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We study the problem of estimating high-dimensional regression mod-
els regularized by a structured sparsity-inducing penalty that encodes prior
structural information on either the input or output variables. We consider
two widely adopted types of penalties of this kind as motivating examples:
(1) the general overlapping-group-lasso penalty, generalized from the group-
lasso penalty; and (2) the graph-guided-fused-lasso penalty, generalized from
the fused-lasso penalty. For both types of penalties, due to their nonsepa-
rability and nonsmoothness, developing an efficient optimization method re-
mains a challenging problem. In this paper we propose a general optimization
approach, the smoothing proximal gradient (SPG) method, which can solve
structured sparse regression problems with any smooth convex loss under a
wide spectrum of structured sparsity-inducing penalties. Our approach com-
bines a smoothing technique with an effective proximal gradient method. It
achieves a convergence rate significantly faster than the standard first-order
methods, subgradient methods, and is much more scalable than the most
widely used interior-point methods. The efficiency and scalability of our
method are demonstrated on both simulation experiments and real genetic
data sets.

1. Introduction. The problem of high-dimensional sparse feature learning
arises in many areas in science and engineering. In a typical setting such as lin-
ear regression, the input signal leading to a response (i.e., the output) lies in a
high-dimensional space, and one is interested in selecting a small number of truly
relevant variables in the input that influence the output. A popular approach to
achieve this goal is to jointly optimize the fitness loss function with a nonsmooth
�1-norm penalty, for example, Lasso [Tibshirani (1996)] that shrinks the coeffi-
cients of the irrelevant input variables to zero. However, this approach is limited
in that it is incapable of capturing any structural information among the input vari-
ables. Recently, various extensions of the �1-norm lasso penalty have been intro-
duced to take advantage of the prior knowledge of the structures among inputs
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to encourage closely related inputs to be selected jointly [Jenatton, Audibert and
Bach (2009), Tibshirani and Saunders (2005), Yuan and Lin (2006)]. Similar ideas
have also been explored to leverage the output structures in multivariate-response
regression (or multi-task regression), where one is interested in estimating multi-
ple related functional mappings from a common input space to multiple outputs
[Kim and Xing (2009, 2010), Obozinski, Taskar and Jordan (2009)]. In this case,
the structure over the outputs is available as prior knowledge, and the closely re-
lated outputs according to this structure are encouraged to share a similar set of
relevant inputs. These progresses notwithstanding, the development of efficient
optimization methods for solving the estimation problems resultant from the struc-
tured sparsity-inducing penalty functions remains a challenge for reasons we will
discuss below. In this paper we address the problem of developing efficient opti-
mization methods that can handle a broad family of structured sparsity-inducing
penalties with complex structures.

When the structure to be imposed during shrinkage has a relatively simple
form, such as nonoverlapping groups over variables (e.g., group lasso [Yuan and
Lin (2006)]) or a linear-ordering (a.k.a., chain) of variables (e.g., fused lasso
[Tibshirani and Saunders (2005)]), efficient optimization methods have been de-
veloped. For example, under group lasso, due to the separability among groups, a
proximal operator2 associated with the penalty can be computed in closed-form;
thus, a number of composite gradient methods [Beck and Teboulle (2009), Liu, Ji
and Ye (2009), Nesterov (2007)] that leverage the proximal operator as a key step
(so-called “proximal gradient method”) can be directly applied. For fused lasso,
although the penalty is not separable, a coordinate descent algorithm was shown
feasible by explicitly leveraging the linear ordering of the inputs [Friedman et al.
(2007)].

Unfortunately, these algorithmic advancements have been outpaced by the
emergence of more complex structures one would like to impose during shrink-
age. For example, in order to handle a more general class of structures such as a
tree or a graph over variables, various regression models that further extend the
group lasso and fused lasso ideas have been recently proposed. Specifically, rather
than assuming the variable groups to be nonoverlapping as in the standard group
lasso, the overlapping group lasso [Jenatton, Audibert and Bach (2009)] allows
each input variable to belong to multiple groups, thereby introducing overlaps
among groups and enabling incorporation of more complex prior knowledge on
the structure. Going beyond the standard fused lasso, the graph-guided fused lasso
extends the original chain structure over variables to a general graph over vari-
ables, where the fused-lasso penalty is applied to each edge of the graph [Kim,
Sohn and Xing (2009)]. Due to the nonseparability of the penalty terms resultant

2The proximal operator associated with the penalty is defined as arg minβ
1
2‖β − v‖2

