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Abstract:  Accurate and efficient video classification demands the fusion of multimodal information and the use of intermediate
representations. Combining the two ideas into one framework, we propose a series of probabilistic models for video representation
and classification using intermediate semantic representations derived from multimodal features of video. On the basis of a class
of bipartite undirected graphical models named harmonium, we propose dual-wing harmonium (DWH) model that represents
video shots as latent semantic topics derived by jointly modeling the transcript keywords and color-histogram features of the data.
Our family-of-harmonium (FoH) and hierarchical harmonium (HH) model extends DWH by introducing variables representing
category labels of data, which allows data representation and classification to be performed in the same model. Our models
are among the few attempts of using undirected graphical models for representing and classifying video data. Experiments
on a benchmark video collection show different semantic interpretations of video data under our models, as well as superior
classification performance in comparison with several directed models. © 2008 Wiley Periodicals, Inc. Statistical Analy Data Mining
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1. INTRODUCTION

Classifying video data into semantic categories, some-
times known as semantic video concept detection, is an
important research topic. This task is challenging because
video data contain multiple data types including video
frames as images, transcript text, speech, audio, each bear-
ing correlated and complementary information essential to
conveying data semantics. The fusion of such multimodal
information is regarded as a key research problem [1],
and has been a widely used technique in video classifi-
cation and retrieval methods. Many fusion strategies have
been proposed, varying from early fusion [2], which merges
the feature vectors extracted from different modalities, to
late fusion, which combines the outputs of the classifiers
or ‘retrieval experts’ built on each single modality [2-5].
Empirical results show that the methods based on the fusion
of multimodal information outperforms those based on any
single type of information in both classification and retrieval
tasks.

Another trend in video classification is the search of low-
dimensional, intermediate representations of video data in
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order to replace the high-dimensional raw features such
as color histograms and term vectors. The reason is that
intermediate representations would make sophisticated clas-
sifiers such as support vector machines [6] computationally
efficient, which would be more expensive when applied on
raw features. Moreover, using intermediate representations
holds the promise of better interpretation of data seman-
tics, and may lead to superior classification performance.
Related work along this direction ranges from conventional
dimension-reduction methods such as principal component
analysis (PCA) and Fisher linear discriminant (FLD) [7],
to the more recent probabilistic ‘topic models’ such as
probabilistic latent semantic indexing (pLSI) [8], latent
Dirichlet allocation (LDA) [9], exponential-family harmo-
nium (EFH) [10]. While most of these models are initially
developed only for single-modal data such as textual docu-
ments, extensions of them [11] have been studied recently
in order to model data with multiple types of inputs (a.k.a
multimodal data) such as captioned images and video.
The key insights for video classification from previous
works appear to be combining multimodal information and
using intermediate representations. The goal of this paper
is to propose a series of probabilistic models for represent-
ing and classifying video data by taking advantages of both
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insights. Our models are based on a class of bipartite, undi-
rected graphical models (i.e. random fields) called harmoni-
ums [10]. The first model, dual-wing harmonium (DWH),
derives intermediate representation as a set of latent seman-
tic topics of video shots, by jointly modeling the correlated
information in the image regions and transcript keywords
associated with the video shots. The derived latent topics
are then used as semantic features for classifying video
shots. The other two models, family-of-harmonium (FoH)
and hierarchical harmonium (HH), extend DWH by explic-
itly incorporating the category label(s) of data into the
model, which allows the classification and representation
to be accomplished in a unified framework. Specifically,
FoH consists of a set of category-specific DWH models,
each modeling the video data from one specific category,
and it assigns a video shot to the category with the highest
probability. In contrast, HH introduces category labels as
another layer of hidden variables into a DWH model, and
performs classification through the inference of these label
variables.

The proposed models differ from existing models for
text/multimedia data in several important aspects. First, our
models are among the first few undirected topic models for
bimodal or multimodal data such as video, as most of the
existing models are directed and they are mainly proposed
for single-modal data such as text documents. Besides pro-
viding an important alternative for modeling video data, our
models do offer unique properties not supported by their
directed counterparts, among which is fast inference due
to the conditional independence between latent variables.
Furthermore, two of our models, FoH and HH, incorporate
category labels as (hidden) model variables, which allows
us to classify unlabeled data by directly inferencing the dis-
tribution of the label variables. In comparison, most existing
models [8§—11] can be only used for deriving intermedi-
ate data representation as latent semantic topics, and one
has to build separate classifiers on top of the derived rep-
resentation if classification is to be performed. Therefore,
another advantage of our approach lies in the unification of
representation and classification in the same model, which
avoids the overhead of building separate classifiers. More
importantly, by considering the interactions between latent
semantic topics and category labels, our models may be
able to learn better intermediate representations so as to
reflect the category information from the data. Such ‘super-
vised’” intermediate representations are expected to provide
more discriminative power and insights of the data than the
‘unsupervised’ representations generated by existing meth-
ods [8—11].

The notations used in the paper follow the convention of
probabilistic graphical models. Uppercase characters repre-
sent random variables, and lowercase characters represent
the instances (values) of the random variables. Bold font is
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used to indicate a vector of random variables or their values.
In all the illustrations, shaded circles represent observed
nodes while empty circles represent hidden (latent) nodes.
Each node in a graphical model is associated with a random
variable, so we use the term node and variable interchange-
ably in this paper.

In Section 2 we review the related work on the fusion
of multimodal video features as well as representation
models for text and multimedia data. A brief introduction
of harmoniums is presented in Section 3. We propose the
three harmoniums models for video data in Section 4, and
discuss their learning algorithms in Section 5. In Section
6, we show the experiment results and illustrate interesting
interpretation of the data from TRECVID video collection.
The conclusions and future work are discussed in Section 7.

2. RELATED WORKS

As pointed out in [1], the processing, indexing, and
fusion of the data in multiple modalities is a core problem of
multimedia research. For video classification and retrieval,
the fusion of features from multiple data types (e.g. key-
frames, audio, transcript) allows them to complement each
other and achieve better performance than using any single
type of feature. This idea has been widely used in many
existing methods. The fusion strategies vary from early
fusion [2], which merges the feature vectors extracted from
different data modalities to late fusion which combines the
output of classifiers or ‘retrieval experts’ built on each
single modality [2-5]. It remains an open question as to
which fusion strategy is more appropriate for a certain
task, and a comparison of the two strategies in video
classification is presented in [2]. The approach presented
in this paper takes neither approach; instead it derives the
latent semantic representation of the video data by jointly
modeling the multimodal low-level features, so that the
fusion takes place somewhere between early fusion and late
fusion.

