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Abstract. Genetic instability represents an important type of biological
markers for cancer and many other diseases. Array Comparative Genome
Hybridization (aCGH) is a high-throughput cytogenetic technique that
can efficiently detect genome-wide genetic instability events such as chro-
mosomal gain, loss, and more complex aneuploidity, collectively known as
genome imbalance (GIM). We propose a new statistical method, Genome
Imbalance Scanner (GIMscan), for automatically decoding the underly-
ing DNA dosage states from aCGH data.GIMscan captures both the in-
trinsic (nonrandom) spatial change of genome hybridization intensities,
and the prevalent (random) measurement noise during data acquisition;
and it simultaneously segments the chromosome and assigns different
states to the segmented DNA. We tested the proposed method on both
simulated data and real data measured from a colorectal cancer popula-
tion, and we report competitive or superior performance of GIMscan in
comparison with popular extant methods.

1 Introduction

A hallmark of the defective cells in precancerous lesions, transformed tumors,
and metastatic tissues, is the abnormality of gene dosage caused by regional
or whole chromosomal amplification and deletion in these cells [1]. Cytogenetic
and molecular analysis of a wide range of cancers have suggested that amplifica-
tions of proto-oncogenes and deletions or loss of heterozygosity (LOH) of tumor
suppressor genes can seriously compromise key grow-limiting functions (e.g.,
cell-cycle checkpoints), cell-death programs (e.g., apoptotic pathways), and self-
repair abilities (e.g., DNA repair systems) of injured or transformed cells that
are potentially tumorigenetic [2]. Thus DNA copy number aberrations are cru-
cial biological markers for cancer and possibly other diseases. The development
of fast and reliable technology for detecting (the presence of) and pinpointing
(the location of) such aberrations has become an important subject in biomedi-
cal research, with important applications to cancer diagnosis, drug development
and molecular therapy.

Array comparative genomic hybridization (array CGH, or, aCGH) assay of-
fers a high-throughput approach to measure the DNA copy numbers across the
? Correspondence should be addressed to epxing@cs.cmu.edu.
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whole genome [3]. The outcome of an array CGH assay is a collection of log-
ratio (LR) values reflecting the relative DNA copy number of test (e.g., tumor
cells) versus control (e.g., normal cells) samples at all examined locations in the
genome. Ideally, for diploid cells, assuming no copy-number aberration in the
control and perfect measurement in the assay, the LRs of clones with k copies in
the test sample can be exactly computed. It is noteworthy that among all possi-
ble magnitudes of k, usually only a few need to be distinguished, such as 0, 1, 2,
3, and collectively all integers that are greater (often significantly greater) than
3. These are typical copy numbers that reflect distinct cytogenetic mechanisms
of chromosome alteration and rearrangements, and hence they are commonly
referred to as gene dosage states: deletion, loss, normal, gain, and amplification.

Manual annotation of gene dosage tedious and inaccurate due to various
reasons, such as impurity of the test sample (e.g., normal cell contaminations),
intrinsic inhomogeneity of copy numbers among defective cells, variations of hy-
bridization efficiency, and measurement noises arising from the high-throughput
method [4]. Numerous computational methods have been developed for efficient
and automated interpretation of array CGH data. Earlier methods used value-
windows defined by hard thresholds to determine gene dosage state for each
clone based on noisy LR measurement (e.g. [5]). However, these methods suffer
from high false positive rate and low coverage (see Sec. 3.1). Recent develop-
ments resort to more sophisticated statistical modeling and inference techniques
to interpret aCGH data. Based on the underlying statistical assumptions on sig-
nal distribution adopted by these methods, they largely fall into four categories:
mixture models, regression models, segmentation models and spatial dynamic
models. Mixture models [6] assume that the LR measurements of all the clones
in an aCGH assay are independent samples from an underlying distribution con-
sisting of multiple components, each corresponding to a specific gene dosage
state. Regression models [7, 8] try to fit the noisy LRs with a smooth intensity
curve over the chromosome to facilitate detection of gene dosage change via
visual inspection which are only suitable for data denoising and visualization,
rather than explicitly predicting the discrete dosage state underlying the LR sig-
nals. Segmentation models [9–15] directly search for breakpoints in sequentially
ordered LR signals so that the resulting LR segments have the minimum within-
segment signal variations. However, this segmented clone sequences suffer from
state “over-representation”, in which numerous spurious states without appar-
ent biological meanings are uncovered for the segments. Spatial dynamic models
solve the problems of dosage-state annotation and clone-sequence segmentation
under a unified model for array CGH data. Fridlyand et al. [4] proposed a spa-
tial dynamic framework that models the LR sequence as the output of a hidden
Markov model (HMM) that governs the distribution of the dosage-states along
the chromosome. Marioni et al. [16] extended this model by considering the dis-
tances between adjacent clones when modeling the transition matrix in HMM.
Broet and Richardson [17] developed a Bayesian HMM by allowing the mixture
weights to be correlated for neighboring genomic sequences on a chromosome.
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Fig. 1. The LR values (blue dots) of genome X77 from Nakao et al. [5]. The solid
vertical lines delineate the boundaries between chromosomes; and the dashed vertical
lines indicate the position of the centromere of each chromosome. The red horizontal
lines indicate the thresholds used by Nakao et al. [5] to decide clones dosage states.
Clones within these two lines are predicted to be normal state.

