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ABSTRACT
In this paper, we investigate a time-sensitive image retrieval
problem, in which given a query keyword, a query time
point, and optionally user information, we retrieve the most
relevant and temporally suitable images from the database.
Inspired by recently emerging interests on query dynamics in
information retrieval research, our time-sensitive image re-
trieval algorithm can infer users’ implicit search intent better
and provide more engaging and diverse search results ac-
cording to temporal trends of Web user photos. We model
observed image streams as instances of multivariate point
processes represented by several different descriptors, and
develop a regularized multi-task regression framework that
automatically selects and learns stochastic parametric mod-
els to solve the relations between image occurrence prob-
abilities and various temporal factors that influence them.
Using Flickr datasets of more than seven million images of 30
topics, our experimental results show that the proposed al-
gorithm is more successful in time-sensitive image retrieval
than other candidate methods, including ranking SVM, a
PageRank-based image ranking, and a generative temporal
topic model.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval
models

General Terms
Algorithm, Experimentation

Keywords
Web image retrieval, Point process, Multi-task regression

1. INTRODUCTION
As digital images are gaining popularity as a form of com-

municating information online, image search and retrieval
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Figure 1: Overview of time-sensitive Web image ranking

and retrieval with a query example of the cardinal. (a)-

(b) Top ten images retrieved by Google/Bing and Flickr

search engines at 7/31/2012. (c) The results of our time-

sensitive image retrieval for two query time points in

winter and summer. (d) The result of our personalized

image retrieval for a designated time and user.

has become an indispensable feature in our daily Web uses.
Most commercial Web image search engines such as Bing,
Google, and Yahoo largely rely on the text-based approach
[5], in which given a query keyword, relevant pictures are
retrieved and ranked by matching textual information of
images such as surrounding texts, titles, or captions. Al-
though the text-based image search has been successful as
an effective and scalable image retrieval approach, it suf-
fers from ambiguous and noisy results due to the mismatch
between images and their surrounding texts. Moreover, it
is still limited to correctly exploit visual contents of images
and identify implicit or explicit search intent of a user.

In this paper, we study one additional aspect to improve
image search quality: temporal dynamics of image collec-
tions. In other words, given Web image collections associ-
ated with keywords of interest, we aim at identifying their
characteristic temporal patterns of occurrences on the Web,
and leveraging them to improve search relevance at a query
time. This problem is closely related to one recent emerg-
ing research in information retrieval: exploring the temporal



dynamics of Web queries to improve search relevance [6, 17,
20, 22]. Many queries are time-sensitive; the popularity of
a query and its most relevant documents change over time.
For example, a statistical analysis of Web query logs in [20]
reported that more than 7% of queries have implicitly tem-
poral intents (e.g . NBA, Olympics). This new area of re-
search has cast a variety of interesting research questions,
for example, identifying search terms that are sensitive to
time, and reranking documents according to the query time.
However, much of previous work has targeted at the search
of text documents such as blogs and news archives by an-
alyzing the query log data; the time-sensitive Web image
retrieval has yet received little attention.

With our experiments on more than seven million Flickr
images, we have found three good reasons why the discovery
of temporal patterns in Web image collections is beneficial
to existing image retrieval systems. We present them with a
query example of the cardinal in Fig.1. First, knowing when
search takes place is useful to infer users’ implicit intents.
Fig.1.(a) shows the top ten images retrieved by Google and
Bing image search engines. Seemingly, they are reasonable
because the cardinal usually refers to the red bird in Amer-
ica. However, the term cardinal is polysemous; it is also the
names of popular sports teams (e.g . the American football
and the baseball team). Therefore, some of cardinal queries
in summer and winter are likely to be associated with the
baseball and football team, respectively, according to the
scheduled seasons of the sports.

Second, the timing suitability can be used as a complemen-
tary attribute to relevance. Fig.1 illustrates two such cases:
One is that, as shown in Fig.1.(a), due to explosion of images
shared on the Web, there are redundantly relevant images to
popular queries like the cardinal. Timing suitability would
be a good complementary ranking attribute to improve di-
versity or break ties between almost equally relevant images.
The other case is that, in Fig.1.(b), the actual user images
in the photo-sharing site Flickr are extremely diverse, and
thus it is still very challenging to rank those images in any
meaningful order. As shown in Fig.1.(c), the query time
information can help obtain a more focused search output,
which may include the images about a cardinal bird in snowy
field in winter, but the images of baby cardinals or eggs in
summer.

Third, temporal information is synergetic in personalized
image retrieval. If a query word has a broad range of con-
cepts, its dominant usages vary much according to users.
Our experiments show that once we can identify a user’s
preference, image retrieval can be further specific since the
term usages of individual users are relatively stationary. For
example, as shown in Fig.1.(d), if a user took or searched
cardinal pictures a lot for a basketball team last winter, he
tends to do the same this winter as well.

Problem Statement: As an input, we gather a large-
scale pool of unordered Web images along with metadata
(e.g . timestamps, owners) by querying Q topic keywords
from a text-based image search engine. We use raw Flickr
images since our time-sensitive image retrieval is more in-
teresting for extremely diverse general users’ photos rather
than sufficiently cleaned-up Google or Bing images. In this
paper, our objective is two-fold: Our first goal is to automat-
ically identify the temporal properties of each topic keyword,
because every topic is not necessarily time-sensitive, and has
its own characteristic temporal behaviors. The second goal

is to leverage the learned temporal models to rank the im-
ages in database according to temporal suitability when a
topic keyword and a query time are given. In real scenarios,
the query time is usually now (i.e. the time when the search
takes place), but we assume that it can be any time even in
future for generality. We also address the personalized time-
sensitive image ranking, which is customized image retrieval
for a designated user.

