distance
metric learning based on multi-wing harmonium model. The
framework can flexibly embed arbitrary number of feature

Table 3: Computational time (in seconds) on NUS-WIDE-
1.5K dataset

Method Time(s)
Xing+Original 859
ITML+Original 23460

MKE 350
Our method 387

modalities into a shared latent space where distance super-
vision is encoded. We apply the method to tagged image
retrieval and experiments demonstrate the effectiveness and
scalability of our method.
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