More recently, Shah et al. [18] proposed a new Bayesian HMM model that inte-
grates prior knowledge of DNA copy number polymorphisms (CNPs).

This progress notwithstanding, the computational methods for aCGH anal-
ysis developed so far are still limited in their accuracy, robustness and flexibility
for handling complex aCGH data, and are inadequate for addressing some of the
deep biological and experimental issues underlying aCGH assay. Take the whole-
genome aCGH data displayed in Fig. 1 as an example. Overall, the LR signals are
highly fluctuating, but exhibit visible spatial auto-correlation patterns within the
chromosomes. A caveat of the mixture-model-based or threshold-based methods
is that they are very sensitive to such random fluctuations of the LR signals
because they treat each measurement as an independent sample and ignore spa-
tial relationships among clones. This could lead to highly frequent dosage-state
switching (e.g., alternating back and forth between gain and loss, as we will show
in our results) within short genetic distances, which is biologically implausible.
A number of recent methods, particularly the spatial dynamic models based on
HMM, have offered various ways to address this issue, which have significantly
improved the performance of computational array CGH analysis.

Nevertheless, a key limitation of the HMM-based methods is that they all
assume invariance of the true hybridization signal intensity alone chromosome
for each dosage state, which is not always satisfied in real data. As shown in
Fig. 1, an outstanding feature of the spatial pattern of the LR signals is that,
within each chromosome, there exists both segmental patterns that are likely due
to change of the copy number of the corresponding region, and spatial drift of
the overall trend of the LR intensities along the chromosome. For example, in
chromosome 4, the LR signals along the sequence of clones are not fluctuating
around a baseline (presumably corresponding to a certain dosage state) that is
invariant along the chromosome; instead, it is apparent that the baseline itself
first has an increasing trend from left to right on 4p and into 4q, and then
turns to a decreasing trend along the rest of 4q. Visually, there is not many
abrupt breakage points that would signal a dosage-state alteration alone this
continuously evolving sequence of LRs. But an HMM approach, which models
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spatially-dependent choices among different copy-number state, each associated
with an invariant distribution of LR values, can fail to capture the spatial drift
of LRs over chromosome region with the same copy number as shown in Sec. 3.

Rather than reflecting the discrete change of copy numbers of the clones, the
non-random spatial trend of LR signals possibly reflects a continuous change
of the biophysical properties and hybridization quality along the chromosome.
As discussed in [2], the intensity of the hybridization signal of each clone is
affected by a number of factors such as base compositions of different probes, the
proportion of repetitive content in sequence, the saturation of array, divergent
sequence lengths of the clones, reassociation of double-stranded nucleic acids
during hybridization, and the amount of DNA in the array element available
for hybridization. These factors may further contribute random or correlated
stochasticity of the LR values on top of the content-derived spatial drift. Pinkel
and Albertson [2] reported that signal intensity may vary by a factor of 30 or
more among array elements even if there are no copy-number changes. These
complexities present in real aCGH data render extant models based on fixed
state-specific LR distributions, such as an HMM, incapable of making accurate
or robust state prediction.