Proposed method: The two objectives are accomplished
by a unified statistical model: regularized multi-task regres-
sion on multivariate point process. We view an observed
image stream as an instance of multivariate point process,
which is a stochastic process that consists of a series of ran-
dom events occurring at points in time and space [7]. Then,
we automatically test what temporal models or their com-
binations are the best to describe the image occurrence be-
haviors, and formulate a regression problem to learn the his-
torical relations between image occurrence probabilities and
various temporal factors or covariates that influence them
(e.g . seasons, dates, and other external events). From the
learned models, we can easily compute the ranking scores
of images for any given time point. We explore the idea of
multi-task learning to incorporate multiple types of image
representation for a more accurate ranking. Consequently,
our algorithm offers several important advantages for large-
scale image retrieval as follows: (i) Flexibility : We can easily
build a set of parametric models to capture any number of
possible temporal behaviors of image collections, and auto-
matically choose the most statistically suitable ones (Section
4.1). We can achieve a globally optimal or approximate so-
lution to the learning of temporal models (Section 4.4). (ii)
Scalability : The learning is performed offline once, and the
online query step is very fast. Both processes run in a lin-
ear time with most parameters such as time steps and the
number of image descriptors (Section 5.3). (iii) Retrieval
accuracy : We perform experiments on more than seven mil-
lions of Flickr images over a wide range of 30 topic keywords.
We demonstrated that our image retrieval algorithm outper-
forms other candidate methods including Ranking SVM [14],
a PageRank-based image retrieval [13, 16] and a generative
author-time topic model [23] (Section 6).

1.1 Relations to Previous work
The time-sensitive image retrieval for large-scale Web photo

collections remains an under-addressed topic in information
retrieval literature. Our work is remotely related to follow-
ing two lines of research, but is significantly different on the
task, utility and methodology.

Image retrieval and reranking: Recently, image rerank-
ing has been actively studied to improve text-based im-
age search by leveraging visual or user feedback informa-
tion [5, 13, 19, 21, 29, 31]. Most image reranking meth-
ods have exploited three sources of information, which are
human-labeled training data [31], user relevance feedback [5,
29], and pseudo-relevance feedback [21]. Given an image
database retrieved by text-based search, the user relevance
feedback approach asks a user to select a query image to
clarify her search intent. The pseudo-relevance feedback
approach assumes the top images retrieved by text-based
search as pseudo-positive examples and bottom ranked im-
ages as pseudo-negative examples. Once the training data
are obtained, almost all existing methods learn ranking mod-
els relying on the semantic meaning of a query word and the



feature-wise image similarity, beyond which our approach
additionally emphasizes the temporal trends and user his-
tory associated with the images. The time-sensitive retrieval
can be becoming more important and anticipated, given that
the majority of Web photos are now coming from hundreds
of millions of general users with different experiences.

Web image dynamics: This line of research aims at
modeling how the contents of large-scale Web image collec-
tions change over time [12, 15, 16, 24]. In [12] and [24],
Flickr images are analyzed to infer other phenomena in user
behaviors such as social trends in politics and markets [12]
and spatio-temporal events [24]. In [16], the topic evolution
is modeled to perform the subtopic outbreak detection and
the classification of noisy web images. However, the study
of Web content dynamics has not yet contributed much to
solve the image ranking and retrieval, which is the main ob-
jective of this paper. Also, they did not explore any issues
regarding personalization, as we do in this work. The most
related work to ours may be [15], whose task is to predict
future likely images in Flickr datasets. However, our work
overcomes their two critical limitations to be a practical
time-sensitive image retrieval method. First, their approach
has no mechanism to test which queries are actually time-
sensitive and to discover query-specific temporal properties,
even though all submitted queries are not necessarily time-
sensitive. Therefore, all topics are equally treated, which
may cause degrading performance for some query classes.
Second, they oversimplified the image representation by as-
suming that millions of images can be clearly clustered into
500 clusters. This assumption leads their approach to be an
incomplete image ranking since it lacks a way of ranking the
images in the same cluster.

1.2 Summary of Contributions
Departing from the literature reviewed above, the main

contributions of our work can be summarized as follows:
(1) We develop an approach for time and optionally user

sensitive image ranking and retrieval. To the best of our
knowledge, there have been few attempts so far on such re-
trieval methods that leverage the temporal aspects of large-
scale Web photo collections.

(2) We design our image retrieval algorithm using multi-
task regression on multivariate point processes. Consequently,
our algorithm can automatically select and learn stochastic
temporal models while satisfying a number of key challenges
of Web image ranking, including flexibility, scalability, and
retrieval accuracies.

2. META-DATA OF IMAGES
We assume that each of input Flickr images is assigned

to topic keywords, timestamp, and owner ID. In addition to
such meta-data from Flickr, we extract two types of infor-
mation modalities: image description and user description.

2.1 Image Descriptions
In this paper, we extract four different image descriptors

because no single descriptor can completely capture vari-
ous contents of an image, and thus leveraging multiple de-
scriptors is a widely accepted common practice in recent
computer vision research. The four descriptors that are ex-
plained below can be classified into two low-level (SIFT and

HOG) and two high-level descriptors (Tiny and Scene), all of
which are extracted by using publicly available codes1.

Color SIFT (SIFT): We densely extract HSV color SIFT
on a regular grid at steps of 4 pixels. We form 300 visual
words by applying K-means to randomly selected SIFT de-
scriptors. The nearest word is assigned to every SIFT, and
binned using a three-level spatial pyramid.