There are many approaches to obtaining low-dimensional
intermediate representations of video data. PCA has been
the most popular method, which projects the raw features
into a lower-dimensional feature space where the data vari-
ances are well preserved. Independent component analysis
(ICA) and FLD are widely-used alternatives for dimen-
sion reduction. Recently, there are also many studies on
modeling the latent semantic topics of the text and multi-
media data. For example, latent semantic indexing (LSI) by
Deerwester et al. [12] transforms term counts linearly into
a low-dimensional semantic eigenspace, and the idea was
later extended by Hofmann to pLSI [8]. The LDA by Blei
et al. [9] is a directed graphical model that provides gen-
erative semantics of text documents, where each document
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Fig. 1 The basic harmonium model.

is associated with a topic-mixing vector and each word is
independently sampled according to a topic drawn from this
topic-mixing. LDA has been extended to Gaussian-Mixture
LDA (GM-LDA) and Correspondence LDA (Corr-LDA)
[11], both of which are used to model annotated data such
as captioned images or video with transcript text. EFH pro-
posed by Welling et al. [10] is bipartite undirected graphical
model consisting of a layer of latent nodes representing
semantic aspects and a layer of observed nodes representing
the raw features.

In practice, the methods mentioned above are mainly
used for transforming the high-dimensional raw features
into a low-dimensional representation which presumably
capture the latent semantics of the data. Classification task
is usually performed by building a separate discrimina-
tive classifier (e.g. SVMs) based on such latent semantic
representations. In this paper two of the proposed mod-
els, namely, FoH and HH, provide a unified approach
that integrate representation and classification in the same
framework. They not only achieve satisfactory classifica-
tion performance, but also provide interesting insights into
the data semantics, such as the internal structure of each
category and the relationships between different categories.
Fei-Fei et al. [13] used a unified model for representing and
classifying natural scene images by introducing category
variables into the LDA model.

3. THE BASIC HARMONIUM MODEL

The harmoniums, which were originally studied by
Smolensky [14] in his ‘harmonium theory’, refer to a fam-
ily of bipartite undirected graphical models (a.k.a random
fields) that consist of two layers of nodes. Figure 1 shows a
basic harmonium model, where nodes X = {X;} at the bot-
tom layer denote the observed data and the nodes H = {H;}
at the topic layer model the latent semantic topics of the
data. Depending on the specific application, the data nodes
X can represent keyword counts of a text document or
image histogram features of an image, and the latent topic
nodes H constitute a low-dimensional summarization of the
data that capture the critical information in the raw data.

The bipartite topology of a harmonium ensures that the
nodes within the same layer are conditionally independent
given the nodes in the other layer. This makes possible a
convenient constructive definition of the harmonium distri-
bution based on two between-layer conditional distribution
p(x|h) and p(hx), both of which factorize over individ-
ual nodes as p(x|/h) = IT; p(x; |h) and p(h|x) = I1; p(h;|x).
Welling et al. [10] proposed a special class of harmonium
models called EFH, where these conditionals are from the
exponential family:

pxh) =[] pxilh)

o [Texp g {6+ Wigy) | £
i 7

px) =[] ph;lx)
J

o Hexp{(kj + ZWijf(xi)> g(hj)} (1)
; i

where {f(x;)} and {g(h;)} are the sufficient statistics (or
features) of node x; and h;; {6;}, {A;}, and {W;;} are model
parameters, which can be learned from the data. The par-
tition function (i.e. normalizer) in these distributions are
not explicitly shown, and therefore we use a proportional
sign instead of an equal size in Eq. (1). We see that the
data nodes x and the topic nodes h are coupled through an
interaction term W;;, so that the values of the topic nodes
h affect the distribution of x, and vice versa. This ensures
that the latent topic variables h are in ‘harmony’ with the
data variables x, so that h preserve most of the information
in X.

Welling et al. [10] showed that these local conditionals
precisely map to the following harmonium random fields
(joint distribution):

ph) ocexp Y 0 f(x) + D rjglh))
i J
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After the parameters {6;}, {A;}, {W;;} are learned, the har-
monium model can be used to infer the latent topic nodes
h from the observed data nodes x. Due to the conditional
independence between the latent nodes, the inference of h
is very efficient. This is a nice property not provided by
the directed graphical models, which typically do not have
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such conditional independence. On the other hand, how-
ever, there is no marginal independence for either data or
latent topic nodes in a harmonium. Therefore, learning har-
moniums is usually more difficult due to the presence of
the global partition function.

The basic harmonium has been used to derive the latent
semantic topics from the keyword features of text docu-
ments [10]. However, it is inadequate for modeling complex
data such as video data that contain multiple types of inputs
(features) following distributions of different families. We
describe a series of extensions of the basic harmonium for
modeling and classifying video data.

4. HARMONIUM MODELS FOR VIDEO DATA

A sketch of our approach to video classification is illus-
trated in Fig. 2. We classify video data in the form of video
shots, which are short video segments with length vary-
ing from a few seconds to half minute or even longer. As
video contain both textual and imagery data, we represent
each video shot as a bag of keywords (extracted from the
video closed-captions or via speech recognition systems),
and a set of fixed-sized image regions (extracted from a
representative frame or keyframe of the video shot).

Each region is described by its color histogram feature.
In the training phase, the goal is to build a model of a cer-
tain type that derives the latent semantic topics of video
data and captures the latent topics (and their combinations)
that best describe each category. During the testing phase,
we extract the keywords and color features from an unla-
beled video shot, and then use them as features to predict
which category this shot belongs to. The three proposed
models, DWH, FoH, and HH, differ in the way the data are
represented and classified.

