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ABSTRACT
Motivation: While genetic properties such as linkage disequilibrium
(LD) and population structure are closely related under a common
inheritance process, the statistical methodologies developed so far
mostly deal with LD analysis and structural inference separately,
using specialized models that do not capture their statistical and
genetic relationships. Also, most of these approaches ignore the
inherent uncertainty in the genetic complexity of the data and rely on
inflexible models built on a closed genetic space. These limitations
may make it difficult to infer detailed and consistent structural
information from rich genomic data such as populational SNP profiles.
Results: We propose a new model-based approach to address
these issues through joint inference of population structure and
recombination events under a nonparametric Bayesian framework;
we present Spectrum, an efficient implementation based on our new
model. We validated Spectrum on simulated data and applied it to
two real SNP datasets, including single-population Daly data and
the four-population HapMap data. Our method performs well relative
to LDhat 2.0 in estimating the recombination rates and hotspots on
these datasets. More interestingly, it generates an ancestral spectrum
for representing population structures which not only displays sub-
structure based on population founders but also reveals details of
the genetic diversity of each individual. It offers an alternative view
of the population structures to that offered by Structure 2.1, which
ignores chromosome-level mutation and combination with respect to
founders.

1 INTRODUCTION
Single nucleotide polymorphisms, or SNPs, represent the largest
class of individual differences in DNA. SNPs are remnants of
ancient, (possibly) neutral DNA alterations dated back to a
time measured at a genealogical scale; they contain more fine-
grained information on molecular evolution than that revealed
by orthologous genomic sequences from multiple species. In
general, the higher the frequency of a SNP allele, the older
the mutation that produced it, so high-frequency SNPs largely
predate human population diversification whereas low-frequency
ones appeared afterwords. Therefore, population-specific alleles
may bear important information about human evolution such as
specific migrations and genetic diversifications [18].

Recent experimental advances have led to an explosion in SNP
data from various populations. For example, the international SNP
map working group [10] has reported the identification and mapping
of 1.4 million single nucleotide polymorphisms (SNPs) in human
genomes from four world populations. The deluge of SNP data fuels
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Fig. 1. Population structural map inferred by Structure 2.1 on HapMap
multi-population data consisting of CEU, YRI, HCB and JPT populations.

the long-standing interest in analyzing patterns of genetic variations
to reconstruct the ancestral structures of modern human populations,
for such genetic ancestral information can both shed light on the
evolutionary history of modern populations and provide guidelines
for more accurate association studies and for many other population
genetics problems.

A number of variants of statistical admixture models for genetic
polymorphisms have been proposed for the analysis of current
population structure [16, 17, 6]. These models are instances of
a more general class of hierarchical Bayesian models known as
mixed membership models [4], which postulate that genetic markers
of each individual are iid [16] or spatially coupled [6] samples
from multiple population-specific fixed-dimensional multinomial
distributions (known as ancestry proportions [6], or AP,) of marker
alleles. Under this assumption, the admixture model identifies each
ancestral population by a specific AP (that defines a unique allele
frequency profile for each ancestral population for each marker) and
displays the fraction of contributions from each AP in a modern
individual chromosome as a structural map. Fig. 1 shows an
example of structural maps of four modern populations inferred
from a portion of the HapMap multi-population dataset by Structure
2.1 [16, 6]. In this population structural map, each individual
is represented as a thin vertical line which shows the fraction of
the individual’s chromosome which originated from each ancestral
population, as given by a unique AP.

However, since an AP merely represents the frequency of alleles
in an ancestral population, rather than the actual allelic content
or haplotypes of the alleles themselves, the admixture model
does not model genetic drift due to mutations from the ancestral
alleles. Moreover, in the extant admixture models, the correlations
between loci along the chromosome are only captured by the
linkage disequilibrium due to variation in the AP fractions over all
markers among individuals, or due to a “recombination” process
between APs (rather than ancestral chromosomes) for sampling
markers along a modern chromosome. These two scenarios are
known as “mixture LD” and “admixture LD” respectively [6].
Neither one captures the actual recombination events at the
ancestral chromosome level, so they do not enable inference of the
founding genetic patterns, the recombination events, the age of the
founding alleles, or the composition of individual chromosomes
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(a) CEU + HCB + JPT (b) CEU + YRI

Fig. 2. The LD measurements, |D′| (upper right), and the p-values for
Fisher’s exact test (lower left), of HapMap DB [20]. Note the LD-block
structures on the mixed populations of CEU and YRI are rather opaque
compared to the LD patterns of CEU+HCB+JPT populations.

at founding chromosome level [5]. Actually, while this model
aims to provide ancestry information for each individual and
each locus, there is no explicit representation of “ancestors” as
a real chromosome haplotype. Therefore, the inferred population
structural map emphasizes revealing the contributions of abstract
population-specific ancestral proportion profiles, which does not
directly reflect individual diversity. This representation may not be
optimal, as seen in Fig. 1: each modern population is represented
by a very homogenous (but distinct) population structural sub-
map, which reflects little about the actual genetic diversity of each
population and individual and little about the relative similarity
between populations. For example, the YRI population from Africa
is known to be genetically diverse, but in Fig. 1 it appears to be the
most homogeneous. 1