HOG2x2 (HOG): We also use the histogram of oriented
edge (HOG) feature, inspired by its recent success in object
detection research [9]. We extract HOG descriptors on a
regular grid at steps of 8 pixels by following the method
called HOG2x2 in [30].

Tiny Image: Inspired by [27], we resize an image to a
32×32 tiny color image, and use pixel values as features.
This approach not only reduces image dimensionality to be
computationally feasible, but also is discriminative enough
to convey high-level statistics of an image.

Scene description: Since a large portion of Web images
contain scenes, the scene classifier outputs can be a mean-
ingful high-level description of an image. SUN database [30]
is an extensive dataset of 397 scene categories. As a scene
descriptor, we compute the scores of linear one-vs-all SVM
classifiers for 397 scene categories using Hog2x2 features, by
following the classification benchmark protocol in [30].

Visual clusters: Since all the above descriptors except
(Scene) are high-dimensional (e.g . 6,300 of (SIFT)), they
are down-sampled further by the soft-assignment idea. For
each descriptor type, we construct L(= 300) visual clusters
by applying K-means to randomly sampled image descrip-
tors. Then, an image I is assigned to r-nearest visual clus-
ters for each descriptor type with the weights of an expo-
nential function exp(−d2/2σ2), where d is the distance be-
tween the descriptor and the visual cluster and σ is a spatial
scale. Finally, an image I is described by four `-1 normalized
vectors with only r nonzero weights. They are denoted by
{hk(I)}4k=1 with dimensions of [Lk]4k=1 = [300 300 300 374].

2.2 User Description
Clustering users and measuring similarity between users

are important for personalization in collaborative filtering [8].
Its basic assumption is that similar users are likely to share
common photo taking and search behaviors. We use the
pLSA (Probabilistic latent semantic analysis) clustering as
proposed in Google News personalization [8]. We first choose
a fixed number of top users who have uploaded images most,
and compute an L-dimensional histogram for each user where
each bin represents the count of images belonging to the
corresponding visual cluster. In pLSA, the distribution of
visual cluster v in user ui’s images, p(v|ui), is given by the
following generative model:

p(v|ui) =
∑
z∈Z

p(v|z)p(z|ui). (1)

The latent variable z ∈ Z represents the cluster of user
propensity. Thus, p(z|ui) is proportional to the fractional
membership of user i to cluster z. We use p(z|ui) as the
descriptor of user ui. The user clustering can be done by
grouping users with the same z∗ = argmaxz p(z|ui) or run
K-means on the user descriptors p(z|ui). The user similarity
is calculated by histogram intersection on user descriptors.

1We use following codes: (SIFT) at http://www.vlfeat.org,
(HOG) at http://www.cs.brown.edu/∼pff/latent, (Tiny) and
(Scene) at http://people.csail.mit.edu/jxiao/SUN/.



Figure 2: A multivariate point process for a short image

stream of the hornet. (a) Each image is assigned to a

timestamp and visual clusters of two different descriptors

(K = 2, L1 = 3, L2 = 4). (b) The image stream is modeled

by two multivariate discrete-time point processes.

3. MULTIVARIATE POINT PROCESSES
In this section, we discuss the mathematical background of

multivariate point process for modeling Web photo streams.
Fig.2 shows a toy example for a short image stream of the
hornet. Suppose that we extract K image descriptors from
each image, and for each descriptor, we cluster the images
into Lk visual clusters (In this example, K = 2, L1 = 3, L2 =
4). Intuitively, one can easily construct K multivariate point
processes as shown in Fig.2.(b). For simplicity, we first as-
sume that the occurrence of each visual cluster is indepen-
dently modeled. Hence, the point process of Fig.2 can be
regarded as a single multivariate point process with L =
L1 + L2 = 7. In section 4.3, we will consider an extended
multi-task framework with considering correlations between
different descriptors.

Intensity functions: Since the intensity function can
completely define a point process [7], we first introduce its
definition. Formally, a multivariate point process can be de-
scribed by a counting process N(t) = (N1(t), · · · , NL(t))T

where N l(t) is the total number of observed images assigned
to visual cluster l in the interval (0, t]. Then, N l(t + ∆) −
N l(t) represents the number of images in a small interval
∆. By letting ∆→ 0, we obtain the intensity function at t,
which is the infinitesimal expected occurrence rate of visual
cluster l at time t [7]:

λl(t) = lim
∆→0

P [N l(t+∆)−N l(t) = 1]

∆
, l ∈ {1, . . . , L}. (2)

Generalized Linear Model: We assume that the in-
tensity function λl(t) is represented by the covariates that
influence the occurrence of visual cluster l. We define the
the parametric form of λl(ti|θl) as the exponential of a lin-
ear summation of the functions f lj of the covariates xj with

a parameter vector θl = (θl1, · · · , θlJ):

log λl(ti|θl) =

J∑
j=1

θljf
l
j(xj), l ∈ {1, . . . , L}. (3)

Data likelihood: Suppose that we partition the interval
(0, T ] by a sufficiently large number M (i.e. ∆ = T/M)
so that in each time bin ∆ only one or zero image occurs.
Then, we can denote the sequence of images up to T by
N l

1:M = nl1 · · ·nlM with nli ∈ {0, 1}. It is shown in [28] that
the likelihood of such a point process along with λl of Eq.(3)
is identical to that of the Poisson regression. Therefore, the
log-likelihood of an observed image sequence is

`(N l
1:M |θl) =

M∑
i=1

(
niλ

l(ti|θl)−exp(λl(ti|θl))− logni!
)
. (4)

