
Sparse Additive Generative Models of Text

Jacob Eisenstein jacobeis@cs.cmu.edu
Amr Ahmed amahmed@cs.cmu.edu
Eric P. Xing epxing@cs.cmu.edu

School of Computer Science, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15203 USA

Abstract

Generative models of text typically associate
a multinomial with every class label or topic.
Even in simple models this requires the esti-
mation of thousands of parameters; in multi-
faceted latent variable models, standard ap-
proaches require additional latent “switch-
ing” variables for every token, complicating
inference. In this paper, we propose an alter-
native generative model for text. The cen-
tral idea is that each class label or latent
topic is endowed with a model of the devi-
ation in log-frequency from a constant back-
ground distribution. This approach has two
key advantages: we can enforce sparsity to
prevent overfitting, and we can combine gen-
erative facets through simple addition in log
space, avoiding the need for latent switching
variables. We demonstrate the applicability
of this idea to a range of scenarios: classi-
fication, topic modeling, and more complex
multifaceted generative models.

1. Introduction

Generative models of text overwhelmingly rely on the
Dirichlet-multinomial conjugate pair. The primary ad-
vantage is that estimation is straightforward and ef-
ficient, with the Dirichlet prior contributing pseudo-
counts to the observed counts generated by the multi-
nomial. However, the ease of parameter estimation
comes at a cost: unnecessarily complicated latent vari-
able structures and lack of robustness to limited train-
ing data. More concretely, we see three main problems
with Dirichlet-multinomial generative models:
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• Inference cost There is increasing interest in
modeling text with multiple generative facets,
such as syntax (Griffiths et al., 2005), senti-
ment (Mei et al., 2007), and ideological and cul-
tural perspective (Ahmed & Xing, 2010; Paul &
Girju, 2010). In most cases, the incorporation of
multiple facets requires an additional latent vari-
able per token, to act as a “switch” controlling
which facet is currently active. This huge num-
ber of additional latent variables makes inference
more expensive.

• Overparametrization Standard Dirichlet-
multinomial generative models learn a unique
probability distribution over the entire vocabu-
lary. General lexical patterns — for example, the
high frequency of function words “the” and “of”
— must be re-learned for every topic, wasting
training data. In practice function words are
typically removed using heuristics, or must be
handled explicitly through additional latent
variables (Chemudugunta et al., 2006).

• Lack of sparsity The Dirichlet-multinomial is
incapable of using sparsity to limit model com-
plexity. While the Dirichlet prior can induce zeros
in the multinomials it generates, such sparsity is
counterproductive to robustness: for example, su-
pervised models that assign zero generative like-
lihood for some terms will be extremely brittle,
because the label assignment of an entire docu-
ment can be vetoed by a single word.

This paper proposes an alternative to the Dirichlet-
multinomial for generative models of text: the Sparse
Additive Generative model (SAGE). The problems
with the Dirichlet-multinomial stem from a root cause:
directly modeling the lexical probabilities associated
with each document class or latent factor. In con-
trast, SAGE models the difference in log-frequencies
from a background lexical distribution (see Figure 1).
This has two key advantages: first, we can apply a
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Figure 1. A schematic comparison between a standard multinomial switching model (left) and SAGE (right). Rather than
choosing among probability distributions for each facet, SAGE additively combines sparse zero-mean variations.

sparsity-inducing prior to limit the number of terms
whose probability diverges from the background lexi-
cal frequencies. This increases predictive accuracy and
robustness to limited training data. Second, we can
construct multi-faceted latent variable models by sim-
ply adding together SAGE component vectors. For
example, if a blog post on the topic of climate change
is written from a right-wing perspective, we can model
the text by summing the SAGE components associated
with the topic, perspective, and topic-perspective in-
teraction. No latent “switching” variables are required
to decide which of these components is active for a
given token.

SAGE is intended as a drop-in replacement for the
Dirichlet-multinomial, and can be applied in a broad
range of generative models. We demonstrate SAGE’s
advantages in a number of different settings. First,
we substitute SAGE for the Dirichlet-multinomial in a
näıve Bayes text classifier, obtaining higher overall ac-
curacy, especially in the face of limited training data.
Second, we use SAGE in a topic model, obtaining bet-
ter predictive likelihood on held-out text by learning
simpler topics with less variation on rare words. Third,
we apply SAGE in generative models which combine
topics with additional facets: ideology and geographi-
cal variation.