In this paper, we present a new method, Spectrum, for inferring
and representing population structures, using a unified statistical
framework for modeling the genetic inheritance process that allows
both recombination among an unspecified number of founding
alleles and mutations from these founders. Based on this model,
which represents a well-defined generative model for the observed
chromosomes, we represent the population structure in terms of
an ancestral spectrum which shows the ancestral composition of
each modern individual chromosome in terms of its origin among
the chromosomal ancestors. By considering the different ancestral
association patterns among populations, this spectrum helps to
separate the sub-populations, as well as reveal the diversity among
individuals and populations. Moreover, our model allows us to
recover the recombination events in each individual chromosome.
In fact, the population structure can play an important role for the
LD analysis. Fig. 2 shows the LD measurements for all pairwise
loci on the ENm010 region from HapMap DB. When we compute
LD in three populations of CEU (European ancestry), HCB and
JPT (Asian ancestry) together (Fig. 2(a)), some degree of block-
like patterns are visible, but when CEU (European ancestry) and
YRI (African ancestry) populations are mixed (Fig. 2(b)), the
block structure is less obvious. This result implies the existence of
different genetic processes in the evolutionary history of the two
populations. Hence, if we perform LD or recombination analysis on
a population which may have a concealed sub-population structure,
it would be more informative to perform LD analysis on each sub-
population separately, and our ancestral spectrum offers a way to
classify such sub-populations on genetic basis. While the statistical

1 In fact, the genetic diversity of each individual is captured at a higher
level by the population-APs. But the AP profiles are very hard to visualize
and interpret because they consist of allele frequency profiles for every locus
and are independent a priori across loci.

methodologies developed so far mostly deal with ancestral inference
and LD analysis separately using specialized models that do not
capture the close statistical and genetic relationships of these two
problems, we propose a unified framework which allows joint
inference of the population structure and the recombination patterns.

We assume that individual chromosomes in a modern population
originated from a number of ancestral chromosomes via biased
random recombination and mutation. By associating each ancestor
with a hidden state, the recombination between the ancestors can
follow a state transition process, and the mutation can follow
an emission process in the hidden Markov model. Hence each
individual chromosome can be thought of as a “mosaic” of ancestral
chromosomes under this model.

Several existing methods have employed similar ideas. For
example, Daly et al. [3] and Greenspan and Geiger [9] have
developed hidden Markov models for locating recombination
hotspots in haplotypes; Anderson and Novembre [1] proposed a
minimum description length (MDL) method for optimal haplotype
block finding. While these models are based on a similar assumption
that each observed haplotype is a “mosaic” of ancestral haplotypes
and the formation of the mosaic is governed by a hidden Markov
process over the ancestor space, these HMMs cannot be used
easily to infer individual recombination events because the block
boundaries (which conceptually correspond to the recombination
sites) of all individual chromosomes are decided outside the model
via model selection, and the only intrinsic stochasticity lies in
the choice of the “ancestors” at each block for each chromosome
rather than the genomic locations of recombination events in
each chromosome. It is also unclear to what extent this class of
approaches might be helpful for applications involving explicit
ancestral map inference as in Rosenberg et al. [17] and for
interpreting LD patterns that do not have sharp block boundaries
as in Fig. 2(b).

While most of the previous approaches ignore the inherent
uncertainty in the genetic complexity (e,g., the number of genetic
founders of a population) of the data, our new approach employs
a recently developed nonparametric Bayesian model known as a
Hidden Markov Dirichlet Process [22] to extend a closed genetic
inheritance model based on a fixed number of founders to an
open ancestral space, which allows more flexible control over the
number of genetic founders than has been provided by the statistical
methods proposed thus far. We report validation of Spectrum on both
simulated data and on two real datasets of HapMap and Daly data,
and compare with a number of established methods.

2 INHERITANCE MODEL
We describe a statistical model for generating individual haplotypes
in a modern population from a hypothetical pool of ancestral
haplotypes via recombination and mutations. We begin our
exposition with a parametric Bayesian model of genetic inheritance
involving recombination and mutation over a fixed number of
ancestors; then we extend the model to open ancestral space which
requires no ad hoc specification of the number of ancestors, via a
nonparametric Bayesian approach.

2.1 Hidden Markov model for recombination and
mutation in closed ancestral space

We begin with the assumption that modern chromosomes
are derived from ancestral chromosomes via biased random
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recombination and mutation. This assumption corresponds to an
idealized noninterference model for chromosomal crossover and a
star genealogy over every inherited site. Although very simple and
not realistic, this assumption has been widely adopted by statistical
genetic models, such as the BLADE model for mapping [14], and
numerous models for haplotype inference [23]. If the number of
ancestors is known to be K, sequential selection of recombination
targets from a set of ancestral chromosomes can be modeled as
a hidden Markov process, where the hidden states correspond
to the ancestors, the transition probabilities correspond to the
recombination rates between the recombining chromosome pairs,
and the emission model corresponds to a mutation process that
passes the chosen chromosome in the ancestors to the descendants.

Assuming that individual haplotypes over T SNPs Hie =
[Hie,1, . . . , Hie,T ] for e = 1, 2 are given unambiguously for
the study population, as is the case in many LD and haplotype-
block analyses [3, 1], we can now treat the paternal and maternal
haplotypes of N individual as 2N iid samples and omit the parental
index e. Although this assumption may seem stringent, our model
can easily generalize to unphased genotype data by incorporating a
simple genotype model, as will be explained later in this section.