2 + P(β),
where v is any given vector and P(β) is the nonsmooth penalty.
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from the overlapping group or graph structures in these new models, the aforemen-
tioned fast optimization methods originally tailored for the standard group lasso or
fused lasso cannot be readily applied here, due to, for example, unavailability of
a closed-form solution of the proximal operator. In principle, generic convex op-
timization solvers such as the interior-point methods (IPM) could always be used
to solve either a second-order cone programming (SOCP) or a quadratic program-
ming (QP) formulation of the aforementioned problems; but such approaches are
computationally prohibitive for problems of even a moderate size. Very recently,
a great deal of attention has been given to devise practical solutions to the com-
plex structured sparse regression problems discussed above in statistics and the
machine learning community, and numerous methods have been proposed [Duchi
and Singer (2009), Jenatton et al. (2010), Liu, Yuan and Ye (2010), Mairal et al.
(2010), Tibshirani and Taylor (2010), Zhou and Lange (2011)]. All of these recent
works strived to provide clever solutions to various subclasses of the structured
sparsity-inducing penalties; but, as we survey in Section 4, they are still short of
reaching a simple, unified and general solution to a broad class of structured sparse
regression problems.

In this paper we propose a generic optimization approach, the smoothing prox-
imal gradient (SPG) method, for dealing with a broad family of sparsity-inducing
penalties of complex structures. We use the overlapping-group-lasso penalty and
graph-guided-fused-lasso penalty mentioned above as our motivating examples.
Although these two types of penalties are seemingly very different, we show that it
is possible to decouple the nonseparable terms in both penalties via the dual norm;
and reformulate them into a common form to which the proposed method can be
applied. We call our approach a “smoothing” proximal gradient method because
instead of optimizing the original objective function directly as in other proximal
gradient methods, we introduce a smooth approximation to the structured sparsity-
inducing penalty using the technique from Nesterov (2005). Then, we solve the
smoothed surrogate problem by a first-order proximal gradient method known as
the fast iterative shrinkage-thresholding algorithm (FISTA) [Beck and Teboulle
(2009)]. We show that although we solve a smoothed problem, when the smooth-
ness parameter is carefully chosen, SPG achieves a convergence rate of O(1

ε
) for

the original objective for any desired accuracy ε. Below, we summarize the main
advantages of this approach:

(a) It is a first-order method, as it uses only the gradient information. Thus, it is
significantly more scalable than IPM for SOCP or QP. Since it is gradient-based, it
allows warm restarts, and thereby potentiates solving the problem along the entire
regularization path [Friedman et al. (2007)].

(b) It is applicable to a wide class of optimization problems with a smooth con-
vex loss and a nonsmooth nonseparable structured sparsity-inducing penalty. Ad-
ditionally, it is applicable to both uni- and multi-task sparse structured regression,
with structures on either (or both) inputs/outputs.
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(c) Theoretically, it enjoys a convergence rate of O(1
ε
), which dominates that

of the standard first-order method such as the subgradient method whose rate is of
O( 1

ε2 ).
(d) Finally, SPG is easy to implement with a few lines of MATLAB code.

The idea of constructing a smoothing approximation to a difficult-to-optimize
objective function has also been adopted in another widely used optimization
framework known as majorization–minimization (MM) [Lange (2004)]. Using the
quadratic surrogate functions for the �2-norm and fused-lasso penalty as derived in
Wu and Lange (2008) and Zhang et al. (2010), one can also apply MM to solve the
structured sparse regression problems. We will discuss in detail the connections
between our methods and MM in Section 4.

The rest of this paper is organized as follows. In Section 2 we present the for-
mulation of overlapping group lasso and graph-guided fused lasso. In Section 3
we present the SPG method along with complexity results. In Section 4 we dis-
cuss the connections between our method and MM, and comparisons with other
related methods. In Section 5 we extend our algorithm to multivariate-task regres-
sion. In Section 6 we present numerical results on both simulated and real data
sets, followed by conclusions in Section 7. Throughout the paper, we will dis-
cuss overlapping-group-lasso and graph-guided-fused-lasso penalties in parallel to
illustrate how the SPG can be used to solve the corresponding optimization prob-
lems generically.

2. Background: Linear regression regularized by structured sparsity-
inducing penalties. We begin with a basic outline of the high-dimensional linear
regression model, regularized by structured sparsity-inducing penalties.

Consider a data set of N feature/response (i.e., input/output) pairs, {xn, yn},
n = 1, . . . ,N . Let X ∈ R

N×J denote the matrix of inputs of the N samples, where
each sample lies in a J -dimensional space; and y ∈ R

N×1 denote the vector of
univariate outputs of the N sample. Under a linear regression model, y = Xβ + ε,

where β represents the vector of length J for the regression coefficients, and ε
is the vector of length N for noise distributed as N(0, σ 2IN×N). The well-known
Lasso regression [Tibshirani (1996)] obtains a sparse estimate of the coefficients
by solving the following optimization problem:

min
β∈RJ

g(β) + λ‖β‖1,(2.1)

where g(β) ≡ 1
2‖y − Xβ‖2

2 is the squared-error loss, ‖β‖1 ≡ ∑J
j=1|βj | is the �1-

norm penalty that encourages the solutions to be sparse, and λ is the regularization
parameter that controls the sparsity level.