2. Additive generative models of text

The core idea of our generative model is that of a
background lexical distribution, which is modified by
adding additional vectors in log-space. In the simplest
case, we have a background distribution m ∈ RV , and
a set of components {ηk ∈ RV }, where V is the size
of the vocabulary. Each component ηk corresponds to
a document label y ∈ 1 . . . Ymax. Then the generative

distribution for each word in a document d is,

P (w|yd,m,η) =
exp

(
m+ ηyd

)∑
i exp (mi + ηyd,i)

(1)

In this formulation each document has a single compo-
nent index yd. If this index is observed then this model
corresponds to a näıve Bayes model of text, where we
have substituted the vector of log frequency deviations
η for the standard multinomial; if yd is not observed
then the model is a mixture of unigrams. We will ex-
tend this framework to include per-word latent indices,
drawn from a document-specific topic distribution —
this corresponds to a variant of latent Dirichlet allo-
cation (Blei et al., 2003), in which each topic is repre-
sented by log frequency deviations η rather than word
probabilities β. Thus, we can replicate the most com-
mon existing generative models of text using SAGE,
taking advantage of sparsity-inducing priors on η to
obtain additional robustness.

However, SAGE has another advantage: by modeling
log term frequencies rather than raw probabilities, it
is easy to combine multiple facets simply by adding
them. We can replicate existing models by adding
a sparse deviation vector η to the background log-
frequencies m; by adding additional facets, we obtain
richer and more complex models. For example, in a
topic-perspective model, we associate a single perspec-
tive yd with the entire document; for each token wn we
have a unique topic zn. Using Dirichlet-multinomials
would require an additional switching variable to de-
termine whether the token wn is drawn from the topic
β(t)
zn or the perspective β(p)

yd
(Ahmed & Xing, 2010).

But with SAGE, we draw the token wn from a distri-

bution proportional to exp
(
m+ η

(p)
yd + η

(t)
zn

)
, without

need for latent switching variables.

We ignore covariance between terms and treat each
element ηki independently, where k indexes the com-
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ponent vector ηk and i indexes into the vocabu-
lary. A zero-mean Laplace prior has the same ef-
fect as placing an L1 regularizer on ηki, inducing
sparsity while at the same time permitting more ex-
treme deviations from the mean. The Laplace distri-
bution L(η;m,σ) is equivalent to a compound model,∫
N (η;m, τ)E(τ ;σ)dτ , where E(τ ;σ) indicates the Ex-

ponential distribution (Lange & Sinsheimer, 1993;
Figueiredo, 2003). This identity is the cornerstone of
our inference, which treats the variance τ as a latent
variable. We now present a generative story for the
incorporation of SAGE in a näıve Bayes classifier:

• Draw the background m from an uninformative prior
• For each class k

– For each term i

∗ Draw τk,i ∼ E(γ)
∗ Draw ηk,i ∼ N (0, τk,i)

– Set βk ∝ exp (ηk +m)

• For each document d

– Draw a class yd from a uniform distribution

– For each word n, draw w
(d)
n ∼ βyd

In general we work in a Bayesian setting, but for the
components η we take maximum a posteriori point
estimates. Bayesian uncertainty is problematic due
to the logistic transformation: even if the expectation
〈ηki〉 = 0, any posterior variance over ηki would make
〈exp(ηki +mi)〉 > 〈expmi〉. We resort to a combi-
nation of MAP estimation over η and Bayesian infer-
ence over all other latent variables — this is similar
to the treatment of the topics β in the original formu-
lation of latent Dirichlet allocation (Blei et al., 2003).
The background word distribution m is assumed to
be fixed, and we fit a variational distribution over the
remaining latent variables, optimizing the bound,

` =
∑
d

Nd∑
n

logP (w(d)
n |m,ηyd) +

∑
k

〈logP (ηk|0, τ k)〉

+
∑
k

〈logP (τ k|γ)〉 −
∑
k

〈logQ(τ k)〉 , (2)

where Nd is the number of tokens in document d.