Now, let Ak = [Ak,1, . . . , Ak,T ] for k = 1, . . . , K be the
K ancestral chromosomes, and let Ci = [Ci,1, . . . , Ci,T ] denote
the sequence of inheritance variables that specify the index of the
ancestral chromosome at each SNP locus for each chromosome i.
Also suppose that the transition probabilities of the HMM are given
as a K × K matrix π. When no recombination takes place during
the inheritance process that produces the haplotype Hi from an
ancestor k, then Ci,t = k for all t = 1, . . . , T . When recombination
occurs between a locus t and t + 1, we have Ci,t 6= Ci,t+1. We
can introduce a Poisson point process to control the duration of
non-recombinant inheritance. That is, given that Ci,t = k, then
with probability e−dtr + (1− e−dtr)πkk, where dt is the physical
distance between two loci, r reflects the rate of recombination per
unit distance, and πkk is the self-transition probability of ancestor
k defined by HMM, we have Ci,t+1 = Ci,t; otherwise, the source
state (i.e., ancestor chromosome k) pairs with a target state (e.g.,
ancestor chromosome k′) between loci t and t + 1 with probability
(1− e−dr)πkk′ . That is,

P (Ci,t+1 = k′ | Ci,t = k) = e−drπk,k′ + (1− e−dr)δ(k, k′) (1)

Hence, each haplotype Hi can be thought of as a mosaic of
segments of multiple ancestral chromosomes from the ancestral
pool {Ak}K

k=1.
The emission process of this model corresponds to a mutation

model from an ancestor to the matching descendent. For simplicity,
we adopt the single-locus mutation model in Xing et al. [21]:

P (hi,t|ak,t, θk) = θk
I(hi,t=ak,t)

� 1− θk

|B| − 1

�I(hi,t 6=ak,t)

(2)

where hi,t and ak,t denote the alleles at locus t of an individual
chromosome i and its corresponding ancestor k, respectively; θk

indicates the ancestor-specific mutation rate; and |B| denotes the
number of possible alleles. As discussed in Liu et al. [14], this
model corresponds to a star genealogy resulting from infrequent
mutations over a shared ancestor and is widely used in statistical
genetics as an approximation to a full coalescent genealogy starting
from the shared ancestor. Assuming that the mutation rate θk

admits a Beta prior with hyperparameter (αh, βh) 2, the marginal
conditional likelihood of all the haplotype instances h = {hi,t :
i ∈ {1, 2, . . . , I}, t ∈ {1, 2, . . . , T}} given the set of ancestors
a = {a1, . . . , aK} and the ancestor indicators c = {ci,t : i ∈
{1, 2, . . . , I}, t ∈ {1, 2, . . . , T}} can be obtained by integrating
out θ from the joint conditional probability starting from Equation
(2) which reduces to:

P (h|c,a) =
Y
k

R(αh, βh)
Γ(αh + lk)Γ(βh + l′k)

Γ(αh + βh + lk + l′k)

� 1

|B| − 1

�l′k
(3)

where Γ(·) is the gamma function, R(αh, βh) = Γ(αh+βh)
Γ(αh)Γ(βh)

is the
normalization constant associated with Beta(αh, βh) (which is a
prior distribution for θ), lk =

P
t

P
i I(hi,t = ak,t)I(ci,t = k)

is the number of alleles which were not mutated with respect to the
ancestral allele, and l′k =

P
t

P
i I(hi,t 6= ak,t)I(ci,t = k) is the

number of mutated alleles. The counting record lk = {lk, l′k} is a
sufficient statistic for the parameter θk [21].

2.2 Genotype model for unphased data
The model described above can be easily generalized to unphased
genotype sequence data by introducing a genotyping model as in
Xing et al. [21]. We assume that the observed genotype at a locus is
determined by the paternal and maternal alleles of this site via the
following genotyping model:

Pg(g|hi0,t, hi1,t, τ) = ξI(h=g)[µ1(1− ξ)]I(h 6=
1 g)[µ2(1− ξ)]I(h 6=

2 g) (4)

where h , hi0 ,t ⊕ hi1 ,t denotes the unordered pair of two actual
SNP allele instances at locus t; ” 6=1 ” denotes set difference
by exactly one element; ” 6=2 ” denotes set difference of both
elements; and µ1 and µ2 are appropriately defined normalizing
constants. Again we place a beta prior Beta(αg, βg) on ξ for
smoothing. Under the above model specifications, it is standard
to derive the posterior distribution of each haplotype Hie given all
other haplotypes and all genotypes by integrating out parameters ξ
and resorting to the Bayes theorem, which enables a collapsed Gibbs
sampling step where necessary.

It is noteworthy that the proposed model presents a well-defined
generative model for the observed haplotypes or genotypes based
on a spatial point process for stochastic recombination and also
random mutations over a pool of complete ancestral chromosomes.
The difference in our model compared to approaches with a similar
HMM assumption [3, 1, 15] is that, in those models, the “ancestors”
are defined independently for each block rather than as whole
chromosomes, which is biologically less meaningful. Although such
a generative process is still a simplification of the real biological
mechanism, it enables the joint statistical characterization of a
number of genetic variables of interest, via posterior inference
based on well-founded statistical principles, and it strikes a
reasonable tradeoff between being biologically meaningful and
computationally manageable.

2.3 Hidden Markov Dirichlet Process for Inheritance in
open ancestral space

So far, we have been assuming that recombination and mutation take
place in a closed ancestral space; that is, the number of ancestral

2 For simplicity, we assume that the mutation rates pertaining to different
ancestors follow the same prior Beta(αh, βh).
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chromosomes is known a priori. But this assumption, which is
also widely adopted in other existing approaches for LD analysis
and ancestral inference, ignores the inherent uncertainty in the
genetic complexity of populations. Model selection according to
information theoretic score or Bayes factors is a typical solution to
problems of this nature, but it can be inflexible when the hypothesis
space is large. Recently, we have developed a nonparametric
Bayesian framework for modeling genetic polymorphism based on
the Dirichlet process (DP) mixtures and extension [21, 22], which
allows more flexible control over the number of genetic founders.