4.1. Notations and Definitions

The random variables and parameters in our harmonium
models are defined as follows:

e A video shot s is represented by a tuple as (x,
z, h, y), which respectively denote the keywords,
region-based color features, latent semantic topics,
and category labels of the shot.

e The vector x = (x,...,xy) denotes the keyword
feature extracted from the transcript associated with
the shot. Here N is the size of the word vocabulary,
and x; € {0, 1} is a binary variable that indicates
the absence or presence of the i™ keyword (of the
vocabulary) in the shot.
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Fig. 2 A sketch of our approach to video classification.

e The vectorz = (z1, . . ., zy) denotes color-histogram
features of the keyframe in the shot. Each keyframe
is evenly divided into a grid of totally M fixed-sized
rectangular regions, and z; € RE is a C-dimensional
vector that represents the color histogram of the j®
region. So z is a stacked vector of length equal to
CM.

e The vector h = (hy,.. ., hg) represents the latent
semantic topics of the shot, where K is the total
number of the latent topics. Each component 7 € R
denotes how strongly this shot is associated with the
k™ latent topic.

e The category labels of a shot are modeled differently
in the two models. In FoH, a single variable y €
{1,..., T} indicates the category this shot belongs
to, where T 1is the total number of categories. In
hierarchical harmonium, the labels are represented
by a vector y = (y1,. . ., yr), with each y, € {0, 1}
denoting whether the shot is in the " category. Here
a video shot belongs to only one category, so we have
>y =1

e The three harmonium models presented below have
different parameters. The parameters of a dual-wing
harmonium are denoted as 67 = («, 8, W, U). A FoH
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contains a set of category-specific dual-wing har-
moniums, and each one has parameters as 6 =
(mwy, ¥, B¥, WY, U”) where y is the category label. A
hierarchical harmonium has a single set of parameters
as 0 = (a, B, 7, W, U, V).

4.2. Dual-Wing Harmonium (DWH)

As illustrated in Fig. 3, dual-wing harmonium (DWH)
extends the basic harmonium by introducing two ‘wings’
of data nodes in order to represent the bi-modal information
of video data. The nodes in the top layer represent the latent
semantic topics H = {H;} of a video shot s; nodes in the
bottom layer consists of two sets of observed variables:
X = {X;} representing the keyword feature of the video
shot and Z = {Z;} representing the the region-based color
feature of the shot. Thus, DWH models have the low-level
(keyword and color) features of a video shot as well as
its latent semantic topics as two types of representations
that influence each other. We can either conceive keyword
and color features as being generated by the latent semantic
topics, or conceive the semantic topics as being summarized
from the keyword and image features. This mutual influence
is reflected in the conditional distributions of the variables
representing the features and the semantic topics detailed
below.

4.2.1. Text feature

The variable x; indicating the presence/absence of term
i €{l,..., N}in the vocabulary follows a distribution as:

3)

_ _ 1
P(X; =1lh) = Itexp(—a; =Yy Wikhi)

P(X;=0h) =1—-P(X;=1h)

This shows that each keyword in a video shot is sampled
from a Bernoulli distribution dependent on the latent seman-
tic topics h. That is, the probability whether a keyword
appears is affected by a weighted combination of semantic
topics h. Parameter «; and W;; are both scalars, so o =

Semantic topics

Image features

Text features

Fig. 3 Dual-wing harmonium model.

(aq, . ..,ay) is an N-dimensional vector, and W = [W;;]
is a matrix of size N x K. Due to the conditional indepen-
dence between x; given h, we have p(x/h) =[], p(x;/h).

4.2.2. Image feature

The color-histogram feature z; of the j™ region in the
keyframe of the shot admits a conditional multivariate
Gaussian distribution as:

p(zjh) =N (Zj|2j <ﬂj + ZU.ikhk) ; E.i) )
k

where z; is sampled from a distribution parameterized by
the latent semantic topics h. Here, both 8; and Uj; are
C-dimensional vectors, and therefore 8 = (81, . . ., Bu) is
a stacked vector of dimension CM and U = [Uj] is a
matrix of size CM x K. Note that X; is a C x C covari-
ance matrix, which, for simplicity, is set to identity matrix
I in our model. Again, we have p(zlh) = ]_[j p(z;lh) due
to conditional independence.

4.2.3. Latent semantic topics

Finally, each latent topic variable /s; follows a unit-
variance Gaussian distribution whose mean is determined
by a weighted combination of the keyword feature x and
the color feature z:

plhilx, 2, 0) = N | el Y Waxi + Y Upzj, 1] (5)
i J

where W;; and U j; are the same parameters used in Egs. (3)
and (4). Similarly, p(h|x, z) = []; p(h«|x, z) holds.

So far we have presented the conditional distributions of
all the variables in the model. These local conditionals can
be mapped to the following harmonium random fields as:

2
p(x,z,h) o exp Zaixi +Zﬂjzj - Z%/

2
-y hz_k + 3 Wikxihi + 3 Uszjhi | (6)
k ik

jk

We present the detailed derivation for this random field
in the Appendix. Note that the partition function (global
normalization term) of this distribution is not explicitly
shown, so we use a proportional sign instead of an equal
sign. This hidden partition function increases the difficulty
of learning the model.
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By integrating out the hidden variables h in Eq. (6), we
obtain the marginal distribution over the observed keyword
and color features of a video shot:

2
p(X, Z) X exp ZO{[X,' + ZIBJ'ZJ - Z%
i j J
2

+ %Z D Waxi+ ) Ujz; )
Ko\ j

which also contains a hidden partition function in this
distribution.

The parameters of a DWH model, 6 = («, 8, W, U), is
learned by maximizing the likelihood of a set of video
shots, where the likelihood function is defined by Eq. (7).
Due to the presence of the global partition function, the
learning process requires approximate inference methods,
which will be discussed in Section 5. Note that in Eq. (3)
we define the variance of the latent variables given the
input variables to one in order to simplify the parameter
estimation. Introducing a covariance matrix X can offer
additional freedom for joint distribution p(x, z, h), but it
would not lead to more general representations in terms of
probability p(x, z) [10].