L1 regularized likelihood: Although numerous factors
or covariates can be plugged in Eq.(3), each visual cluster is
likely to depend on only a small subset of them. Hence, it is
important to detect a few strong covariates by encouraging
a sparse estimator of θl for each visual cluster l. This ap-
proach is also practical because we usually do not know what
factors are important beforehand; we safely include as many
candidate factors as possible, and then choose only a few co-
variates for each visual cluster via MLE learning. Therefore,
we introduce Lasso penalty [25] into the likelihood of Eq.(4)
with a regularization parameter µ controlling sparsity level:

`L(N l
1:M |θl) = `(N l

1:M |θl)− µ
J∑
j=1

|θli|. (5)

4. TEMPORAL MODELING OF PHOTO
STREAMS

Our first objective is to identify the temporal properties of
a given image stream. This goal is achieved via the learning
of temporal models as follows. We first represent the im-
age stream with a multivariate point process {N l

1:M}Ll=1 as
described in previous section. Then, we define multiple mod-
els for λl(ti|θl) by enumerating all possible temporal factors
that influence the image occurrences (section 4.1). Finally,
for each occurrence data N l

1:M of visual cluster l, we select
a subset of most statistically plausible models (section 4.2),
and learn the parameters θl∗ of the models to discover which
factors are actually contributing (section 4.4). Note that the
whole processes above can be automatically performed.

4.1 Models of Temporal Behaviors
In this section, we enumerate a set of models for the in-

tensity functions, each of which is designed to capture a
particular temporal property. Thanks to the flexibility of
our framework, one can freely add or remove such models
according to the characteristics of image topics unless they
contradict the definition of Eq.(3). In this paper, we con-
struct two groups of models: temporal attributes and tradi-
tional time series.

Temporal attributes: Human time perception and photo
taking and search behaviors are not only continuous on time
but also temporal attribute-driven. For example, zoo pho-
tos may be more frequently taken in weekend rather than
in weekdays, or ski images appear more often in January
than in June. Therefore, we build a set of intensity function
models for temporal attribute-driven covariates as follows.

log λly(ti|αl) = α0 +

Yt∑
y=Ys

αyIy(ti) (6)

log λlm(ti|βl) = β0 +

12∑
t=1

βtg(ti − t) (7)

log λld(ti|γl) = γ0 +

12∑
t=1

It(ti)

31∑
d=1

γm,dId(ti) (8)

log λlw(ti|ζl) = ζ0 +
∑

w∈{M,...,S}

ζwIw(ti) (9)

log λlh(ti|ηl) = η0 +
∑
h∈H

ηhIh(ti). (10)



Figure 3: Examples of intensity function models of years

and months for three visual clusters (VC) of the Shark :

v1(sea tour), v2(ice hockey), v3(diving in aquarium). (a)

Four images sampled from each VC. (b) Observed im-

age occurrences. (c)-(d) Estimated intensity functions

for years and months. λ1
m and λ2

m have different image

occurrence rates peaked in summer and winter, respec-

tively. λ3
m is stationary along the timeline.

In equations, λly, λlm, λld, λ
l
w, and λlh are the models of inten-

sity functions for years, months, days, weekdays (from Mon-
day to Sunday), and holidays2, whose lists are denoted byH.
The parameter set to be learned comprises {αl, βl, γl, ζl, ηl}.
Iy(ti) is an indicator function that is 1 if the year of ti is
y, and 0 otherwise (e.g . Iy(ti) = 1 if y = 2008 and ti=
6/3/2008). Similarly, Iw(ti) and Ih(ti) are indicators for
week and holidays. For month covariates, we use Gaussian
weighting g(ti−t) ∝ exp(−(ti−t)2/σ), which leads that if an
image occurs in May, for example, some contributions are
also given on nearby months like April and June, assuming
that images smoothly change on the timeline.

Here, our models are mainly built based on calendric tem-
poral attributes, but the models driven by other textual or
social factors (e.g . news articles) can be supplemented.

An example: Fig.3 is a toy example of the shark topic to
intuitively show how the intensity function models are used
for fitting observed image streams. This example illustrates
the intensity function models for years (λly of Eq.(6)) and

months (λlm of Eq.(7)), where the parameter set comprises
seven [αly]2009

y=2003 and twelve [βlm]12
m=1. Fig.3.(a) shows four

sampled images from three visual clusters, each of which
approximately corresponds to sea tour, ice hockey, diving
in aquarium. Fig.3.(b) presents their actual occurrence se-
quences. Fig.3.(c)-(d) show the learned intensity functions
λly and λlm. Most of intensity functions for years roughly in-
crease every year because the number of uploaded photos in
Flickr grows yearly. Interestingly, the visual clusters show
different monthly behaviors in Fig.3.(d). λ1

m has a higher
intensity value (i.e. more frequently occurred) in June, λ2

m

peaks around January, and λ3
m is stationary all year long.

This result is reasonable because sea tours are popular in
summer, the ice hockey season takes place during winter,
and visiting aquarium is favored regardless of season. The
learned intensity functions can be used for a simple time-

2We use the lists at http://vpcalendar.net/Holiday Dates/.

sensitive image retrieval. For example, if the month of the
query time tq is January, then λ2

m(tq) � λ3
m(tq) > λ1

m(tq).
Therefore, we can rank the images from v2 as the highest.