Another problem that affects all the approaches discussed above lies in the
calibration of signals across chromosomes and across individuals. As observed
from Fig. 1, the mean and the variance of the LRs, and their spatial trends
vary significantly from chromosome to chromosome, and more so from individ-
ual to individual (not displayed in the Figure), due to reasons possibly beyond
copy number differences. This makes measurements from different individuals
and/or for different chromosomes difficult to compare. Engler et al. [19] recently
proposed a parameter sharing scheme for a Gaussian mixture model for ge-
netic variability between and within chromosomes. In the new statistical model
for aCGH data presented below, we introduce more careful treatments, which
employ different parameter sharing scheme for effects shared among different
chromosomes in the same individual (e.g., state baselines) and effects common
to the same chromosomes in different individuals (e.g., signal dynamics).

In this paper, we introduce a new method Genome Imbalance scanner (GIM-
scan) for computational analysis of aCGH data. GIMscan employs a more pow-
erful spatial dynamic model, known as switching Kalman filters (SKFs) [20],
to jointly capture the spatial-trends of evolving LR signals along chromosomes,
and spatially dependent configuration of gene dosage states along chromosomes.
Unlike an HMM, which captures all the stochasticities in LRs with invariant
dosage-specific distributions, an SKF breaks the accumulation of the stochastic-
ities into two stages: 1) the hybridization stage, which involves physical sensory
of clone-copies from the digested chromosomes, during which the spatial trend
of DNA content and its biophysical properties, saturation effects, etc., can cause
stochastic spatial drift of the mass of the hybridized material; 2) the measurement
stage, which involves acquisition of the readings of fluorescence intensity of each
clone, during which errors from reagents, instruments, environment, personal
effects, etc., can cause another layer of random noises on top of the hybridiza-
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tion signal. Under the SKF, we model the variations in the hybridization stage
using dosage-state-specific continuous dynamic processes, akin to the regression
approach discussed above. These hybridization intensities can be understood as
the “true”sensory signals in an aCGH assay, which are unobservable to the ex-
aminer. We refer the sequence of hybridization intensities following such a linear
dynamic model as a hybridization trajectory. Given the hybridization trajectory,
we model the random noise from the measurement stage by a conditional Gaus-
sian distribution whose mean is set by the sensory signal which evolves over
each clone according to the trajectory. Overall, for each dosage state, we have
a unique linear dynamic model for the sensory signals and a Gaussian emission
model for their corresponding noising measurements. This model is known as
a Kalman filter. To model changes of dosage-state along the chromosome, we
follow the HMM idea to set up a hidden Markov state-transition process, but in
our case not over state-specific distributions of LRs with fixed means, but over
state-specific Kalman filters over both the observed LR measurements and the
unobserved sensory signals for each clone.

On both simulated and experimental aCGH data, GIMscan has shown supe-
rior performance over other approaches such as HMM or mixture-model based
threshold methods, being able to handle a number of complex LR patterns be-
yond the recognition power of reference models. We applied our methods to a
whole-genome aCGH assay of 125 primary colorectal tumors [5], and constructed
a high-quality genome-level gene dosage alteration map for colon cancer.

2 SKF Model and Adaptation to aCGH Analysis

For each specific gene dosage state, we model the spatial drift of its hybridiza-
tion signal intensities using a hidden trajectory and model the uncertainty in LR
measurements using a zero-mean Gaussian noise. This corresponds to a standard
dynamic model named Kalman filter (KF). Observed LR values arise as a mix-
ture of the outputs of state-specific Kalman filters. The mixing proportion, mod-
eled as latent variables indicating gene dosage states, is also spatially dependent
as captured by a Markov state-transition process (or switching process). Now we
have multiple Kalman filters controlled by a dynamic switching process, which
can be formulated as a factored switching Kalman filters (SKF). Our proposed
method, GIMscan (Genome IMbalance SCANner), adopts the SKF model to
whole-genome analysis of aCGH data by allowing a parameter sharing scheme
among multiple chromosomes and multiple individuals which makes best use of
data. In this section, we first introduce the SKF model and its parameters, then
discuss the approximate inference algorithm for joint dosage-state annotation
and clone-sequence segmentation. Model selection and further extension of the
model are covered briefly at the end of this section.