Under coalescence-with-mutation (but without recombination),
one can treat a haplotype from a modern individual as a descendent
of their most recent common ancestor. Hoppe [11] observed that a
coalescent process in an infinite population leads to a partition of
the population at every generation that can be succinctly captured
by the following Pólya urn scheme.

Consider an urn that at the outset contains a ball of a single color.
At each step we either draw a ball from the urn and replace it with
two balls of the same color, or we are given a ball of a new color
which we place in the urn. One can see that such a scheme leads
to a partition of the balls according to their color. Mapping each
ball to an individual haplotype and each color to its corresponding
ancestor, this partition is equivalent to the one resulting from
the coalescence-with-mutation process [11], and the probability
distribution of the resulting allele spectrum—the numbers of colors
(resp. haplotypes) with every possible number of representative
balls (resp. descedants)—is captured by the well-known Ewen’s
sampling formula [19]. Blackwell and MacQueen [2] showed that
this Pólya urn model yields samples whose distributions are those
of the marginal probabilities under the Dirichlet process [8].

Xing et al. [21] proposed a haplotype inheritance model (without
recombination) as a Dirichlet process mixture (DPM), of which
a DP is used as the prior over the unbounded ancestral space
(of founding haplotypes and their associated mutation rates). This
model can be understood in the above Pólya urn scenario as
associating each individual haplotype with a ball in the Pólya urn
and associating the ancestral haplotypes and their own mutation
rates with the colors. Essentially a DPM defines a “clustering” of
the modern individual haplotypes based on the ball color. Notice that
our construction so far requires no prior specification of the number
of ancestors. Thus a DPM offers a principled approach to generalize
the finite mixture model for haplotypes to an infinite mixture model
that models uncertainty regarding the size of the ancestral haplotype
pool, and at the same time it provides a reasonable approximation
to the coalescence model by utilizing the partition structure resulted
thereof (but allows further mutation within each partite to introduce
further diversity among descendants of the same founder).

Using a further extension of DPM known as the Hidden Markov
Dirichlet Process (HMDP) [22], which models stochastic transitions
among states in an open state space, we can extend the HMM
model proposed in §2.1 to work in an infinite ancestral space. Recall
that in the HMM inheritance model described earlier, the transition
probabilities can be represented as a K × K matrix, and each
row of the matrix indicates the probabilities of transitioning (i.e.,
recombination) from the source state (e.g., ancestor k) to all the
target states (all ancestors in the pool), which sums to 1. Now we
do not restrict ourselves with such a K and generalize the HMM
to a space with countably infinite ancestors in principal. Without
going into technical details (but see [22]), our generalization can be

understood as modeling each row of transition probabilities (from a
specific ancestor) of an HMM with a unique DP over open ancestral
space, letting all these DPs (each of which is over a particular row)
follow a higher level DP to ensure that they are all defined on
the same open ancestral space. We have developed a hierarchical
Pólya urn scheme to realize this model and facilitate sampling
based posterior inference [22], for which we omit details due to
lack of space. But at a high level, the recombination probability
under HMDP P (Ci,t+1 = k′ | Ci,t = k) can be expressed
by the same formula as in Eq. (1), except that the πkk′ now
indicates the transition probability from a source state k to a target
state k′ in an open ancestral space under HMDP (see [22] for the
somewhat cumbersome form for this variable). This πkk′ specifies
the probability of ancestor chromosome k pairing with ancestor
k′ given that a recombination is taking place, and k′ can grow
arbitrarily large as needed conditioning on the given data.

The generative process described above leads naturally to an
algorithm for population genetic inference. Unlike the classical
coalescence models for recombination [12], which have been
primarily used for theoretical analysis and simulation and are not
feasible for reverse ancestral inference based on observed genetic
data, Spectrum provides a nonparametric Bayesian formalism for
recombination and inheritance that is well suited for data-driven
posterior inference on the latent variables that can yield rich
information of the population ancestry and genetic structure of
the study population. For example, using Spectrum, given the
haplotype (or genotype) data, one can infer the ancestral structure,
LD and recombination patterns of a population using the posterior
distribution of inheritance variable c and ancestral state a, as we
will elaborate in the sequel.

3 MCMC INFERENCE
In this section, we briefly describe a Gibbs sampling algorithm for
posterior inference under HMDP. Recall that a Gibbs sampler draws
samples of each random variable in the model from the conditional
distribution of the variables given (previously sampled) values of
all the remaining variables. The variables of interest in our model
include {Ci,t}, the inheritance variables specifying the origins of
SNP alleles of all loci on each haplotype, and {Ak,t}, the founding
alleles at all loci of each ancestral haplotype. All other variables in
the model, e.g., the mutation rate θ, are integrated out.

The Gibbs sampler alternates between two stages. First it samples
the inheritance variables {ci,t}, conditioning on all given individual
haplotypes h = {h1, . . . , h2N} and the most recently sampled
configuration of the ancestor pool a = {a1, . . . , aK}; then given
h and current values of the ci,t’s, it samples every ancestor ak.