Autoregression : The other group of temporal models
is based on autoregression, which is one of most popular
models for the analysis of time series. We assume that the
occurrence of each visual cluster is affected by its own his-
tory in Eq.(11), and the history of other visual clusters in
Eq.(12). The first history model is represented by a linear
autoregressive process:

log λla(ti|φl) = φ0 +

Pd∑
p=1

φp∆N
l
i−dp +

Pw∑
p=1

φp∆N
l
i−wp (11)

+

Pm∑
p=1

φp∆N
l
i−mp

where ∆N l
i−dp denotes the occurrence counts of visual clus-

ter l during [ti − dp, ti), and d is the time window width.
In Eq.(11), we use three different time windows: d = 1 day,
and w =1 week, and m = 1 month. That is, λla is modeled
by three different time-scaled (daily, weekly, and monthly)
regressors whose orders are Pd, Pw, and Pm, respectively.
The history model can capture the dynamic behavior of a
visual cluster such as periodic or bursty occurrences.

The second correlation model represents the influence from
the history of other visual clusters. Its mathematical form
is almost identical to that of Eq.(11):

log λlc(ti|ψl) = ψ0 +

L∑
c=1,c6=l

(
Qd∑
q=1

ψlcq ∆N l
i−dq (12)

+

Qw∑
q=1

ψlcq ∆N l
i−wq +

Qm∑
q=1

ψlcq ∆N l
i−mq

)
The parameter set consists of (L−1)× (Qd +Qw +Qm) + 1
number of ψ in the full model. For fast computation, instead
of using the full pairwise model, we can learn the correlations
with respect to some selected most frequent visual clusters.
This correlation model is useful when the existence or ab-
sence of a particular visual cluster can give a strong clue for
others’ occurrences.

4.2 Model Selection
In previous section, we introduce rather exhaustive seven

temporal models from Eq.(6) to Eq.(12). However, the oc-
currence of each visual cluster does not necessarily depend
on all the above models. For example, the occurrence of the
ice hockey visual cluster v2 of Fig.3 can be explained suffi-
ciently well by the month intensity function model λlm while
other models may not be required any further. Therefore,
we perform a model selection procedure, to choose a subset
of temporal models by removing the ones with little or no
predictive information.

Algorithm 1 summarizes the overall procedure of our model
selection. It is based on the well-known greedy forward
selection scheme, in which we keep increasing models one
by one by adding at each step the one that increases the
goodness-of-fit score the most, until any further addition
does not increase the score. As the goodness-of-fit test, we
use Kolmogorov-Smirnov (KS) test using time-rescaling the-
orem [2], which is one of most popular approaches for statis-
tical model assessment in point process literature. The KS
statistic is a quantitative measure for the agreement between



Algorithm 1: Model selection for each visual cluster

Input: (a) A set of intensity function models in Eq.(6)–
(12): Λl = {λly , λlm, λld, λ

l
w, λ

l
h, λ

l
a, λ

l
c}. (b) N l

1:M :
Occurrence data of visual cluster l.

Output: The best intensity function model λl∗ with
learned parameter set θl∗.

1: Let θi ← param est (λi, N l
1:M ) be the function that

computes the MLE solution of parameters for a given λi
and N l

1:M . This will be discussed in section 4.4.
2: For λla and λlc, decide the AR orders using AIC
measure: AIC(P ) = −2 log `(N l

1:M |θt) + 2P where P is the
total number of parameters.
foreach λi ∈ Λl. do

3: Compute θi ← param est (λi, N l
1:M ).

4: Compute KS static di by applying time rescaling
theorem to the learned λi(θi) and N l

1:M .

5: Sort λi in an increasing order. Let o to be this order.
Initialize λl∗ = argminλi∈Λl di and dl∗ = min di.

repeat
foreach λi ∈ Λl and λi /∈ λl∗ in the order of o. do

6: Set λt = λl∗i · λi. θt ← param est (λt, N l
1:M ).

7: Compute KS static dt as done in step 4.
if dt < dl∗ then λl∗ ← λt, dl∗ = dt, and θl∗ = θt.

until λl∗ is not updated ;

Algorithm 2: Build the correlation set E.

Input: (1) A set of images I, each of which is assigned
to the closest visual clusters of K descriptors.

Output: The correlation set E.
1: Initialize K(K−1)/2 number of co-occurrence matrices
C, where Cab ∈ C is an (La×Lb) zero matrix between
descriptor a and b.
foreach I ∈ I. Let visual cluster of I be (v1, . . . , vK) do

foreach a, b ∈ {1, . . . ,K} with a 6= b do
2: Cab(va, vb)← Cab(va, vb) + 1.

foreach a, b ∈ {1, . . . ,K} with a 6= b do
3: Cab = row normalize(Cab) + column normalize(Cab).

3: Select top R highest edges (va, vb) from C. The weight
of a pair is rab ∝ Cab(a, b)/|I|. Set E ← (va, vb, rab).

a learned intensity function and actual image occurrence
data. This value is a distance metric, and thus a smaller
value indicates a better model. In step 2 of Algorithm 1,
the orders of the autoregressive models, λla of Eq.(11) and
λlc of Eq.(12), are decided by Akaike’s information criterion
(AIC). We choose the order parameters that lead to the
smallest AIC, implying that the approximate distance be-
tween the model and the true process generating the data
is the smallest. In practice, this step is important because
temporal behaviors of visual clusters can operate at different
time scales (i.e. monthly, weekly, or daily).

4.3 Regularized Multi-Task Regression
Until now, each visual cluster is independently modeled

and learned without considering which description it is de-
rived from. In order to fully take advantage of any arbi-
trary number of image descriptions, we introduce the idea
of multi-task learning [3, 18], in which multiple related tasks
are jointly learned by analyzing data from all of the tasks at
the same time. This framework is powerful when the multi-

ple tasks of interest are different enough to be specified by
separate models, but are at the same time similar enough
to be jointly learned.