3. Estimation

We now describe how SAGE components can be effi-
ciently estimated using a Newton optimization.

3.1. Component means

First we address learning the component vectors η.
Letting cd represent the vector of term counts for doc-
ument d, and Cd =

∑
i cdi, we compute the relevant

parts of the bound,

`(ηk) =
∑
d:cd=k

cTdηk − Cd log
∑
i

exp (ηki +mi)

− ηT
kdiag

(〈
τ−1
k

〉)
ηk/2 (3)

∂`

∂ηk
=ck − Ck

exp (ηk +m)∑
i exp (ηki +mi)

− diag
(〈
τ−1
k

〉)
ηk

=ck − Ckβk − diag
(〈
τ−1
k

〉)
ηk, (4)

abusing notation so that ck =
∑
d:cd=k

cd and Ck =∑
i cki. Note that the fraction exp(ηk+m)∑

i exp(ηki+mi)
is equal

to the term frequency vector βk. The gradient has
an intuitive interpretation as the difference of the true
counts ck from their expectation Ckβk, minus the di-
vergence of η from its prior mean 0, scaled by the ex-
pected inverse-variance. We will use Newton’s method
to optimize η, so we first derive the Hessian,

d2`

dη2ki
=Ckβki(βki − 1)−

〈
τ−1
ki

〉
,

d2`

dηkidηki′
= Ckβkiβki′

H(ηk) =Ckβkβ
T
k − diag

(
Ckβk +

〈
τ−1
k

〉)
. (5)

The Hessian matrix H is rank-one plus diagonal,
so it can be efficiently inverted using the Sherman-
Morrison formula. For notational simplicity, we elide
the class index k, and define the convenience variable
A = diag

(
−(Cβ +

〈
τ−1

〉
)−1
)
. We can now derive

a Newton optimization step for η, using the gradient
g(η) = ∂`

∂η from Equation 4:

H−1(η) =A− ACββTA

1 + CβTAβ

−∆η =H−1(η)g(η)

=Ag(η)− CAβ

1 + CβTAβ

[
βT (Ag(η))

]
, (6)

where the parenthesization defines an order of opera-
tions that avoids forming any non-diagonal matrices.
Thus, the complexity of each Newton step is linear in
the size of the vocabulary.

3.2. Variances

Next we consider the variance; recall that we have
a random vector τ k for every component k. Unlike
the components η, we are Bayesian with respect to τ ,
and construct a fully-factored variational distribution
Qτk

(τ k) =
∏
iQτki

(τki). We set the form Qτki
to be

a Gamma distribution with parameters 〈a, b〉:

Q(τ) = G(τ ; a, b) = τa−1 exp (−τ/b)
Γ(a)ba

,

so that 〈τ〉 = ab,
〈
τ−1

〉
= ((a − 1)b)−1, and 〈log τ〉 =

ψ(a) + log(b). The prior on τ is an Exponential
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distribution with parameter γ, so that P (τ |γ) =
γ exp(−γτ). We can now define the contribution to
the variational bound from Q(τ),

`(τ) = 〈logP (η|τ)〉+ 〈logP (τ |γ)〉 − 〈logQ(τ)〉

∝ − 1

2
〈log τ〉 − 1

2
η2
〈
τ−1〉− γ 〈τ〉

− (a− 1) 〈log τ〉+ 〈τ〉 /b+ log Γ(a) + a log b (7)

−∆a =
(1/2− a)ψ1(a) + 1

2
η2b−1(a− 1)−2 − γb+ 1

(1/2− a)ψ2(a)− ψ1(a)− η2b−1(a− 1)−3

b =
1 +

√
1 + 8γη2 a

a−1

4γa
,

obtaining a Newton optimization for a and a closed-
form update for b. We use ψ1(a) and ψ2(a) indicate
the trigamma and quad-gamma functions respectively.