Figure 2(a) illustrates the Kalman filter for a specific dosage state m, which
is a linear chain graphical model with a backbone of hidden real-valued vari-
ables (denoted by X

(m)
1:T ) emitting a series of real-valued observation (denoted

by Y
(m)
1:T ). The trajectory of hidden variables is linear and subject to Gaussian
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Fig. 2. (a) Graphical structure of dosage-state-specific Kalman filter for dosage state

m. X
(m)
t is the hidden variable at clone t on the trajectory, and Y

(m)
t representing

the corresponding observed variable of the Kalman filter. (b) Graphical structure of
the switching Kalman filter (SKF) model. The model consists of M linear chains from

Kalman filters (X
(1:M)
1:T ), a Markov chain of switching processes (S1:T ) and a series

of observed variables (Y1:T ). (c) Graphical structure of the uncoupled model which
represents the tractable subfamily of distributions to approximate the true posterior
of the SKF model.

noise which reflects the evolving hybridization signal intensities. The emission
model imposes a Gaussian noise arising in the measurement stage on each hidden
variable to generate the LR ratio at each position (clone). This model for a spe-
cific dosage state m can be formulated as P (X(m)

t |X(m)
t−1 ) ∼ N (a(m)X

(m)
t−1 , b(m)),

P (Y (m)
t |X(m)

t ) ∼ N (X(m)
t , r).

The parameters a(m), b(m), r are all position-invariant; r determines the de-
gree of uncertainty in observation measurements. We also assume the initial value
of the hidden trajectory, X(m)

1 , is distributed normally: P (X(m)
1 ) ∼ N (µ(m), σ(m)).

All the variables and parameters are univariate. The computation of posterior
distributions of the hidden variables given the observation is tractable because
of the conjugacy of the normal distribution to itself. This computation will be
part of the inference procedure discussed later in which we decouple the SKF
model to a number of tractable linear chains.

Given the dosage-state-specific Kalman filter for M dosage states, a switch-
ing Kalman filters generates the LR value at each position from one of the
outputs: Yt =

∑M
m=1 Y

(m)
t S

(m)
t , where St is the M -dimensional multinomial

switching variables for clone t following 1 × M binary coding scheme. The
discrete switching process S1:T evolves according to Markov dynamics, with
initial state distribution parameterized by π and state transition matrix Φ:
S1 ∼ Multinomial(1, π), P (S(m)

t = 1|S(n)
t−1 = 1) = φmn. We could save the

variables Y
(1:M)
t and generate the observation directly from the M hidden lin-



GIMscan: Analyzing Whole-Genome Array CGH Data 7

ear Gaussian trajectories as P (Yt|X(1:M)
t , St) ∼ N

(∑M
m=1 X

(m)
t S

(m)
t , r

)
. The

graphical structure of the SKF model is shown in Fig. 2(b).
To facilitate dosage state annotation and clone-sequence segmentation, the

posterior distribution P (St|Y1:T ) need to be computed for t = 1, . . . , T . How-
ever, exact computation of this posterior probability is intractable. We employed
an algorithm [21] which approximates the posterior distribution P with a pa-
rameterized distribution Q(v) from some tractable subfamily of distributions. It
iteratively updates the values of variational parameters v to minimize the KL
divergence between the approximate posterior distribution and the true poste-
rior distribution. The choice of the tractable subfamily for the SKF model is
a discrete Markov chain and M uncoupled KFs (Fig. 2(c)). Two sets of vari-
ational parameters are introduced for the Markov chain and KFs respectively.
Their updates can be carried out using fix-point equations [21], which maintain
or increase a lower bound of log likelihood of the model and usually converge in
a few iterations. Fast rate of convergence is mainly due to low data dimension.

Parameter estimation is performed under the EM framework. The E step
employs the variational inference algorithm to find the best approximate poste-
rior via iterative updates of the variational parameters. The M step reestimates
the model parameters Θ to maximize the same lower bound of log-likelihood
in variational inference. This reestimation can be performed exactly by zeroing
the derivatives with respect to the model parameters. Parameter estimation is
implemented by a coordinate ascent procedure.