We treat each descriptor as a task. Since each descrip-
tor characterizes an image from a different perspective, it
should be separately expressed. However, at the same time,
it is likely that the descriptors from the same image share
enough correlation that makes simultaneous learning benefi-
cial. For example, suppose that a large portion of images of
visual cluster 35 of HOG are also assigned to visual cluster
27 of Scene descriptors. It indicates that these two visual
clusters are highly correlated, and thus are likely to share
common covariates affecting their occurrences. Algorithm
2 discovers the set of frequently co-occurred visual cluster
pairs as E , where e = (va, vb, rab) ∈ E consists of three tu-
ples: a pair of visual clusters va and vb with correlation
weight rab > 0. We can model this dependency structure
across multiple tasks (e.g . the correlations between the vi-
sual clusters of different image descriptors) by introducing
regularization term Ω(ΘE) to the log-likelihood:

L =
∑
l∈E

`(N l
1:M |θlk)− Ω(ΘE) (13)

Ω(ΘE) = µ
∑
l∈E

‖θlk‖1 + ν
∑

(a,b)∈E

rab

J∑
j=1

|θaj − θbj | (14)

The regularization term Ω(ΘE) consists of two different
types of penalties, which are the Lasso penalty [25] and
graph-guided fusion penalty [3]. µ and ν are regulariza-
tion parameters that control sparsity and fusion levels. The
overall effect of graph-guided fusion penalty is that each sub-
graph of visual clusters in E tends to share common relevant
covariates, and the degree of commonality is proportional to
the correlation strength rab.

4.4 Optimization for Parameter Learning
The goal of parameter learning is to obtain the MLE

solution θl∗ that maximizes the likelihood with respect to
an intensity function model λl and an observed image se-
quence N l

1:M for all l = 1, . . . , L. Alternatively, if we ex-
plicitly represent the descriptor k as subscript, the set of
parameters is denoted by Θ∗ = {Θ∗1, . . . ,Θ∗K} where Θ∗k =

{θ1∗
k , · · · , θ

Lk∗
k } is the set of learned parameters for all vi-

sual clusters of descriptor k. We have introduced three like-
lihoods with different regularizations, which are optimized
differently. First, the likelihood of Eq.(4) with no regu-
larization term reduces to that of Poisson regression, and
the globally-optimal solution can be attained by an itera-
tively reweighted least square algorithm [7]. Second, for the
likelihood of Eq.(5) with the Lasso penalty, the globally-
optimal MLE solution can be achieved by using the cycli-
cal coordinate descent in [10]. Finally, for the likelihood
of Eq.(13) with the graph-guided fusion penalty, we obtain
an approximate MLE solution by modifying the Proximal-
gradient method [3], which is a scalable first-order method
(i.e. using only gradient) with a fast convergence rate. We
extend this method that was developed for linear regressions
to the regularized Poisson regressions.

5. TIME-SENSITIVE IMAGE RETRIEVAL
In this section, we discuss our second goal, which is to

perform image ranking using the learned temporal models.



Figure 4: A toy example of computing ranking scores

of two mountain+camping images I1 and I2 for tq =

(01/01/2009) with (K = 2, L1 = 10, L2 = 15). (a) Two mem-

bership vectors p1(tq) and p2(tq) are computed from the

learned intensity functions. (b) Two descriptor vectors

h1 and h2 are extracted from each image, and the ranking

scores s(I1; tq) and s(I2; tq) are computed by Eq.(15).

5.1 Predictive Ranking
Computing intensity functions: As a result of opti-

mization, we have the learned parameters of all visual clus-
ters of all K descriptors: Θ∗ = {Θ∗1, . . . ,Θ∗K}.

In the retrieval step, given a query time tq, we first ob-
tain Λ(tq|Θ∗) = {Λ1(tq|Θ∗1), . . . ,ΛK(tq|Θ∗K)}, which is the
set of intensity functions of all visual clusters of all K de-
scriptors for tq. (|Λ(tq|Θ∗)| =

∑K
k=1 Lk). Each λlk(tq|θl∗k ) ∈

Λk(tq|Θ∗k) is computed by gathering covariate values for tq,
and plugging them along with learned θl∗k into Eq.(3). Here,
let us remind that λlk(tq|θl∗k ) ∝ P (N l

k(tq+∆)−N l
k(tq)|N l

1:M )3.
That is, the intensity function of a visual cluster at tq is
proportional to its occurrence probability at tq. There-
fore, for each k ∈ K, we can define a membership vector:
pk(tq) = Λk(tq|Θ∗k)/‖Λk(tq|Θ∗k)‖1(∈ RLk×1), where each
pl ∈ pk(tq) is the membership probability that an image
occurred at tq belongs to visual cluster l of descriptor k.

Ranking: The next step is to compute the ranking score
of any given image I for tq. We use the idea of continuos
error-correcting output codes (ECOC) [4]. We first extract
K image descriptors {hk(I)}Kk=1 by the feature extraction
methods in section 2.1. Then, the ranking score of image I
at tq is defined by the histogram intersection4

s(I; tq) =

K∑
k=1

‖min(hk(I),pk(tq))‖1. (15)

Fig.4 illustrates a toy example of computing ranking scores
for two images of the mountain+camping with K = 2, L1 =
10, L2 = 15. Fig.4.(a) shows two membership vectors pk(tq)
that are computed from the learned intensity functions for
tq=(01/01/2009), and Fig.4.(b) illustrates four descriptor
vectors for I1 and I2. The pk(tq) are more similar to the de-
scriptors hk(I1) of image I1 (snowy mountain) than hk(I2)
of I2(tracking in woods), and thus image I1 is ranked higher.