It is important to note that DWH is a model proposed
only for representing video data: given the text and color
features x and z of a video shot, one can infer the latent
semantic topics h of the video shot using a DWH model.
The model by itself cannot be used directly for classifi-
cation, because it contains no variables representing the
category labels of data. To do classification, one needs to
first represent video data by their latent semantic topics
(i.e. treating latent variables h as a feature vector), and
build classifiers using classification models such as Sup-
port Vector Machines (SVMs) based on such latent semantic
representation. The learning of the DWH model is ‘unsu-
pervised’ in the sense that it does not involve data labels. In
practice, we build only a single DWH model from all the
available video shots despite the number of categories they
belong to. Moreover, the DWH model does not have to be
updated or retrained when new categories (i.e. unseen in
the training data) arrive; one can simply build more classi-
fiers for these new categories on the representations derived
from the same DWH model.

4.3. Family-of-Harmonium (FoH)

The FoH model extends the DWH model in order inte-
grate classification and representation in the same model.
The FoH model uses the DWH model as its basic building
block. As illustrated in Fig. 4, a FoH model consists of a
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Fig. 4 Family-of-harmonium model.

set of T' category-specific harmoniums, where each harmo-
nium is a DWH that models video shots from a specific
category. The number of component harmoniums is equal
to the number of categories. On top of these component
harmoniums, a node Y € {1, ..., T} representing the cat-
egory label is introduced as a ‘switch variable’ to indicate
the specific harmonium used for modeling a given video
shot. The semantics of a FoH model is apparent from its
structure: given the category of a video shot, it uses the
harmonium corresponding to that category to model that
video shot.

All the component harmoniums in FoH share exactly
the same structure, because they are all DWH models
with the same number of input and latent nodes and same
forms of distributions, except that each harmonium owns a
unique set of parameters («”, 87, WY, U”) indexed by the
category label y. The label variable Y is only an indicator
of the specific harmonium used for modeling the video shot.
Therefore, in Fig. 4 Y is not actually linked to any nodes
in the component harmoniums, and it only appears as the
subscript of model parameters in the distribution function
to be presented below.

The distribution of a FoH model can be easily constructed
from the distribution of each component DWH. For each
DWH, the conditionals of variables of each type, namely
X, Z, and h follow the distribution defined in Eqs. (3), (4),
and (5), except that the parameters are indexed by the
category label y. Therefore, the likelihood function of a
component DWH given the category, p(x, z|y), would have
exactly the same form as the joint distribution of DWH
defined in Eq. (7). The category label Y, the only new
variable in FoH, follows a prior multinomial distribution as:

p(y) = Multi(my, . . ., 77), (8)

where ZIT:1 7; = 1. The marginal distribution (likelihood)
of a labeled video shot in a FoH model can be decomposed
into a category-specific marginal and a prior over the
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categories:

p(x,z,y) = p(x,z|ly)p(y)

2
y y i
oy xexp D alxi+ ) Bz _ZE
i j j
2

TS S DGR St ©)
k i j

Learning a FoH model is equivalent to learning 7 inde-
pendent DWH models, where each component DWH is
learned from video shots from the corresponding category
by maximizing the likelihood function defined in Eq. (9).
Therefore, the learning method used for DWH is readily
applicable to the learning of FoH, which will be discussed
in Section 5.

For classification, FoH behaves like a maximum likeli-
hood classifier. That is, it examines the probability function
p(x, z, y) of a video shot under each of the component
harmoniums, and assigns the shot to the category corre-
sponding to the harmonium with the highest probability.
This is because given Baye’s rule the posterior probability
of category label is proportional to the data likelihood as
p(y|x,z) x p(x,z|y)p(y). We can further simplify this by
assuming that the category prior is a uniform distribution,
e.g. p(y) =1/T. Thus, we can predict the category of a
shot by comparing its class conditional p(x, z|y) under each
harmonium y, which can be computed from Eq. (9). The
harmonium that ‘best fits’ the shot determines its category.

4.4. Hierarchical Harmonium (HH)

HH extends the basic DWH model in a different way
in order to make it directly applicable to classification
tasks. Instead of building a separate harmonium for each
category, it introduces category labels as another (the third)
layer of nodes into a single DWH, making it an undirected
model of three layers. In Fig. 5, the label variables Y =
{Y1,...,Yr}with ¥; € {0, 1} indicate a shot’s membership
with each category, and they form a bipartite subgraph with
the latent topic variables H on top of the bipartite subgraph
between H and the input X and Z. Unlike a FoH model, the
label variables Y in HH are linked to the other variables in
the model. In fact, there is a link between any Y; and H;
but not between two Y;, so the conditional independence
property of harmoniums is preserved. Another difference is
that a HH model contains only a single harmonium while a
FoH model contains a set of harmoniums for all categories.

In a HH model, the conditional distribution of x and
z stay the same as those in the DWH model, which
are defined by Egs. (3) and (4), respectively. Each label

Fig. 5 Hierarchical harmonium model.

variable Y; follows a Bernoulli distribution parameterized
by the latent variables h:

1
1+exp (=t — X Vikh)
P(Y;=0h)=1—- P(Y; =1]h)

P(Y, = 1|h) =

(10)

where V = [V}4] is a matrix of size T x K. Note that if we
treat h as input, Vj; and t as parameters, this distribution
has exactly the same form as the distribution of the class
label in logistic regression [7], i.e. P(Y = 1|x) =1/(1 +
exp(—pBo — B Tx)). This implies that the model is actually
performing logistic regression to compute each category

label Y; using the latent semantic topics h as input.

The distribution of each latent variable hj; needs to
be modified to incorporate the interactions between label
variables y and the topic variables h:

plhelx,z,y) = N(hu D Waxi+ Y Ujpzj+ Y Vay, 1) :
i j t

an

This shows that the distribution of the latent semantic
topics h are not only affected by data features x and z,
but also affected by their labels y. This is significantly
different from the DWH and FoH model, as well as directed
graphical models such as LDA [9], where the distribution
of latent variables only depend on the input features. In this
sense, the latent semantic topics derived from a HH model
are ‘supervised’ while those derived by other models are
‘unsupervised’.
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With the incorporation of label variables, the joint
distribution (i.e. random field) of a HH model becomes:

2
p(x,z,h,y) ocexp Zam + Zﬂﬂj _ Z%J

2
+ Zrtyt — Z% + Z Wikxih
7 X

ik

+ D Upzihi+ Y Vieyihi (12)
jk tk

After integrating out the hidden variable H, the marginal
distribution of a labeled video shot (x, z, y) is:

2
p(X,Z,y) X exp Za,-xi—l-Z,Bij —Z%—FZU%
i j k 4
2

+ % Z Z Wirxi + Z Ujizj + Zyl Vik
k i J !
(13)

The parameters of the HH model, 6 = («, 8, 7, W, U, V),
are estimated by maximizing the likelihood function defined
by Eq. (13). Despite the introduction of label variables Y,
the learning procedure for HH is in spirit similar to that for
DWH and FoH, and can be easily extended from the latter.