For a parameter-free model, we can replace the Ex-
ponential prior on τ with an improper Jeffrey’s prior,
P (τ) ∝ 1/τ . The combination of the Jeffrey’s prior
P (τ) with the Gaussian P (η|0, τ) no longer yields a
Laplace distribution. However, the Normal-Jeffrey’s
compound distribution also induces sparsity, and re-
lieves us from having to choose a value for γ; moreover,
Guan & Dy (2009) find that it yields better results for
sparse probabilistic PCA than the Laplace distribu-
tion. To derive the variational parameters of Q(τ), we
need only replace the term −γ 〈τ〉 in Equation 7 with
−〈log τ〉. The resulting updates are,

−∆a =
(1/2 + a)ψ1(a)− 1

2η
2b−1(a− 1)−2 − 1

(1/2 + a)ψ2(a) + η2b−1(a− 1)−3

b =
η2

a− 1
.

These variational parameters are necessary only to
compute the bound; we can directly compute the ex-
pectation

〈
τ−1
ki

〉
= η2ki.

Application 1: Document classification

Our first evaluation is on document classification:
we test SAGE as a drop-in replacement for the
multinomial-Dirichlet that is traditionally used in
näıve Bayes text classifiers. Both generative mod-
els are parameter-free: for SAGE, we use the non-
parametric Jeffrey’s prior on the variance τ ; for the
multinomial-Dirichlet, we perform a coordinate ascent
in which a Newton optimization (Minka, 2003) is used
to update the precision of the Dirichlet prior.1 Dis-
criminative methods may yield better performance on
the document classification task, but our goal here is

1Wallach et al (2009a) find that asymmetric Dirichlet
priors for term distributions provide no advantage over
symmetric priors.
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Figure 2. Accuracy on 20 Newsgroup text classification, as
the amount of training data is varied

to compare generative models which are amenable to
incorporation in the more complex latent variable set-
tings described in the remainder of the paper.

We evaluate on the classic benchmark “Twenty
Newsgroups” data, in which the task is to clas-
sify unlabeled newsgroup postings into twenty dif-
ferent newsgroups. Using the training/test split
from the website http://people.csail.mit.edu/

jrennie/20Newsgroups/, there are 11,269 training
documents; we randomly subsampled a range of train-
ing sets including as few as 5% of the original doc-
uments. We did not perform stopword filtering, and
used a vocabulary of 50,000 terms. Results are shown
in Figure 2: the amount of training data varied on
the x-axis; each point corresponds to a different ran-
dom subsample. SAGE substantially outperforms the
Dirichlet-multinomial in every experiment. Its advan-
tage is particularly robust in the limited-data settings,
where the raw improvement in accuracy is more than
10%. The Jeffrey’s prior on τ adaptively controls the
sparsity, which increases monotonically from 90% in
the full-data setting to more than 98% in the mini-
mal data setting. Performance gains were smaller in a
pilot experiment with a vocabulary of 10,000, suggest-
ing that SAGE’s strength is its ability to exploit rare
words without overfitting.

4. Latent variable models

Next, we consider how to incorporate SAGE in a la-
tent variable model of text. We focus on topic models,
which contain one latent discrete variable per token,
and a latent vector of topic proportions per document.
The generative story is similar to the document classi-
fication model the previous section, with the following
additions: each document is endowed with a vector of
topic proportions θd ∼ Dirichlet(α); each token has an

associated latent topic z
(d)
n ; and the probability distri-

http://people.csail.mit.edu/jrennie/20Newsgroups/
http://people.csail.mit.edu/jrennie/20Newsgroups/
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bution for a given token is

P (w(d)
n |z(d)n ,η,m) ∝ exp

(
η
z
(d)
n

+m
)
.

We can combine the mean field variational inference
for latent Dirichlet allocation (LDA) with the varia-
tional treatment of τ , optimizing the bound,

` =
∑
d

〈logP (θd|α)〉+

Nd∑
n

〈
logP (w(d)

n |m,η
z
(d)
n

)
〉

+
〈

logP (z(d)n |θd)
〉

+
∑
k

〈logP (ηk|0, τ k)〉

+
∑
k

〈logP (τ k|γ)〉 − 〈logQ(τ ,z,θ)〉 . (8)

The updates for Q(z) and Q(θ) are identical to stan-
dard LDA; the updates for Q(τ) remain as Sec-
tion 3.2. However, the presence of latent variables
slightly changes the MAP estimation for η:

`(ηk) =
∑
d

Nd∑
n

Q
z
(d)
n

(k)

(
ηk − log

∑
i

exp (ηki +mi)

)
− ηT

kdiag
(〈
τ−1

k

〉)
ηk/2

∂`

∂ηk

= 〈ck〉 − 〈Ck〉
exp (ηk +m)∑
i exp (ηki +mi)

− diag
(〈
τ−1

k

〉)
ηk,

where 〈cki〉 =
∑
d

∑
nQz(d)n

(k)δ(w
(d)
n = i), and 〈Ck〉 =∑

i 〈cki〉 . Thus, the exact counts ck are replaced with
their expectations under Q(z).