The computation of our ranking score is very fast; the
histogram intersection requires only element-wise min oper-
ations between K vector pairs. It is also easy to organize
the descriptor vectors of images in the database by using
any data structure such as trees or hashes for fast retrieval.

3It can be easily shown by that λlk is an infinitesimal ex-
pected occurrence rate at tq and a series of images is modeled
by a sequence of conditionally independent Bernoulli trials
during the derivation of the likelihood function of Eq.(4).
4In terms of the ECOC terminology, Eq.(15) means that the
histogram intersection is chosen as the decoding metric.

5.2 Personalization
The key idea of personalization is, given a query user uq,

to assign more weights to the pictures taken by uq and sim-
ilar users to uq during learning. In a normal setting, one
image occurrence is equally counted by one for N l

1:M (See
an example in Fig.3.(b)). However, for personalization, the
images by uq and the users in the same user cluster with uq
are weighted by larger values so that model fitting is more
biased to their images. We implement the personalization by
using the locally weighted learning framework [1], which is a
form of lazy learning for a regression to adjust the weighting
of data samples according to a query.

In order for personalization to be done offline, we apply
this idea at the user cluster level. Suppose that there are
Z user clusters as a result of pLSA based user clustering in
section 2.2. We then compute Z×Z pairwise user similarity
matrix U by U(x, y) =

√
exp(−(ux − uy)2/σ), where ux

and uy are the user descriptors of cluster centers of Ux and
Uy, respectively5. We learn the personalized model for each
user cluster Uz, in which the weights of image occurrences
are adjusted by U(z, ∗) (i.e. the z-th row of U). That
is, if the owner of an image I is in user cluster Ux, then I
is reweighted by U(z, x). At the query stage, given a query
user uq, we identify the user cluster to which uq belongs, and
then use the pre-computed learned model of that cluster.

5.3 Computation time
Learning: The learning step performs only once, offline.

The learning time without the graph-guided fusion penalty
is O(L|T |J) while that with the fusion penalty is O(L|T |J2)
where |T | is the number of time steps (e.g . discretized by

day), J is the number of covariates, and L =
∑K
k=1 Lk. For

a linear model, our Matlab code takes about less than one
hour to learn the model for the 553K of world+cup images
with L = 1, 050, |T | = 2, 000, and J = 32.

Querying: At the online querying stage, computing the
intensity functions for a given query time tq (and optionally
a user uq) runs in O(LJ), and calculating the ranking scores
of N images takes O(LN). The overall querying step takes
less than 0.5 second with N = 1K in the same experiment.
Querying is fast enough to run online, but it can be also pre-
computed offline, for example, processing queries for next
one year (365 days) can be done within a couple of hours.

6. EXPERIMENTS
We evaluate the performance of our time-sensitive image

retrieval algorithm using Flickr datasets.

6.1 Evaluation Setting
Datasets: Fig.5 summarizes our dataset that consists of

more than seven million images of 30 topics from Flickr.
We download all images that are retrieved by topic names
as search keywords from Flickr without any filtering. The
date taken field of each image provided by Flickr is used for
the timestamp.

Tasks: We first divide each image set into training and
test set by time TT = T−(1 year) where T is the end time
point of the dataset. That is, for each topic, the test set
consists of the images in the last one year of the database,
and the training set IB comprises the other images, which
are used to learn the image occurrence patterns.

5We use the Gaussian kernel function for image weighting.



SR(spider), PO(potato), BB(blackberry), GC(grandcanyon), WH(
white +house), FA(fine+art), GP(grape), SH(shark), PE(penguin),
CA(cardinal), RA(raptor), CO(coyote), HO(hornet), JA(jaguar),
GR (grizzly), SB(snowboarding), YA(yacht), HR(horse+riding), SD(
scuba+diving), MC(mountain+camping), RC(rock+climbing), SP(
safari+park), FF(fly+fishing), WC(world+cup), ID(independence+
day), FO(formula+one), TF(tour+de+france), WI(wimbledon), ES
(easter+sunday), LM(london+marathon)

Figure 5: 30 topics of our Flickr dataset. The topic

words are classified into four categories. The total num-

bers of images and users are (7,592,426, 1,434,749).

Our tasks for experiments are similar to those of other
image ranking and retrieval papers [5, 19, 29] except that
time suitability of retrieved images is the key performance
index to be evaluated. Our image retrieval task is performed
as follows; a topic name and a query time point tq > TT are
given. That is, tq is a future time point with respect to
training data since TT is the time threshold that divides the
training set from the test set. The images that are actually
taken in tq are the positive test set IP . The negative test
set IN is gathered by randomly selecting the same number
images outside of [tq±3 months] from the test set. The al-
gorithm is supposed to rank the test images IP ∪ IN from
which average precisions are computed. The personalized
retrieval is the same except that a query user uq is speci-
fied at the test. uq is randomly chosen from a set of users
who have at least 100 images in both training and test sets.
For each topic, we randomly generate 36 tq test cases (i.e.
three random choices per month) for normal retrieval, and
20 (tq, uq) test pairs on average for personalized retrieval.
That is, we examine more than 1, 500 test instances in total
to evaluate the performance of our algorithm.

Baselines: The time-sensitive image retrieval is relatively
new, and thus there are few existing methods to be com-
pared. Hence, we select and adapt three baselines from
popular image ranking methods for quantitative compari-
son with our algorithm. Below we summarizes the baselines,
each of which is denoted by (RSVM) [14], (PageR) [13, 16],
and (Topic) [23]. In the personalized retrieval, the locally
weighted learning is also applied to all the competitors.