The classification is performed in a way different from
either in DWH or in FoH. Since data labels are represented
as model variables Y, we can predict the category of an
unlabeled video shot by inferring the label variables Y from
its text and image features. This is done by computing
the conditional probability p(Y; = 1|x,z) for each label
variable Y;. We can assign the shot to the category with
the highest probability, i.e. t* = argmax, p(Y; = 1|x, z). If
a video shot may belong to more than one category,
we can assign it to categories with probability above a
given threshold. There is, however, no analytical solution
to inferring p(Y; = 1|x, z). Various approximate inference
methods are available to solve this problem, as further
discussed in Section 5.

4.5. Discussion
There are several interesting differences and connections

between the three harmonium models we have proposed.

e First of all, DWH is a representation model while
FoH and HH are classification models. DWH has no
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variables representing category labels, can be trained
without data labels, and cannot be used directly for
classification. It only derives the latent semantic rep-
resentations of data, and one needs to build separate
classifiers to classify the data based on such represen-
tations. In comparison, FoH and HH incorporate label
variables and need to be trained using labeled data.
They not only derive the latent representation of the
data but also perform classification within the same
model. It is difficult to say theoretically which model
is better because they are for different purposes. But
if classification is the only purpose, FoH and HH do
provide a more integrated and efficient approach by

avoiding the need of training separate classifiers.
e Furthermore, the meanings of the derived latent top-

ics are different in these models. In DWH and HH,
the latent topics represent the ‘common topics’ of the
data, since all the data share the same set of latent top-
ics. The latent topics in HH are likely to be different
from those in DWH, because they are ‘supervised’
by the category labels and presumably contain more
discriminative information. The latent topics in HH
also help to reveal the connections between various
categories. In FoH, since each component harmo-
nium is built for a specific category, the latent topics
in each harmonium capture the internal structure of
that category, i.e. they represent the themes or sub-
categories in that particular category. There are no
correspondences between the latent topics across dif-
ferent harmoniums: the first topic in one harmonium

is unrelated to the first topic in another.
e The three models also differ in terms of efficiency

and flexibility. On a fixed collection, training a HH
model is less expensive than training a FoH model
as the latter involves training multiple harmoniums.
Training a DWH model is not expensive by itself, but
it can be costly to train separate classifiers on top of it
depending on the classification algorithm used. When
it comes to incorporating a new category, FoH can
accommodate the new category by adding another
harmonium trained from its data without changing
the harmoniums for existing categories, and DWH
does not even have to be updated except that a new
classifier needs to be built for the new category.
Introducing a new category is more expensive in a
HH model because that means adding another label
node into the model, which requires retraining of the
whole model as its structure has been changed.

To provide deeper insights of our models, we also com-
pare them to other topics models for text and multimedia
data, including PCA, pLSI [8], LDA [9] and its variants
GM-LDA and Corr-LDA [11], exponential-family harmo-
nium (EFH) [10, 15]. Our models are among the first few
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attempts to use undirected topic models, since most existing
topic models are directed. Although there is no conclusion
yet as to which one is better, our models offer appealing
properties such as easy inference due to the conditional
independence. Also note that the majority of topic models
are for single-modal data, usually text documents, while
our models join GM-LDA and Corr-LDA to be the few
topic models for bi-modal data such as video and cap-
tioned images. Finally, our FoH and HH model integrates
representation and classification in the same framework. In
contrast, most existing topic models are only intended for
data representation. The Bayesian hierarchical model for
scene classification proposed by Fei-Fei et al. [13], which is
extended from LDA, is a counterpart of FoH in the directed
models.

5. LEARNING AND INFERENCE

The parameters of the three harmonium models in
Section 4 are learned under the maximum likelihood prin-
ciple using gradient ascent and approximate inference tech-
niques. In this section, we use the learning of HH as an
example to describe the general procedure of learning a
harmonium model, because HH is structurally the most
complex model among the three. The learning algorithm
for DWH can be ‘reduced’ from the algorithm for HH, and
learning a FoH is equivalent to learning multiple DWH
models for different categories.

Given a labeled set of video shots y = {x,, z,, y,,}fq\’:l,
the parameters of a HH model 0 = («, 8, 7, W, U, V) is
estimated by maximizing the log-likelihood of the data
defined by Eq. (13). Owing to the complexity of the model,
there is no closed-form solution to the maximization prob-
lem and we have to resort to an iterative method like
gradient ascent. The learning rules (i.e. the gradients) can be
obtained by setting the derivatives of Eq. (13) with respect
to model parameters:

da; = (xi)p — (xi)p, OB = (z2j)5 — (2j)p,

3t = {y)p — Wdp

SWir = (xily) 5 — (xihy) ps

8Ujk = (zjhi)p — (zjhi)p,

8Vik = (yehi) 5 — (vehi) p (14)
where h;c = Zi Wirxi + Zj Uijj + Zt Viky:, and ()13
and (-), denotes expectation under empirical distribution
(i.e. data average) or model distribution of the harmonium,
respectively. Like other undirected graphical models, there

is a global normalizer (a.k.a partition function) in the likeli-
hood function of harmonium Eq. (13), which makes directly

computing (-), intractable. Instead, we need approximate
inference methods to estimate these model expectations
(-)p. We explored four approximate inference methods in
our work, which are briefly discussed below. Besides the
learning process, the inference of the conditional distribu-
tion of label variables p(Y; = 1|x,z) in a HH model is
also intractable and requires using approximate inference
methods.