We define an EM procedure in which the M-step con-
sists in iteratively fitting the parameters η and Q(τ ).
It is tempting to perform a “warm start” by intializing
with the values from a previous iteration of the outer
EM loop. However, these parameters are tightly cou-
pled: as the component mean ηki goes to zero, the
expected variance 〈τki〉 is also driven to zero; once
〈τki〉 is very small, ηki cannot move away from zero
regardless of the expected counts ck. This means that
a warm start risks locking in a sparsity pattern dur-
ing the early stages of EM which may be far from the
global optimum. There are two solutions: either we
abandon the warm start (thus expending more compu-
tation), or we do not iterate to convergence in each M-
step (thus obtaining noisier and less sparse solutions,
initially). Fortunately, pilot experiments showed that
good results can be obtained by performing just one
iteration in each M-step, while using the warm start
technique.

Application 2: Sparse topic models

Our second evaluation applies the SAGE Topic Model
to the benchmark NIPS dataset.2 Following the eval-
uation of Wang and Blei (2009), we subsample to 10%

2http://www.cs.nyu.edu/∼roweis/data.html
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Figure 4. Proportion of total variation committed to words
at each frequency decile. Dirichlet-multinomial LDA
makes large distinctions in the topic-term frequencies of
very rare words, while SAGE only distinguishes the topic-
term frequencies of words with robust counts.

of the tokens in each document, and hold out 20%
of the documents as a “test set” on which to evalu-
ate predictive likelihood. We limit the vocabulary to
the 10,000 terms that appear in the greatest number
of documents; no stopword pruning is applied. Over-
all this leaves 1986 training documents with 237,691
tokens, and a test set of 497 documents and 57,427
tokens. We evaluate perplexity using the Chib-style
estimation procedure of Wallach et al. (2009b). For
comparison, we implement variational latent Dirichlet
allocation, making maximum-likelihood updates to a
symmetric Dirichlet prior on the topic-term distribu-
tions.

Results are shown in Figure 3, using box plots over
five paired random initializations for each method.
SAGE outperforms standard latent Dirichlet alloca-
tion as the number of topics increases; with both 25
and 50 topics, every SAGE run outperformed its coun-
terpart Dirichlet-multinomial. As in the classification
task, SAGE controls sparsity adaptively: as the num-
ber of topics increases from 10 to 50, the proportion of
non-zero weights decreased five-fold (from 5% to 1%),
holding the total model complexity constant.
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Figure 4 compares the overall term frequency (mea-
sured in deciles and shown on the x-axis) with the
amount of topic-term variation that each model ac-
cords, for a single run with 50 topics. In SAGE, the to-
tal variation for a term i is

∑
k |ηki|, while in Dirichlet-

multinomial LDA, we measure the total variation from
the mean log frequency,

∑
k |βki − βi|. The figure

shows that SAGE admits very little topical variation
for low frequency words. In contrast, the Dirichlet-
multinomial displays little sensitivity to the overall
term frequency, and actually assigns more topical vari-
ation to the lowest frequency terms. Note that our im-
plementation of Dirichlet-multinomial LDA incorpo-
rates a symmetric Dirichlet prior which acts to smooth
the topic-term frequencies of rare words — even so, it
overfits the training data and learns widely divergent
probabilities for these words. We believe that this phe-
nomenon explains the better predictive performance
obtained by the SAGE topic model — by focusing on
high-frequency terms with accurate counts, it learns
more robust topics. A related point is that the topics
induced by standard LDA may be more difficult to in-
terpret, because the rare words may cause documents
to be assigned to topics in a way that is not predictable
from simply examining the most salient terms in each
topic.