Now we have introduced the SKF model and its parameters µ(m), σ(m), a(m),
b(m), r, π and φ, each of which delineates one property behind the aCGH data.
µ(m) and σ(m) are the mean and variance of Gaussian distribution of the starting
clone on hidden trajectory for dosage state m. a(m) and b(m) determine the
transition model of that trajectory which dictate the spatial drift of the signal
intensities. r is the variance of the Gaussian accounting for the noise introduced
in the experiment stage, and is independent of the hidden dosage-state. Lastly, π
and Φ are initial state parameters and transition matrix for the discrete switching
process between different dosage states.

In the settings for a whole-genome analysis, the aCGH dataset are collected
from experimental data of J individuals, the genome of which consists of K
chromosomes, and chromosome k contains Tk clones. The LR values Y1:T,j,k

on individual j, chromosome k are generated by an SKF model with hidden
trajectory X1:T,j,k and switching states S1:T,j,k.

We are now ready to describe the parameter sharing scheme in GIMscan for
the analysis of whole genome aCGH data. We consider two groups of parameters.
Firstly, we let µ(m), σ(m), r, π and Φ be shared across all chromosomes of one
particular individuals. Mainly due to the normal cell contamination, the mag-
nitude of starting value for the trajectory of one particular state varies across
different individuals. Different µ(m) and σ(m) for different individuals can ac-
count for this “un-normalized” starting value of the trajectory of one state. r
is also shared by chromosomes from one individual because one individual cor-
responds to one experiment, and different experiments may have different noise
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levels. π and Φ are shared by one individual because the number of dosage
states are individual-specific: different individuals may have different number of
dosage states. The second group of parameters, a(1:M) and b(1:M), is assumed to
be shared by one particular chromosome of all individuals, because the physical-
chemical properties (e.g. the base composition) of one particular chromosome of
different individuals (the same tumor cell line of same species) are very similar.
This similarity leads to similar hybridization signal intensity over a chromosome.

The maximum number of dosage states M one individual can have remains
to be determined. we employ Gaussian mixture model using penalized likelihood
criteria such as AIC to select the number of states for each individual.

3 Experiments and Results

We tested the performance of GIMscan on simulated aCGH data and real data
with complex aCGH patterns to demonstrate the working principle and general
trends of our method in gene dosage prediction, and to evaluate our prediction
quality under nontrivial genome imbalance and hybridization scenarios. The ben-
efit of applying a sophisticated hybrid stochastic model to capture both discrete
(e.g., changing DNA copy number) and continuous (e.g., varying hybridization
efficiency) latent spatial trajectory underlying noisy aCGH measurements is ev-
idenced in each level of genetic scales we have analyzed.

3.1 Simulated aCGH Data

We first validate GIMscan on simulated aCGH datasets, which mimic typical
spatial patterns of LR sequences in real aCGH assays, and allow a quantitative
assessment of model performance based on known underlying gene dosage states
in the simulation.

In our simulation experiments, three methods—threshold, HMM as in [4],
and GIMscan—were tested on 12 datasets simulated with different settings of
two parameters, the Gaussian emission variance r and the KF transitional vari-
ance b (see Section 2). These two parameters represent the two sources of the
overall noise in the data: r reflects the quality the LR measurements in an aCGH
experiment, whereas b reflects the variability of the hybridization signal inten-
sity along the chromosome. Our datasets correspond to three different values
of r, ranging from low, to medium, high; and four values of b also spanning a
significant range (see Fig. 3). For each combination of r and b, a total of 100
LR sequences each containing 100 clones were generated. For each sequence,
we simulated a random 5× 5 stochastic matrix, T , for modeling transitions be-
tween gene dosage states, and T was set to allow both short and long stretch
of gene dosage alterations, but not high-frequency oscillations between different
states. All three methods were applied to each dataset to infer the gene dosage
states underlying the simulated LRs, and the experiments were repeated 100
times. Fig. 3 summarizes the medians, quantiles and ranges of the prediction
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Fig. 3. Performance of gene dosage state prediction on simulated aCGH datasets. Each
row corresponds to an emission noise, and each column corresponds to a Kalman filter
transitional variance. In each case, we plot the results of threshold method (Thres.),
HMM and GIMscan (GIM). The red line represents the median, and the blue box
indicates upper and lower quantiles. The black bars are the range of the error rate.
Outliers are plotted by “+”.

error rates by different methods under various parameter settings. Consistently,
GIMscan outperformed the other two methods by a significant margin.