To improve the mixing rate, we sample the inheritance variables
one block at a time. That is, every time, we sample δ consecutive
states ct+1, . . . , ct+δ starting at a randomly chosen locus t+1 along
a haplotype. (For simplicity we omit the haplotype index i here
and in the forthcoming expositions when it is clear from context
that the statements or formulas apply to all individual haplotypes.)
Let c− denote the set of previously sampled inheritance variables.
Let n and m denote the sufficient statistics for the transitions
between ancestors in HMDP Pólya urn scheme. And let lk denote
the sufficient statistics associated with all haplotype instances
originated from ancestor k. The predictive distribution of a δ-block
of inheritance variables can be written as:
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P (ct+1:t+δ |c−,h,a) ∝
t+δY
j=t

P (cj+1|cj ,m,n)

t+δY
j=t+1

P (hj |acj,j , lcj ) (5)

This expression is simply Bayes’ theorem with
Qt+δ

j=t+1 p(hj |acj,j , lcj )

playing the role of the likelihood and p(ct+1:t+δ |c−,h,a) playing
the role of the posterior. Note that, naively, the sampling space of
an inheritance block of length δ is |A|δ where |A| represents the
cardinality of the ancestor pool. However, if we assume that the
recombination rate is low and block length is not too big, then the
probability of having two or more recombination events within a δ-
block is very small and thus can be ignored. This approximation
reduces the sampling space of the δ-block to O(|A|δ), i.e., |A|
possible recombination targets times δ possible recombination
locations. Accordingly, Eq. (5) reduces to:

p(ct+1:t+δ | c−,h,a)

∼ p(at most one recombination in[t, t + δ] |c−,h,a)

∝ p(ct′ |ct′−1 = ct,m,n)p(ct+δ+1 |ct+δ = ct′ ,m,n)×
t+δY
j=t′

p(hj |ac
t′ ,j , lct′ )

for some t′ ∈ [t + 1, t + δ]. Recall that in an HMDP model
for recombination, given that the total recombination probability
between two loci d-units apart is λ ≡ 1 − e−dr ≈ dr (assuming d
and r are both very small), the transition probability from state k to
state k′ is:

p(ct′ = k′ |ct′−1 = k,m,n, r, d)

=

8>><
>>:

λπk,k′ + (1− λ)δ(k, k′)
for k′ ∈ {1, ..., K}, i.e., transition to an existing ancestor,

λπk,K+1

for k′ = K + 1, i.e., transition to a new ancestor,

where πk,· represents the transition probability vector for ancestor
k under HMDP. Putting everything together, we have the proposal
distribution for a block of inheritance variables.

To sample the ancestors {ak,t}, we can derive the posterior
distribution from Eq. 3. We refer the reader to Xing et al. [22] for
further details.

4 RESULTS
We validated Spectrum on a simulated dataset and analyzed two
real datasets: the HapMap four-population data [20] and the single-
population Daly data [3]. Although Spectrum can be applied to both
haplotype and genotype data, in this paper we focus on haplotype
data for simplicity. The HapMap data includes 209 individuals’
haplotypes (phased by PHASE software [20]) on the ENm010
region of chromosome 7. The Daly data includes 256 individuals
(after excluding one person due to severe missing data), whose
haplotypes (512 in total) can be recovered from trio data. For
each dataset, we focus on the analysis of population structure and
recombination patterns based on the ancestral origin of each SNP
locus in each individual haplotype.

1

2 4

3 5

Fig. 3. Analysis of simulated haplotype populations. The true (panel 1) and
estimated (panel 2 for Spectrum, and panel 3-5 for 3 HMMs) population
maps of ancestral compositions in a simulated population.

Table 1. False positive and false negative rates for recombination hotspot
detection over 30 population samples. Two kinds of threshold ω’s are used.
The results with different tolerance windows wtol are also shown.

Stepcrum LDhat 2.0 [7] HMM (K = 5)
wtol 0 ± 1 ± 2 0 ± 1 ± 2 0 ± 1 ± 2

ω= FPR 0.16 0.11 0.07 0.19 0.09 0.06 0.18 0.12 0.11
3rd quartile FNR 0.11 0 0 0.22 0.11 0.11 0.33 0.11 0.11
ω s.t. FPR 0.16 0.11 0.07 0.22 0.11 0.07 0.18 0.12 0.11

FNR∼FAR FNR 0.11 0 0 0.22 0.12 0.11 0.33 0.11 0.11

4.1 Analyzing a simulated haplotype population
We simulated a population of individual haplotypes with a fixed
number Ks (unknown to Spectrum) of randomly generated ancestor
haplotypes, on each of which a set of recombination hotspots
were pre-specified. Then we applied a hand-specified recombination
process, which is defined by a Ks-dimensional HMM, to the
ancestor haplotypes to generate Ns individual haplotypes via
sequentially recombining segments of different ancestors according
to the simulated HMM states at each locus and mutating certain
ancestor SNP alleles according to the emission model. All the
ancestor haplotypes were set to be 100 SNPs long. The hotspots are
pre-specified at every 10-th loci in the ancestor haplotypes. Overall,
30 datasets, each containing 100 individuals (i.e., 200 haplotypes)
with 100 SNPs, were generated from Ks = 5 ancestor haplotypes.
Since there is no extant method that can perform both structural
analysis and recombination analysis, we compared our method with
existing algorithms specialized for each of our tasks. For ancestral
inference, we implemented 3 standard fixed-dimensional HMMs,
with 3, 5 (the true number of ancestors for the simulation) and
10 hidden states, respectively. For recombination analysis, we
selected the widely used LDhat 2.0 [7] for comparison. Structure 2.1
yields a different kind of population map that is not quantitatively
comparable to that from Spectrum; thus we only show empirical
comparisons on real data.

Structural analysis Spectrum uncovers the genetic origins of all
loci of each individual haplotype in a population from Gibbs
samples of the inheritance variables {ci,t}. For each individual,
we define an empirical ancestor composition vector ηe, which
records the fractions of every ancestor in all the ci,t’s of that
individual. Fig. 3 displays an ancestral spectrum constructed from
the ηe’s of all individuals. In this spectrum, each individual is
represented by a vertical line which is partitioned into colored
segments in proportion to the ancestral fraction recorded by ηe.
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Spectrum

Structure 2.1
K = 2 K = 3

K = 4 K = 5

Fig. 4. Inferred population structure of HapMap four population data from Spectrum, and Structure 2.1 with different pre-specified numbers of population K.