5.1. Mean Field Approximation

Mean field (MF) is a variational method that approxi-
mates the model distribution p through a factorized form
as a product of marginals over clusters of variables [16].
We use the naive version of MF, where the joint proba-
bility p is approximated by a surrogate distribution g as a
product of singleton marginals over the variables:

q(x,z,y,h) = ]_[q(levi) ]_[q(zjluj, I)
i J
< [TaOrlxo [ Ta el (15)
t k

where the singleton marginals are defined as g¢(x;)
~ Bernoulli(v;), g (z;) ~ N(u;, I), g(yt) ~ Bernoulli (4;),
and q(hg) ~ N(y, 1), and {v;, uj, As, v} are variational
parameters. The variation parameters can be computed by
minimizing the KL-divergence between p and ¢, which
results in the following fixed-point updating equations:

v, =0 (a,- + Z Wikyk)
k

wj=Bj+ > Upvk
k

)\‘t =0 <T[ + Z V[ka)

k

vk =Y Wuvi+ Y Ujstj+ Y Vi
i J t

where o(x) = 1/(1 + exp(—x)) is the sigmoid function.
We iteratively update the variational parameters using the
above fixed-point equations until they converge, and then
the surrogate distribution ¢ is fully specified. We replace
the intractable model expectations (-) , with (-), in Eq. (14),
which are easy to compute from the fully factorized surro-
gate distribution ¢g. Then, we can update the model param-
eters using the learning rules defined in Eq. (14).

It is important to note that, when using gradient ascent
method with mean file, the learning procedure would con-
tain two nested loops: the outer loop iteratively updates the
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model parameters using the learning rules Eq. (14), while
the inner loop iteratively updates the variational parame-
ters in order to approximate the model expectations in the
learning rules. Whenever the model parameters are updated
(and so are the model distribution p), the whole inner loop
needs to be executed to recompute the surrogate distribution
q to approximate the updated model distribution p. Using
gradient ascent with other iterative approximate inference
methods such as Gibbs sampling would also result in a
learning procedure with nested loops.

5.2. Gibbs Sampling

Gibbs sampling, as a special form of the Markov chain
Monte Carlo (MCMC) method, has been used widely for
approximate inference in complex graphical models [17].
This method repeatedly samples variables in a particu-
lar order, with one variable at a time and conditioned
on the current values of the other variables. For example
in a HH model, we define the sampling order to be
Vis- - > Y7, h1,. .., hg, as the other variables are given
as input. This means we first sample each y, from the con-
ditional distribution defined in Eq. (10) using the current
values of /4 ;, and then sample each /; according to Eq. (11)
using the sampled values of y;, and repeat this process itera-
tively. After a large number of iterations (’burn-in’ period),
this procedure guarantees to reach an equilibrium distri-
bution that ,in theory, is equal to the model distribution p.
Therefore, we use the empirical expectation computed using
the samples collected affer the burn-in period to approxi-
mate the true expectation (-),. The number of ‘burn-in’
iterations and samples is at least thousands and typically
around tens of thousands. Therefore, although this method
guarantees accurate approximations, it is computationally
intensive.

5.3. Contrastive Divergence

An alternative to exact gradient ascent search on the
basis of the learning rules in Eq. (14) is the contrastive
divergence (CD) algorithm [18] proposed by Hinton and
Welling that approximates the gradient learning rules. In
each step of the gradient ascent, instead of computing
the model expectation (-),, CD starts from the empirical
values as the initial samples, runs the Gibbs sampling
for up to only a few iterations and uses these limited
samples to approximate the model expectation (-),. It has
been proved that the final values of the parameters by this
kind of updating will converge to the maximum likelihood
estimation [18]. In our implementation, we compute (-),
from a large number of samples obtained by running only
one step of Gibbs sampling with different initializations.
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Obviously, CD is substantially more efficient than the Gibbs
sampling method since the ‘burn-in’ process is skipped.

5.4. The Uncorrected Langevin Method

The uncorrected Langevin method [19] is originated from
the Langevin Monte Carlo method by accepting all the
proposal moves. It makes use of the gradient information
and resembles noisy steepest ascent to avoid local optimal.
Similar to the gradient ascent, the uncorrected Langevin
algorithm has the following update rule:

62

2 0k

MY = Aij + log p(X,2) +en;;  (16)

where n;; ~ N(0, 1) and € is the parameter to control the
step size. Like the contrastive divergence algorithm, we use
only a few iterations of Gibbs sampling to approximate the
model distribution p.

6. EXPERIMENTS

We evaluate the proposed models using video data from
the TRECVID 2003 development set [20]. On the basis
of the manual annotations on this set, we choose 2468
shots that belong to 15 semantic categories, which are
airplane, animal, baseball, basketball, beach, desert, fire,
football, hockey, mountain, office, road traffic, skating, stu-
dio, and weather news. Each shot belongs to only one
category. The size of a category varies from 46 to 373
shots. The keywords of each shot are extracted from
the video closed-captions associated with that shot. By
removing non-informative words such as stop words and
less frequent words, we reduce the total number of dis-
tinct keywords (vocabulary size) to 3000. Meanwhile, we
evenly divide the key-frame of each shot into a grid of
5 x 5 regions, and extract a 15-dimensional color his-
togram on HVC color space from each region. Therefore,
each video shot can be represented by a 3000-d key-
word feature and a 375-d color histogram feature. For
simplicity, the keyword features are made binary, mean-
ing that they only capture the presence/absence informa-
tion of each keyword, because it is rare to see a key-
word appearing multiple times in the short duration of
a shot.

The experiment results are presented in two parts. First,
we show some illustrative examples of the latent seman-
tic topics derived by the proposed models and discuss the
insights they provide about the structure and relationships of
video categories. In the second part, we evaluate the perfor-
mance of our models in video classification in comparison
with some of the existing approaches.
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6.1. Interpretation of Latent Semantic Topics

All the three proposed models provide intermediate rep-
resentation in the form of latent semantic topics automati-
cally derived from video data. Owing to the difference on
model structure, the latent topics derived from these mod-
els carry different interpretations of the same data. For both
DWH and HH, the latent topics are derived from all the
data despite their categories; therefore, they are supposed to
represent some ‘common topics’ in this data collection. In
Fig. 6, we show the video keyframes and keywords of the
video shots that most tightly associated with 5 latent topics
(i.e. having the highest conditional probability p(h|x, z))
derived by the DWH or HH model. We find that these top-
ics roughly correspond to some of the 15 manually defined
categories. For example, in Fig. 6(a), the topics are about
‘weather’, ‘basketball’, ‘airplane’, ‘anchor’, and in Fig. 6(a)
the topics are ‘studio’, ‘baseball or football’, ‘weather’, ‘air-
plane or skating’, ‘animal’. This shows that the derived
latent semantic topics are able to capture the semantics of
video data.