As an illustration of the advantage offered by the SKF model adopted by
GIMscan, and the effectiveness of our inference algorithm, Fig. 4 and Fig. 5
show two examples of GIMscan’s performance in the simulated datasets. The
first example concerns “high-quality” aCGH records simulated with low mea-
surement noise (r = 0.001) over 100 clones switching between two gene dosage
states both with low spatial drift in their corresponding true hybridization inten-
sities (b = 0.001) (Fig. 4(a)). Figure 4(b) presents the inferred gene dosage state
and the inferred dosage-state-specific “trajectories” (i.e., the latent dynamical
trend captured by each KF) of the latent true hybridization intensities underly-
ing the observed LR sequence shown in Fig. 4(a). As shown in this illustration,
each inferred latent trajectory indeed represents a smoothed and spatially chang-
ing baseline of the LR signals corresponding to a particular dosage state; and
all inferred trajectories agree well with the true trajectories of hybridization in-
tensities used for simulating the observed LR signals. As a result, the inferred
switching process over these trajectories gives a highly accurate prediction of
the gene dosage states underlying the LR sequence. GIMscan can also estimate
the confidence intervals (i.e., standard deviation) of the inferred hybridization
trajectories, as shown in Fig. 4(c).
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Fig. 4. (a) Simulated data (blue dots), two latent trajectory (green and pink), and
switching process (red). The length of the simulated data is 100 clones. (b) Simulated
data (blue dots), inferred trajectory (green and pink) and inferred switching process
(red). (c) The confidence intervals of the inferred trajectories.
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Fig. 5. (a) Simulated data (blue dots), two latent trajectories (green and pink), and
switching process (red). The length of the simulated data is 100 clones. (b) Given the
observed data in (a), the red line is the state predicted by HMM. (c) Given the observed
data in (a), the green and pink curves are trajectories inferred by SKF, and the red
line is the switching process inferred by SKF.

Another example shown in Fig. 5 concerns low-quality, arguably more realis-
tic aCGH records simulated with high measurement noise (r = 0.01) and severer
spatial change (b = 0.01) in the true hybridization trajectories. The combined
effects of high measurement noise and high spatial variance of the hybridization
trajectories are excepted to lead to misassignment of gene dosage state due to
inaccurate estimation of the dosage-state-specific hybridization intensities when
spatial trajectory of the hybridization intensities is ignored. Note that the trajec-
tories in Fig. 5(a) of both dosage states are not flat, which reflect severe spatial
drift of hybridization signal intensity within each state. When assuming spatial
invariance of dosage-state-specific signal distribution, the unflatness of both tra-
jectories can cause the estimated mean of LR signals to be highly biased (e.g.,
higher for state 1, and lower for state 2), and their variances to be significantly
greater than the actual fluctuation. Consequently, the estimated dosage-specific
signal distributions can be seriously overlapping, causing the LR signals from
two states hard to distinguish. Fig. 5(b) shows exactly this effect, on the qual-
ity of state estimation by an HMM model. Whereas the SKF model underlying
GIMscan readily mitigates this effect, and produces the correct estimation.
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3.2 Real aCGH Data with Diverse Spatial Patterns

Now we present case studies of selected real aCGH data with a diverse spectrum
of spatial patterns. Our dataset was obtained from an online repository of whole-
genome aCGH profiles of 125 colorectal tumors originally studied in [5]. This
dataset was found to contain highly stochastic LR measurements with severe
spatial variance and drifts along the chromosomes, and bear rich cohorts of
genome imbalance patterns. Such complications present a great challenge to
naive algorithms for gene dosage inference, and are thus particularly suitable for
evaluating our proposed method.