5. Multifaceted generative models

Finally, we consider how SAGE can be used to combine
multiple generative facets. We focus on models that
combine per-word latent topics and document labels,
thus offering a structured view of labels and topics —
for example, revealing the words and documents that
reflect a left-wing perspective on education policy. Ex-
isting multifaceted generative models (Mei et al., 2007;
Paul & Girju, 2010; Ahmed & Xing, 2010) incorporate
latent “switch” variables that determine whether each
word token is generated from a topic or from a distri-
bution associated with the document label (as in the
left panel of Figure 1). If the token is to be drawn from
a topic, then an additional latent variable determines
which topic will be active. Topic-label interactions can
also be included, capturing the distributions of words
at the intersection of, say, topic and ideology. The
number of parameters thus becomes very large, grow-
ing to the product of the vocabulary size, the number
of topics, and the number of labels — plus the addi-
tional switching variable per token. Collapsed Gibbs
sampling can analytically marginalize the topic and
label word distributions, but it still may suffer from
high variance if the number of parameters is too large
compared to the training data.

θ α

z η
(T )
ki τ

(T )
ki

w η
(I)
jki τ

(I)
jki

y η
(A)
ji τ

(A)
ji

mi

i ∈ {1, . . . ,W}

Figure 1: A plate diagram for the SAGE topic-aspect model.

1

Figure 5. Plate diagram for a multifaceted topic model us-
ing SAGE.

SAGE enables multifaceted topic models that encour-
age sparse variation from the background term distri-
bution, while eliminating the need for switching vari-
ables.3 A plate diagram is shown in Figure 5. On the
left, we have the standard document plate from latent
Dirichlet allocation, augmented with the observed la-
bel y. On the right, we have an outer plate that makes
explicit the repetition across all W words in the vocab-
ulary. Within this plate, we have the observed back-
ground term frequency mi, as well as sparse deviations

for: each topic η
(T )
ki , k < K; each label distribution

η
(A)
ji , j < A; and each topic-label interaction, η

(I)
jki.

The variance parameters from the compound Normal-

Jeffrey’s distribution are shown as τ
(T )
ki , etc. The gen-

erative probability for a single token is obtained by
adding the SAGE components to the prior term fre-
quencies:

P (w(d)
n |z(d)n ,η,m, yd) ∝ exp

(
η
(T )

z
(d)
n

+ η(A)
yd

+ η
(I)

yd,z
(d)
n

+m

)
.

Estimation is very similar to the models encountered
earlier in the paper. For the topic components η(T ),
we obtain the gradient,

∂`

∂η
(T )
k

=
〈
c
(T )
k

〉
−
∑
j

〈Cjk〉βjk − diag(〈(τ (T )
k )−1〉)η(T )

k ,

where βjk ∝ exp
(
η
(T )
k + η

(A)
j + η

(I)
jk +m

)
and 〈Cjk〉

gives the expected counts for each topic-label combi-
nation. Using this gradient, we can apply the Newton
optimization as before, substituting

∑
j Cjkβjk into

the Hessian in place of Ckβk (see Equations 5 and 6).

The updates for η(A) are almost identical, but we have

exact counts C
(A)
j , as the labels are observed. The in-

3Zhu et al. (2006) also augment LDA topics using addi-
tion of log term frequencies (for per-token labels), but they
did not employ sparsity.
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Figure 6. SAGE’s accuracy on the ideological perspective
task; the state-of-the-art is 69.1% (Ahmed & Xing, 2010).

teraction components η
(I)
jk depend on exactly one la-

bel distribution η
(A)
j and one topic η

(T )
k , so we can use

Cjkβjk directly without computing any sums.