We should also note that, since these latent topics are
derived by jointly modeling the textual and imagery fea-
tures of video, they are more than simply clusters in color or
keyword feature space, but sort of ‘co-clusters’ in both fea-
ture spaces. For example, the shots of Topic 1 in Fig. 6(a)
are very similar to each other visually; the shots of Topic 3
are not so similar visually, but it is clear that they have very
close semantic meanings and share common keywords such
as ‘flying’ and ‘engine’. A close examination also shows
that the latent topics of HH have slightly better correspon-
dence with the categories, while the latent topics of DWH
seem to be clusters based on image and keyword features.
This echoes with the fact that the latent topics from HH are
‘supervised’ by the category information while those from
DWH are not.

Another advantage of HH, as we discussed in Section
4.5, is that it reveals the relationships between different
categories through the hidden topics. We can tell how
much a category ¢ is associated with a latent topic j
from the conditional probability p(y;|h;). Therefore, we
are able to compute the similarity between any two cat-
egories by examining the hidden topics they are asso-
ciated with. We show the pairwise similarity between
the 15 categories using the color-coded confusion matrix
in Fig. 7, where red(der) color denotes higher similarity
and blue(er) color denotes lower similarity. We can see
many meaningful pairs of related categories, e.g. ‘moun-
tain’ is strongly related to ‘animal’, ‘baseball’ is related
to ‘hockey’, while ‘studio’ is not related to any category.
These relationships are basically consistent with common
sense.

The latent topics in a FoH model have very different
interpretations. Since each component harmonium in FoH is

look. take, people, California. closer, right, say. back, know, way

ol
‘ﬁ,! . 1 e -

new, seven, Clinton. two, president. hundred, united. york. today

evening, white, news, only. world, world, today, sale

Fig. 6 An illustration of 5 latent topics derived by (a) the DWH
model and (b) the HH model from the data collection. Each topic
is shown by the top 10 keywords and top 5 key-frames extracted
from the most related video shots.

learned independently from the data of a specific category,
the latent topics of that harmonium capture the structure or
subcategories of that particular category. In Fig. 8, we show
the representative key-frames and keywords associated with
the 5 latent topics learned from the category ‘Fire’. We see
that these 5 topics roughly correspond to 5 subcategories
under the category ‘Fire’, which can be described as ‘for-
est fire in the night’, ‘explosion in outer space’, ‘launch
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1 fire

2 football
3.moutain
4.sludio
5.airplane
6.animal
7.baseball
3 basketball
9.beach
10.desert
11.hockey
12.skating
13.office
14 traffic

15.weather
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 7 The color-coded matrix showing the pairwise similarity
between categories revealed in the HH model. Best viewed with
color.

Topic 1

s i
life. call, way. fire, know, thousands, rain, farmers, control

R =

space. flight. thousands. fifteen. Florida. radar. track, amount

¢

asteroid. scientists, destroy. miss. destruction. actually. come. course

x;| ) I

rain. control, arca. forest. years, fires, large. burning, state, nature

panic, sized, type, headaches, freedom. love, turning, beautiful

Fig. 8 An illustration of 5 latent topics of the component harmo-
nium for ‘Fire’ category in the FoH model.

of missile or space shuttle’, ‘smoke of fire’, and ‘close-up
scene of fire’.

6.2. Performance on Video Classification

To evaluate the performance of DWH, FoH and HH
model in video classification, we evenly divide our data
set into a training set and a test set. The model parameters
are estimated from the training set. Specifically, we imple-
mented the learning methods based on the four inference
algorithms described in Section 5, in order to examine their
efficiency and accuracy. The FoH and HH model can be
directly used for classification, while for the DWH model
we train separate SVM classifiers based on the intermedi-
ate representation derived from DWH. We also explore the
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issue of model selection, namely the impact of the number
of latent semantic topics to the classification performance.

Several other methods have been implemented for com-
parison. We implemented a baseline method which builds a
SVM classifier based on the same keyword and color fea-
tures used as input of our models. This is essentially an
‘early fusion’ method since it concatenates both features
into a longer feature vector.

We also implemented several directed topic models,
which produce intermediate representation of some kind
for video data. These models include Gaussian multinomial
mixture model (GM-mixture), Gaussian multinomial latent
Dirichlet allocation (GM-LDA), and correspondence latent
Dirichlet allocation (Corr-LDA). The details of these mod-
els can be found in [11]. Note that all these directed models
are used only for data representation, and separate SVM
classifiers are trained for to perform classification based on
the intermediate representations derived from these mod-
els. To make these methods comparable, we guarantee that
the same kernel function and parameters are used in the
SVM classifiers trained on top of different models. We use
RBF kernel [6] and the best empirical parameters found by
cross validation. Also, to make the experiments tractable
on various models with different learning algorithms and
different numbers of latent topics, we restrict this part of
experiments to a subset of our collection with the 5 largest
categories containing totally 1078 shots as airplane, bas-
ketball, baseball, hockey, and weather.

Figure 9(a) shows the classification accuracies of all
the representation models, including the undirected DWH
model and the directed ones such as GM-mixture, GM-
LDA, and Corr-LDA. To be fair, all the models are imple-
mented using the MF variational method for learning and
inference, except GM-mixture which uses the expectation-
maximization (EM) method. All the models are evaluated
with the number of latent semantic topics set to 5, 10, 20,
30, and 50, in order to study the relationship between per-
formance and model complexity. Figure 9(b) compares the
classification performance of three of our models, among
which DWH is representation-only model while FoH and
HH are classification models.