Given an aCGH profile, GIMscan first employs a k-nearest neighbor regres-
sion procedure (e.g., k = 3) to impute the missing values in the LR records.
Then it fits the processed data with a Gaussian mixture based on maximum
likelihood estimation, and performs model selection based on AIC to determine
the total number of gene dosage states, M (which is constrained between 1 to
5), for each individual. Afterwards, the number of component KFs (i.e., dosage-
state-specific hybridization trajectories) in GIMscan is set to be M , and the
mean of the starting clone of each KF takes on the mean of a component in the
estimated Gaussian mixture as initial value. Note that with this setup, we still
need to establish the exact mapping between the KFs inferred by GIMscan and
the possible gene dosage states, namely deletion, loss, normal, gain, and ampli-
fication. Since GIMscan provides estimations of the hybridization trajectories of
each KF, we follow a straightforward statistical and biological argument and de-
termine the corresponding dosage-state of each trajectory based on the relative
mean-values of the estimated true hybridization intensities of all clones.

For comparison, we re-implemented the HMM methods according to Fridlyand
et al. [4], with modest extension (i.e., parameter sharing) so that it can be ap-
plied to whole genome CGH profiles covering multiple chromosomes. Following
[4] AIC is also used for model selection for the HMM.

The dataset we studied contains a total of ∼ 2.75 × 105 LR measurements
from 23 × 125 chromosomes (i.e., 125 human genomes). Here we first present
a small-scale case study of three representative chromosomes, each containing
a typical spatial pattern for the LR sequence that was found to be difficult to
analyze by conventional methods. For convenience, we refer to these patterns
as, flat-arch, step, and spike, respectively, according to their shapes in the LR
intensity plots (Fig. 6).

Pattern I: Flat-Arch Figure 6(a)(b) displays the LR measurements from chro-
mosome 4 of individual X77, this pattern is marked by lower magnitudes of LRs
at the two telomere regions of the chromosome and elevated magnitudes in the
central region. Locally (i.e., along the plotted chromosomal region), there is a
continuous trend of spatially evolving hybridization intensity along the chromo-
some, and there are few abrupt breakage points that would signal a dosage-state
alteration. But due to the high dispersion of LR values as a result of such a
spatial drift, methods based on invariant state-specific hybridization intensity,
such as the HMM, would either fit the observed LR values with one biased and
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Fig. 6. Three typical spatial patterns for the LR sequence which were found to be diffi-
cult to analyze by convenctional methods: (a)(b)Flat-Arch pattern; (c)(d)Step pattern;
(e)(f) Spikes pattern. (a)(c)(e) shows states predicted by HMM (red). In (b)(d)(f) the
pink, green and yellow curves are inferred trajectories for loss, normal and gain, re-
spectively. Red solid line indicates states predicted by GIMscan. Centromere position
is indicated by dashed vertical line in these two plots.

high-variance Gaussian distribution, or split the LRs with two highly overlapping
Gaussians. These caveats could seriously compromise the quality of gene dosage
state estimation. Figure 6(a) shows the dosage estimation by an HMM fitted on
this chromosome. The outcome suggests heavy oscillations between two dosage
states throughout the chromosome, which is biologically implausible. Figure 6(b)
shows the dosage state sequence and dosage-state-specific trajectories underlying
chromosome 4 of individual X77 inferred by GIMscan. A whole-genome fitting
resulted in three estimated dosage-states. On this particular chromosome, the
trajectories of the loss and gain states (the pink and yellow curves, respectively)
were not matched to any observations, and the entire region is determined to
be corresponding to a normal state whose hybridization intensity varies along
the chromosome (the green curve). Indeed, a more global visual inspection of
these Flat-Arch patterns in the context of whole aCGH profile often reveals that
the flat-arch shape in the LR-plots often merely reflects modest (but spatially
correlated) change of the LR magnitude most likely within a single dosage state.