Five spectrums, corresponding to (1) true ancestor compositions,
(2) ancestor compositions inferred by Spectrum, and (3-5) ancestor
compositions inferred by HMMs with 3, 5, 10 states, respectively,
are shown in Fig. 3. To assess the accuracy of our estimation, we
calculated the distance between the true ancestor compositions and
the estimated ones as the mean squared distance between true and
estimated ηe over all individuals in a population, and then over
all 30 simulated populations. We found that the distance between
the Spectrum-derived population spectrum and the true spectrum
is 0.190 ±0.0748, whereas the distance between HMM-spectrum
and true spectrum is 0.319 ± 0.0676, significantly worse than
that of Spectrum even though the HMM is set to have the true
number of ancestral states (i.e., K = 5). Because of dimensionality
incompatibility and apparent dissimilarity to the true spectrum for
other HMMs (i.e., K = 3 and 10), we forgo the above quantitative
comparison for these two cases.

Recombination Analysis From the Gibbs samples of {ci,t}, we
can also infer the recombination status of each locus of each
haplotype. We define the empirical recombination rates λe to be the
ratio of individuals who are determined to have recombinations at
each locus over the total number of haplotypes in the population. We
classify a locus to be a recombination hotspot if its λe is greater than
an empirical threshold ω, which is set to be the 3rd quartile value of
the estimated recombination rates. Alternatively we can set ω to be
the λe value at which the false positive rate and the false negative
rate become equal in a held-off set. Due to the stochastic nature
of the recombination position in our simulation, we score a correct
hit of recombination hotspot if the identified hotspot based on λe-
thresholding falls within a small window around the true position,
and the window is set to be 0, ±1, and ±2, respectively. Table 1
summarizes the results of the performance comparison, which show
that Spectrum outperforms LDhat 2.0 and HMM significantly in
most of the cases.

4.2 Analyzing real datasets
Population Structure Analysis We analyzed the population
structure of HapMap data (on the ENm010 region) based on the
ancestor composition vector ηe. Fig. 4 shows the results from
Spectrum and from Structure 2.1 with different pre-determined
numbers of populations K. Both algorithms successfully identified
the major geographical populations grouped as CEU, YRI, and
HCB+JPT populations. However, the population map from
Structure 2.1 does not reflect the diversity of each population or

similarity between populations as mentioned earlier in this paper.
In contrast, the result from Spectrum reveals the relative diversity
of each population clearly by showing the ancestral association
fraction for each individual from shared ancestors.

For further comparison, we applied each method to the YRI
population only. In Fig. 5, panel (a) shows the ancestral spectrum of
YRI when this population only is subject to analysis by Spectrum;
and panel (b) re-displays the YRI spectrum extracted from Fig. 4(a),
where all four populations were analyzed together. Fig. 5 (c) and
(d) present the maps from Structure 2.1 applied to YRI only, under
three- and five-cluster assumptions, respectively. While it is not
straightforward to match (a) with (b) pictorially, both maps reveal
that this population is rather diverse. On the other hand, Fig. 5 (c)
and (d), both from Structure 2.1, show two very different structures
from those in Fig. 4, where the 4 populations were analyzed
together. Since Structure 2.1 maps each individual locus to its origin
of population (represented by a unique AP) rather than to its origin
of ancestral chromosome, this result is not surprising considering
the different level of details of the two (i.e., our spectrum and
their map) representations. It seems that our method provides an
arguably more robust and consistent way of showing the population
structure in terms of origin of ancestral chromosome, which clearly
illustrates the sharing of ancestors between populations, as well
as the diversities of each population. It is also noteworthy that in
Structure 2.1 the choice of K can significantly affect the result, and
it is not always easy to choose the best K, as shown in Fig. 5. In
contrast, our method does not rely on a fixed number of ancestors,
instead giving a flexible model for the genetic inheritance under a
nonparametric Bayesian framework.

Next, we analyzed the 256 individuals (i.e., 512 haplotypes) from
the Daly data set with 103 SNPs. For a more informative revelation
of the underlying population structure captured by the empirical
ancestor composition vector ηe, we clustered the individuals based
on their ηe’s and then ordered all individuals accordingly (Fig 6).
Specifically, all individuals were clustered into 6 clusters (which
is an empirical choice just for illustration) using the K-means
algorithm; within each group, individual orderings were determined
by their distances to the cluster centroid. Interestingly, we can see
that although the Daly data were reported to be from a European-
derived population that is expected to be genetically less diverse, our
ancestral map suggests that in this population there exists distinct
sub-structures, each with a unique ancestral composition.
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(a) Spectrum (YRI only) (b) Spectrum (from Fig.4)

(c) Structure 2.1 (K = 3) (c) Structure 2.1 (K = 5)

Fig. 5. Inferred population structure of HapMap YRI population data from
(a)-(b) Spectrum , and (c)-(d) Structure 2.1 with different number of clusters
K.

Fig. 6. The estimated population map of the Daly dataset. The ordering
of all individuals in the sample population was determined by a K-means
clustering with K = 6, followed by a within-cluster ordering of samples
based on their distances to the cluster centroid. The black vertical bars show
the K-means cluster boundaries.
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Fig. 7. A mixture of Gaussian fitting of the estimated λe on HapMap data

Recombination analysis For the analysis of recombination events
in real datasets, rather than picking an empirical threshold, we
determined the recombination hotspots as follows. We fitted the
estimated λe’s of all loci with a one-dimensional mixture of
Gaussians (Fig 7). Then we used the intersection point of the
two Gaussian components as the threshold for determining hotspot
loci. This threshold is essentially the point where the posterior
probabilities of λe being a baseline recombination rate or a hotspot
recombination rate are equal. The mass in the area where the two
Gaussians overlap represents the Bayes-error of loci classification
under this model. One can also employ more rigorous model-based
methods for hotspot classification, and we will return to this point
in the discussion section.