• Ranking SVM(RSVM) [14]: We obtain pseudo-relevant
and pseudo-irrelevant training data by sampling im-
ages from the training set IT based on their times-
tamps. The pseudo-relevant images are randomly sam-
pled from Normal distributions whose mean are the
same dates (m/d) of tq in previous years. The pseudo-
irrelevant images are randomly chosen from the im-
ages whose timestamps are outside [date(m/d) of tq±
3 months] at every year. Then, we learn the Ranking
SVM using the code provided by the authors of [14].

• PageRank-based model(PageR) [11, 16]: Given the same
training data above, we build a similarity graph be-
tween training and test data by using HOG and SIFT

features, and compute ranking scores using the random
walk with restart [26] (i.e. a query-specific PageRank).

• Author-Time Topic Model(Topic) [23]: We modify the
Author-Topic model [23] to jointly model users, months,
and visual clusters of images. Using the same train-
ing data above, we estimate the subtopic distribution
of each month and the subtopic assignments of visual
clusters, from which we compute the ranking scores of
test images for tq.

6.2 Quantitative Results
Fig.6 and Fig.7 show the quantitative comparison of nor-

mal and personalized image retrieval between our approach
and three baselines, respectively. We report the mean av-
erage precision at top 40 and 80 ranked images, which are
denoted by mAP@40 and mAP@80. In each figure, the left-
most bar set is the average performance of 30 topics, and the
results of all 30 topics follow. Our algorithm significantly
outperformed all the competitors in most topic classes for
both tasks. In the average accuracy of normal retrieval, our
mAP@40(80) values are higher by 5.6% (8.0%) points than
the best baseline (Topic). In the average accuracy of per-
sonalized retrieval, our method also outperforms the best
baseline (PageR) by 4.7% (4.2%) points for mAP@40(80).
The personalized retrieval is more accurate to rank the im-
ages than the normal one, because knowing the user at query
time provides a strong clue to narrow down the search space.

6.3 Qualitative Results
Fig.8 shows some examples of retrieval comparison be-

tween our method in the top row and the best baseline in
the bottom row. We illustrate top eight ranked images by
each method, along with the average images of top 100 im-
ages to show the mean statistics of the two output sets. In
these examples, our method reports fewer false positives (i.e.
the images with red boundaries) than the best baselines.

As another qualitative result, Fig.9 shows the predicted
power of our algorithm for unseen future images. Fig.9.(a)
illustrates retrieval results for the independence+day at four
tq from different months. In each set, the top row shows five
images that are sampled out of ten highest ranked train-
ing images for tq, and the bottom row presents their best-
matched test images. The matched pairs are obtained from
one-to-one correspondences by feature-wise distances. If the
matched pairs are similar each other, it means that our algo-
rithm can predict unseen future images very well. The inde-
pendence+day is national holidays for many countries with
different dates. Hence, according to four different tq, we can
observe various views of the events in different countries.
For example, the second tq (top-right) of Fig.9.(a) is near
to the US independence day; the high ranked images show
its common storyline: parades, parties with children, and
fireworks at night. They are distinctive with the scenes in
the Independence day of India (bottom-left) and an African
country (bottom-right) of Fig.9.(a).

Fig.9.(b) shows examples of the importance of personal-
ization. The raptor in Fig.9.(b) show the variation of the
term usages including a basketball team, a fighter aircraft,
an eagle, and an ice hockey team, most of which are seem-
ingly irrelevant to its first semantic meaning as a dinosaur.
Each user perceives the term raptor narrowly for his or
her interests, which are relatively stationary and predictable
once they are learned.



Figure 6: Quantitative comparison of image retrieval between our method and three baselines (RSVM, PageR, Topic)

using mAP@40(top) and mAP@80(bottom) metrics. The average performances for mAP@(40,80) in the left-most bar

set are ours (69.1%,66.7%), RSVM (58.0%,57.6%), PageR (60.1%,58.6%), Topic (63.5%,59.7%).

Figure 7: Quantitative comparison of personalized image retrieval between our method and three baselines us-

ing mAP@40(top) and mAP@80(bottom). The average performances for mAP@(40,80) in the left-most bar set are

ours(82.1%,79.2%), RSVM(74.3%,72.8%), PageR(77.4%,75.0%), Topic(71.4%,68.7%).

Our experimental results conclude that some topics fol-
low periodical patterns that are predictable, and our algo-
rithm can enhance the image retrieval quality according to
the temporal trends. Specifically, our method is success-
ful for polysemous topics that show strong annual or peri-
odic trends (e.g . sports related topics such as shark and
hornet), and event topics that many people share but ex-
perience in different ways (e.g . outdoor activities such as
mountain+camping). Moreover, we observe that the time-
sensitive personalization is promising for image retrieval when
a query keyword has a board range of concepts, which are
differently recognized according to people’s thoughts and in-
terests. Although the personalized search has been studied
much in text retrieval research, our results reveal that im-
ages can convey more subtle information about user prefer-
ences that are hardly captured by texts.

7. CONCLUSION
In this paper, we propose an approach for time-sensitive

image ranking and retrieval that is based on multi-task re-
gression on multivariate point processes. With experiments
on more than seven millions of Flickr images for 30 topic
keywords, we show the superiority of the proposed approach
over other candidate method. Among future work that could
further boost performance, first, we can incorporate other
meta data of Flick (e.g . comments or favs) as covariates for
the temporal models; second, it is worth exploring the joint
temporal behaviors of topics along with other data modali-
ties such as associated texts or social networks of users.
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