Several interesting observations can be drawn from
Fig. 9. First, the three undirected models as FoH, HH, and
DWH achieve significantly higher performance than the
directed models as GM-mixture, GM-LDA, and Corr-LDA,
which indicates that the harmonium model is an effec-
tive tool for video representation and classification. Among
them, FoH is the best performer at 5 and 10 latent seman-
tic nodes, while DWH is the best performer at 20 and 50
latent nodes with HH as the close runner-up. Second, we
find that the performance of FoH and HH is overall compa-
rable with DWH. Given that DWH uses a SVM classifier,
this result is encouraging as it shows that our approach is
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Fig. 9 Comparison of classification performance (a) between
various representation models (directed and undirected), and
(b) between the three proposed harmonium models.

comparable to the performance of a state-of-the-art discrim-
inative classifier. On the other hand, our approach enjoys
many advantages that SVM does not have. For example,
FoH can be easily extended to accommodate a new cate-
gory without retraining the whole model. Third, the perfor-
mance of DWH and HH improves as the number of latent
topics increases, which agrees with our intuition because
using more latent topics leads to better representation of the
data. However, this trend is reversed in the case of FoH,
which performs much better when using smaller number
of latent topics. While a theoretical explanation of this is
still unclear, in practice it is a good property of FoH to
achieve high performance with simpler models. Fourth, 20
seems to be a reasonable number of latent semantic top-
ics for this data set, since further increasing the number of
topics does not result in a considerable improvement of the
performance.

Figure 10 shows the classification accuracies of HH
model implemented using different approximate inference
methods. From the graph, we can see that the Langevin
and contrastive divergence (CD) methods perform simi-
larly, but are slightly better than mean-filed (MF) and Gibbs
sampling. We also study the efficiency of these inference
methods by examining the time they need to reach con-
vergence during training. The results show that mean field
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5 10 15 20 25 30 35 40 45 50
# of hidden topic nodes

Fig. 10 Classification performance of different approximate infer-
ence methods in HH.

is the most efficient (approx. 2 min), followed by CD and
Langevin (approx. 9 min), and the slowest one is Gibbs
sampling (approx. 49 min). Therefore, Langevin and CD are
good choices for the learning and inference of our models
in terms of both efficiency and classification performance.

7. CONCLUSION

We have described three undirected graphical models
for semantic representation and classification of video data.
The proposed models derive latent semantic representation
of video data by jointly modeling the textual and image
features of the data, and perform classification based on
such latent representations. Experiments on TRECVID data
have demonstrated that our models achieve satisfactory
performance on video classification and provide insights
to the internal structure and relationships of video cate-
gories. Several approximate inference algorithms have been
examined in terms of efficiency and classification perfor-
mance.

Our HH model by nature does not restrict the number
of categories an instance (shot) belongs to, since P(Y, =
1]x, z) can be high for multiple Y;. Therefore, an interest-
ing future work is to evaluate the model with a multilabel
data set, where each instance can belong to any number
of categories. In this case, our method is actually a multi-
task learning (MTL) method, and should be compared with
other MTL approaches. Our models can also be improved
using better low-level features as input. The region-based
color histogram features are quite sensitive to scale and
illumination variations. Features such as local keypoint fea-
tures are more robust and can be easily integrated into
our models. It is interesting to compare the latent semantic
interpretations and classification performance using differ-
ent features.
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APPENDIX

This is to show the derivation of the harmonium random fields (joint
distribution) in the dual-wing-harmonium model. We start by introducing
the general form of exponential-family harmonium [10] that has H as the
latent topic variables and X and Z as two types of observed data variables.
This harmonium random field has the exponential form as:

p(x,z,h) oc exp Zeiafia(xi) + Z’Ijbgjb(zj)

ia jb

- Z hacere(hi) + ) WE frax)ere ()

ikac

+ D USsgin(zerc(hi)
Jjkbe

where {fi.(-)}, {gj»(-)}, and {er.(-)} denote the sufficient statistics (fea-
tures) of variables x;, z;, and hy, respectively.

The marginal distributions, say, p(X, z), is then obtained by integrating
out variables h:

p(x, z)=/p(x, z, h)dh
h

X exp Zemfm(xz) +Zn/bg/b(2/)

ia

Xl_[/ CXP[Z()%LJFZ fta(xt
k hy -

+ D USsgin(z)) | exelhi) | dig
jb

=exp i D Oiafia (i) + Z ningin(z)) + Z Ce(fiseh)

ia

and similarly we can derive:

PO, h) ocexp 3 Y b fia (i) + Z Mk ke (i) + Z B;({in})

ia

P(Z h) & exp Z r]jhgjb(zj) + Z)\'kLekL(hk) + ZA (

jb
where the shifted parameters Oias 7, and ke are defined as:

Oia = Oia+ ) Wi ewe(h), i = njp + Y Uhgere(hi)

ke
Xkc:)hkv‘i“z fta(xt)+ZU gjb(zj)
The functions A;(-), B;(-), and Ci(-) are defined as:
Ai({0ia) = / exp {Zé,-afm(xi)} dx;
i a
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Bj({ﬁjh})=/ exp
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b

Further integrating out variables from these distribution give the
marginal distribution of x, z, and h.

P(X) ocexp 3 D" Oia fia(xi) + Z B;({i;n}) + ch(ml

ia

p(@) ocexp 4 D ningin(z) + ) Aifia) + Y Crlfhie)
Jjb i k
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ke i

> B (i)
J

All the above marginal distributions, we are ready to derive the
conditional distributions as:

pxin) =~ (h) aﬂexpizemﬁa(m—fu{em}
,h
p(z/h) = p;z(m) ocl_[exp {Zﬁjhgjb(zj) = B;({7;s})
J b

p(x,z,h)

phix,z) = p(’x”z ) o<1:[exp{Zikfemm)—ck({ika})

The specific conditional distribution of X, z, and h defined in Egs. (3),
(4), and (5) are all exponential distributions. They can be mapped to the
general forms above if we make the following definitions:

Jin(xi) = x;

O =i Oy =i + Y Wil
k

gj1(zj) = zj, 8j2(zj) = z?

nj1=Bj,njp=—1/2,7j1 = B; +ZUjkhk
&

ex1 = hy, ey = 2
M =0, 0 = —1/2, hpy = Z Wirhi + ZUjkhk
i J

Therefore, by plugging these definitions into general form of harmonium
random field at the beginning of this appendix, we have the specific
random field as:

2
Zl

p(x, 2z, h) oc exp Z%‘xi +Z/3j2j —Z E
i J

J
]’l2
-y 7k + 3 Waxihi + > Uiz
k ik Jk

which is exactly the same as Eq. (6) except the latter one is defined for a
specific category.
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