Fig. 8 shows the recovered recombination rates on the ENm010
region of chromosome 7 for each population in HapMap DB.
While the algorithm was run with all the populations together,
according to the implications about the distinct genetic structure
reflected in the ancestral map (Fig. 4), we estimated the empirical
recombination rates separately for each population (i.e., CEPH,

YRI and HCB+JPT) by using the posterior samples belonging
to each population only. Fig. 8 shows the recombination rate
estimates and the detected recombination hotspots, together with
the corresponding LD-measurement. While each recombination
pattern largely agrees with the given LD patterns, noticeably
different patterns of recombination hotspots of the three groups are
observed, which may reflect different recombination histories of the
ancestors of these populations and the need for the population-based
recombination analysis. For comparison, the result on the mixed
populations are also shown together for Spectrum and LDhat 2.0 in
the last column of Fig. 8.

Finally, we give the comparison of the recombination hotspot
estimation on the Daly dataset with those reported in Daly et al.
[3] (which is based on an HMM employing different numbers of
states at different chromosome segments) and in Anderson and
Novembre [1] (which is based on a minimal description length
(MDL) principle). In Fig. 9, we show the plot of the empirical
recombination rates estimated from Spectrum, side-by-side with
the reported recombination hotspots. We also display the LD
measurements together. Note that according to Spectrum, certain
estimated recombination hotspots are very close to each other; for
example, at locus 398kb, two hotspots are right next to each other.
This finding suggests that the actual LD patterns in a population
sample may not simply fall into blocks with sharp boundaries
universal to all individuals, as assumed in Daly’s HMM model. It
is more appropriate to define “hotspot regions” (i.e., stretches of
consecutive hotspot loci) rather than point “hotspot loci”, where
necessary, to delineate haplotype blocks, as discussed in Li and
Stephens [13]. For example, according to the estimated λe’s shown
in Fig. 9, 15 hotspot loci/regions (represented as thick solid vertical
bars in Fig. 9) were identified, and they divide the entire study region
into 16 haplotype blocks of low diversity. Note that in Fig 9, the x-
axis represents the actual genetic locations of the SNP loci (starting
from 274kb at the leftmost with respect to a genetic reference).
Since the SNPs of interest are not located uniformly in this region,
the spatial-intervals as seen from Fig 9 between hotspots may not
reflect the “lengths” of the haplotype blocks. For example, the
block between 445-518kb contains 15 SNPs. At the same time,
the seemingly longest interval between 738-877kb contains only 3
SNPs, two of which have high recombination rates, which render
this interval to be a hotspot region as explained below. Biologically,
this is not surprising because the probability of recombination
between adjacent SNPs increases with their physical distance, in
addition to depending on the intrinsic recombination rate. This
“hotspot region” between 738-877kb is more likely to be merely
a consequence of sparse location-sampling of SNPs in this region,
rather than a biologically meaningful hotspot region.

Table 2 summarizes the summary statistics that characterize each
haplotype block (and hotspot regions). We used the threshold of
0.005 determined by the mixture of Gaussians as described above
to identify recombination hotspots. The blocks were determined
accordingly, with the constraint that the lengths of the identified
blocks were at least three SNPs long, to avoid over-fragmenting
the haplotypes. In column 1 of Table 2, the blocks with blockID
starting with an “r” represent the hotspot regions which contain
more than 2 SNPs, and others represent the haplotype blocks. The
number of SNPs within the blocks varied from 3 to 15 (the second
column of Table 2). The actual genomic region and length of each
block are shown in the third and the fourth columns, respectively.

7



Kyung-Ah Sohn and Eric P. Xing

0 50 100 150 200 250 300 350 400 450
0

0.5

1

1.5

2

Position (Kb)

λ e (
/K

b)

CEU

0 50 100 150 200 250 300 350 400 450
0

0.5

1

1.5

2

Position (Kb)

λ e (
/K

b)

YRI

0 50 100 150 200 250 300 350 400 450
0

0.5

1

1.5

2

Position (Kb)

λ e (
/K

b)

HCB+JPT HapMap4

0 100 200 300 400

HapMap4 (LDhat2.0)

Position (Kb)

Fig. 8. For each population of HapMap data, the LD measure with the estimated recombination rates along the chromosomal position are shown together with
the detected recombination hotspots. The last column shows the result on the mixed four populations from both Spectrum and LDhat 2.0.

Fig. 9. Analysis of the Daly data. Upper panel: the LD-map of the data.
Lower panel: a plot of λe estimated via Spectrum; and the haplotype block
boundaries according to Spectrum (black solid line), HMM [3] (red dotted
line), and MDL [1] (blue dashed line). Note that the thickness of the black
solid lines delineating the haplotype blocks is proportional to the width of
the hotspot regions between adjacent blocks.
The lengths of the smallest and the biggest blocks were 1.3kb and
93kb, respectively, while the average was 22kb. We also report the
total number of distinct haplotypes as a reflection of diversity for
each block, of which the most diverse is, not surprisingly, one of
the largest blocks (which spans 71kb), which contains 17 different
haplotypes. This is significantly lower than the 217 possible different
haplotypes one could observe had there existed no co-inheritance
among loci in this block. Note that the 17 haplotypes reported here
indicate the actual total observed diversity in this region among the
study population, not the number of prototypes underlying these

haplotypes that parsimoniously account for the majority of the
observed diversity when small amounts of mutation are allowed,
as reported in Daly et al. [3]. The actual demographic diversity
of these blocks is much lower than that which is reflected by the
total number of haplotypes, as shown by the results in columns 6-
15. In columns 6-11 of Table 2, we report the ancestor association
frequencies of haplotypes within each block, where the associations
were directly estimated from the inheritance variable ci,t’s sampled
by our algorithm. We can see that, overall, 6 founders sufficed to
fully account for our data, and indeed within each block, only 3-4 of
them were significantly used. We present the number of necessary
haplotypes to cover over 95% and 90% of the entire population,
which were mostly around 3 with a few blocks with higher diversity
around 10.