Pattern II: Step This pattern is typical when there appears to be a quantum
change of LR magnitudes from one to the other end of the chromosome, but the
boundary of the change is not sharp and the overall sequence is moderately noisy,
such as shown in Fig. 6(c)(d) which is taken from chromosome 8 from individual
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X265. In addition to the step, this sample also harbors a number of local spikes
and short regions potentially implying dosage-state alterations. Via AIC model-
selection, the HMM adopted four dosage state when processing this data. The
states predicted by HMM are shown in Fig. 6(c). As can be seen, the results are
reasonable, except that several positions near clone 100 contains highly frequent
switching between states. The dosage state sequence and dosage-state-specific
trajectories inferred by GIMscan are shown in Fig. 6(d). Note that there is a
slightly decreasing trend in the trajectory corresponding to the amplification
state. While the gain and normal trajectories correspond to only a few clones on
this chromosome, a genome-level parameter sharing scheme adopted by GIMscan
enables them to be reliably estimated, and thereby leads to plausible prediction
of point changes on isolated clones (e.g., clone 97 and 152).

Pattern III: Spikes Spikes are a typical pattern often accompany other patterns,
such as steps. It is marked by short sequences, sometimes singletons, of elevated
or attenuated LR measurements along the chromosomes. Figure 6(e)(f) shows
such an example from chromosome 8 of individual X318. In this chromosome,
the copy-number loss was apparent on 8p arm, while three spikes (around clone
75, 110 and 140) were visible on 8q arm. These spikes correspond to the gain
state with a large measurement variance. Figure 6(e) shows the states predicted
by HMM. Although HMM correctly predicted the states on 8p, it predicted more
clones on 8q to be gain state. However, by our visual check, some clones (e.g.
around clone 79, 96) should have been classified to be normal state. The possibly
faulty predictions of gain states resulted from the large variance of the spikes
estimated by the HMM. GIMscan correctly detected and annotated the spikes,
as well as giving convincing predictions on other clones (Fig. 6(f)). Compared
to the case for the same chromosome (i.e., no. 8) from individual X265 shown in
Fig. 6(c)(d), where four dosage-state-specific trajectories were determined, here
we uncovered only three states for chromosome 8. This is because model selec-
tion for SKF in this individual based on the whole-genome aCGH only identifies
three states—normal, loss and gain. Parameter-sharing was adopted by GIMscan
for all chromosomes in this individual, and leads to three common trajectories.
Comparing Fig. 6(d) with Fig. 6(f), one can notice that the elevates of the tra-
jectories corresponding to the same dosage state (e.g., normal) can be quite
different across individual, which is likely due to some unidentified systematic
error or hybridization-efficiency difference across individuals. The parameter-
sharing scheme adopted by GIMscan (i.e., sharing dosage-state-specific trajec-
tories across chromosomes within individual, but not across individual) provides
a reasonable strategy to tackle such variations.

We finally used GIMscan for populational analysis of Nakao et al.’s [5] dataset.
Overall, over the 125 genomes each examined at ∼2200 clones uniformly dis-
tributed in the genome, on average each genome have 19.18% (or 407) of the
clones suffered either gain or loss (9.25% and 9.94%, respectively), and another
1.33% of the clones were hit by amplification or deletion (0.93% and 0.4%, re-
spectively). The whole-genome spatial spectrum of GIM rates over the entire
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Fig. 7. Overall frequency of DNA dosage state alteration over entire genomes of 125 in-
dividuals. Blue bars represent clones with DNA copy number loss or deletion, whereas
red bars for DNA copy number gain or amplification. Solid vertical lines show bound-
aries between chromosomes; dashed vertical lines show centromeres of chromosomes.

study population is displayed in Fig. 7. As can be seen, the population rates
of gain and amplification of clones in chromosome 7, 8q, 13q, 20q and 23 were
significantly higher than those of the other regions, suggesting possible presence
of proto-oncogenes in these regions. Likewise, the population rates of loss and
deletion in chromosome 1p, the distal-end of 4q, 5q, 8p, 14, 15, 17p, 18, and
21, were significantly higher than those of the other regions, suggesting possible
presence of tumor suppressor genes in these regions.

4 Discussion

An important issue for the success of GIMscan is the parameters initialization.
Our experience with GIMscan shows that the initial values for π and φ may be
fairly arbitrary, while the initial values for µ and r are more essential. We can
employ the Gaussian mixture to cluster the data points into M clusters. The
mean LR value of one cluster is used as the initial value for the starting mean of
the corresponding trajectory. The initial value of r can be determined similarly.
We initialized a and b with some constants: a was fixed to 1 and b was fixed to
10−2. σ was given the same initial value as r.
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