Application 3: Topic and ideology

We first evaluate on a publicly-available dataset of po-
litical blogs describing the 2008 U.S. presidential elec-
tion (Eisenstein & Xing, 2010). There are a total of
six blogs — three from the right and three from left —
comprising 20,827 documents, 5.1 million word tokens,
and a vocabulary of 8284 items. The task is to predict
the ideological perspective of two unlabeled blogs, us-
ing the remaining four as a training set. We strictly
follow the experimental procedure of Ahmed & Xing
(2010), allowing us to compare with their reported re-
sults directly.4

Ahmed and Xing considered three ideology-prediction
tasks, and found that the six-blog task was the most
difficult: their Multiview LDA model achieves accu-
racy between 65% and 69.1% depending on the num-
ber of topics. They find a comparable result of 69%
using support vector machines; alternative latent vari-
able models Discriminative LDA (Lacoste-Julien et al.,
2008) and Supervised LDA (Blei & McAuliffe, 2007) do
worse. Our results are shown in Figure 6, reporting the
median across five random initialization at each setting
for K. Our best median result is 69.6%, at K = 30,
equalling the state-of-the-art; our best individual run
achieves 71.9%. Our model obtains sparsity of 93%
for topics, 82% for labels, and 99.3% for topic-label
interactions; nonetheless, pilot experiments show that
the absence of topic-label interactions reduces perfor-
mance substantially.

Application 4: Geolocation from text

We now consider the setting in which the label is it-
self a latent variable, generating both the text (as de-
scribed above) and some additional metadata. This is
the setting for the Geographical Topic Model, in which
a latent “region” helps to select the distributions that

4The sole exception is that we learn the prior α from
data, while Ahmed & Xing set it manually.

Table 1. Prediction error for Twitter geolocation.
error in kilometers: median mean
(Eisenstein et al., 2010) 494 900
(Wing & Baldridge, 2011) 479 967
SAGE 501 845

generate both text and observed GPS locations (Eisen-
stein et al., 2010). By training on labeled examples
in which both text and geolocation are observed, the
model is able to make predictions about the GPS lo-
cation of unlabeled authors.

The Geographic Topic Model induces region-specific
versions of each topic by chaining together log-Normal
distributions. This is equivalent to an additive model
in which both the topic and the topic-region inter-
action exert a zero-mean Gaussian deviation from a
background language model. SAGE differs by allow-
ing effects that are region-specific but topic-neutral,
and by inducing sparsity. We follow the tuning proce-
dures from Eisenstein et al. (2010) exactly: the number
of latent regions is determined by running a Dirichlet
process mixture model on the location data alone, and
the number of topics is tuned against a development
set. We also present more recent results from Wing &
Baldridge (2011), who use a nearly identical dataset,
but include a larger vocabulary. As shown in Table 1,
SAGE achieves the best mean error of any system on
this task, though Wing & Baldridge (2011) have the
best median error.

6. Related work

Sparse learning (Tibshirani, 1996; Tipping, 2001) typ-
ically focuses on supervised settings, learning a sparse
set of weights that minimize a loss on the training la-
bels. Two recent papers apply sparsity to topic mod-
els. Williamson et al. (2010) induce sparsity in the
topic proportions by using the Indian Buffet Process to
represent the presence or absence of topics in a docu-
ment. More closely related is the SparseTM of Wang &
Blei (2009), which induces sparsity in the topics them-
selves using a spike-and-slab distribution. However,
the notion of sparsity is different: in the SparseTM,
the topic-term probability distributions can contain
zeros, while in SAGE, each topic is a set of sparse
deviations from a background distribution. Inference
in the SparseTM requires computing a combinatorial
sum over all sparsity patterns, while in our case a rel-
atively simple coordinate ascent is possible.

Sparse dictionary learning provides an alternative ap-
proach to modeling document content with sparse
bases (Jenatton et al., 2010). In general, such ap-
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proaches emphasize sparsity in the number of dictio-
nary components that are active for a given docu-
ment. However, the application of a sparsity-inducing
prior to the dictionary components would be similar
to SAGE. The fundamental difference is that SAGE is
a generative model that defines the probability of each
token; as such, it can easily be embedded in larger
latent variable structures.

7. Conclusion

We have presented SAGE, a new generative model for
discrete data. Each token is generated by adding back-
ground log-probabilities to a set of sparse variation
vectors associated with each generative factor. Ap-
plying SAGE to näıve Bayes classification and topic
modeling, we find that it learns simpler models with
better predictive performance. We feel that the most
promising feature of SAGE is its facilitation of the con-
struction of multifaceted generative models. We plan
to explore the application of SAGE to even richer mul-
tifaceted generative models, such as hierarchical topic-
aspect models and mixed-effects models that account
for author-specific linguistic patterns.
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