5 DISCUSSION
We have proposed a new Bayesian method, Spectrum, for jointly
modeling genetic recombination (with mutation) and population
structure. Under a pool of complete ancestral chromosomes,
Spectrum describes the underlying genetic process of recombination
and mutation explicitly in terms of the association between
ancestors and modern individuals. By incorporating a Hidden
Markov Dirichlet Process prior, which facilitates a well-defined
transition process between infinite ancestor spaces, the proposed
method can efficiently infer a number of important genetic variables,
such as recombination hotspots and ancestor patterns, jointly under
a unified statistical framework.

Our model provides a new way of representing a population
structure in terms of an ancestral spectrum which shows the
ancestral association composition of each modern individual
chromosome with the chromosomal ancestors. While the existing
method based on admixture models [6] gives some degree of clear
population label information, it is less informative in showing
the population diversity or relationship between populations in
the genetic history. In contrast, the spectrum identifies the
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Table 2. Haplotype block structures and the summary statistics of the blocks for the Daly data. The block boundaries correspond to the x-coordinates of the
λe peaks in Fig. 9.

blockID #SNPs region length #hap. Anc.freq #hap. coverage #hap. #hap.
(Kb) (Kb) (frq>3) (%) (95%) (90%)

1 9 (274.04-366.81) 92.8 12 0.805 0.190 0.001 0.002 0.002 0.000 3 0.98 3 2
2 5 (395.08-398.35) 3.3 7 0.816 0.176 0.004 0.002 0.002 0.000 2 0.98 2 2

(r1) 3 (398.35-411.87) 13.5
3 3 (411.87-413.23) 1.4 7 0.633 0.164 0.199 0.002 0.002 0.000 6 0.99 4 3
4 3 (415.58-419.85) 4.3 5 0.613 0.162 0.219 0.002 0.002 0.002 4 1.00 2 2
5 3 (424.28-425.55) 1.3 4 0.548 0.162 0.278 0.002 0.008 0.002 2 0.99 2 2
6 3 (433.47-437.68) 4.2 5 0.534 0.161 0.262 0.014 0.027 0.002 3 1.00 3 2

(r2) 5 (437.68-445.34) 7.7
7 15 (445.34-518.48) 73.1 17 0.636 0.157 0.164 0.010 0.029 0.004 9 0.95 9 6

(r3) 5 (518.48-522.60) 4.1
8 3 (522.60-529.56) 7.0 5 0.585 0.282 0.076 0.010 0.043 0.004 4 1.00 4 3
9 3 (532.36-553.19) 20.8 6 0.594 0.275 0.081 0.005 0.041 0.004 3 0.99 3 2

10 9 (570.98-579.82) 8.8 6 0.583 0.286 0.065 0.014 0.049 0.004 3 0.99 3 2
11 6 (582.65-590.59) 7.9 8 0.614 0.286 0.033 0.014 0.049 0.004 5 0.99 3 2
12 3 (594.12-598.80) 4.7 5 0.621 0.287 0.031 0.008 0.049 0.004 4 1.00 3 2
13 15 (601.29-649.90) 48.6 17 0.627 0.291 0.020 0.009 0.049 0.004 10 0.95 11 9
14 3 (657.23-662.82) 5.6 4 0.605 0.289 0.043 0.010 0.049 0.004 4 1.00 3 2
15 8 (676.69-738.46) 61.8 13 0.563 0.297 0.076 0.009 0.051 0.004 9 0.97 8 5
(r4) 3 (738.46-877.57) 139.1
16 4 (877.57-890.71) 13.1 6 0.489 0.384 0.066 0.006 0.045 0.010 3 0.99 3 3

structure of sub-populations by considering the different ancestral
association patterns among populations, in addition to displaying
the diversity among individuals and populations, which yields a
more informative representation for the population structure among
shared ancestors across the populations.

Moreover, Spectrum allows us to recover the recombination
events in each individual chromosome. Unlike other existing
methods based on HMMs for recombination analysis which assume
fixed recombination sites for the population and consider block-
wise ancestors, we proposed a full generative model for haplotype
inheritance which explicitly models the individual-level genetic
recombination and mutation along the chromosome.

As of now, Spectrum does not intrinsically capture the
heterogeneity of recombination rates over loci, and the recombination
rates are determined by the posterior distribution of recombination
events under a universal recombination rate, rather than directly
by a maximum likelihood estimation of site-specific recombination
rates as in Li and Stephens [13]. Also, we have not addressed
the issues of threshold calculations and confidence measures of
hotspot predictions as in Li and Stephens [13]. These problems
are of importance in various applications such as linkage-based
quantitative trait locus mapping and disease-gene mapping. One
way of addressing these issues is to explicitly introduce more
recombination states (e.g., for both base-line recombination and
hotspot-recombination) into the infinite HMM we proposed and/or
to introduce priors for site-specific recombination rates for Bayesian
inference.
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