The standard lasso penalty does not assume any structure among the input
variables, which limits its applicability to complex high-dimensional scenarios in
many applied problems. More structured constraints on the input variables such
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as groupness or pairwise similarities can be introduced by employing a more so-
phisticated sparsity-inducing penalty that induces joint sparsity patterns among
related inputs. We generically denote the structured sparsity-inducing penalty by
�(β) without assuming a specific form, and define the problem of estimating a
structured sparsity pattern of the coefficients as follows:

min
β∈RJ

f (β) ≡ g(β) + �(β) + λ‖β‖1.(2.2)

In this paper we consider two types of �(β) that capture two different kinds of
structural constraints over variables, namely, the overlapping-group-lasso penalty
based on the �1/�2 mixed-norm, and the graph-guided-fused-lasso penalty based
on a total variation norm. As we discuss below, these two types of penalties rep-
resent a broad family of structured sparsity-inducing penalties recently introduced
in the literature [Jenatton, Audibert and Bach (2009), Kim and Xing (2010), Kim,
Sohn and Xing (2009), Tibshirani and Saunders (2005), Yuan and Lin (2006),
Zhao, Rocha and Yu (2009a)]. It is noteworthy that in problem (2.2), in addition
to the structured-sparsity-inducing penalty �(β), there is also an �1-regularizer
λ‖β‖1 that explicitly enforces sparsity on every individual feature. The SPG op-
timization algorithm to be presented in this paper is applicable regardless of the
presence or absence of the λ‖β‖1 term.

(1) Overlapping-group-lasso penalty. Given prior knowledge of (possibly over-
lapping) grouping of variables or features, if it is desirable to encourage coeffi-
cients of features within the same group to be shrunk to zero jointly, then a com-
posite structured penalty of the following form can be used:

�(β) ≡ γ
∑
g∈G

wg‖βg‖2,(2.3)

where G = {g1, . . . , g|G|} denotes the set of groups, which is a subset of the power
set of {1, . . . , J }; βg ∈ R

|g| is the subvector of β for the features in group g; wg is
the predefined weight for group g; and ‖ · ‖2 is the vector �2-norm. This �1/�2
mixed-norm penalty plays the role of jointly setting all of the coefficients within
each group to zero or nonzero values. The widely used hierarchical tree-structured
penalty [Kim and Xing (2010), Zhao, Rocha and Yu (2009b)] is a special case
of (2.3), of which the groups are defined as a nested set under a tree hierarchy.
It is noteworthy that the �1/�∞ mixed-norm penalty can also achieve a similar
grouping effect. Indeed, our approach can also be applied to the �1/�∞ penalty,
but for simplicity here we focus on only the �1/�2 penalty and the comparison
between the �1/�2 and the �1/�∞ is beyond the scope of the paper.

Apparently, the penalty �(β) ≡ γ
∑

g∈G wg‖βg‖2 alone enforces only group-
level sparsity but not sparsity within each group. More precisely, if the esti-
mated ‖β̂g‖2 �= 0, each β̂j for j ∈ g will be nonzero. By using an additional �1-
regularizer λ‖β‖1 together with �(β) as in (2.2), one cannot only select groups
but also variables within each group. The readers may refer to Friedman, Hastie
and Tibshirani (2010) for more details.
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(2) Graph-guided-fused-lasso penalty. Alternatively, prior knowledge about the
structural constraints over features can be in the form of their pairwise relatedness
described by a graph G ≡ (V ,E), where V = {1, . . . , J } denotes the variables or
features of interest, and E denotes the set of edges among V . Additionally, we let
rml ∈ R denote the weight of the edge e = (m, l) ∈ E, corresponding to correlation
or other proper similarity measures between features m and l. If it is desirable
to encourage coefficients of related features to share similar magnitude, then the
graph-guided-fused-lasso penalty [Kim, Sohn and Xing (2009)] of the following
form can be used:

�(β) = γ
∑

e=(m,l)∈E,m<l

τ (rml)|βm − sign(rml)βl|,(2.4)

where τ(rml) represent a general weight function that enforces a fusion effect over
coefficients βm and βl of relevant features. In this paper we consider τ(r) = |r|,
but any monotonically increasing function of the absolute values of correlations
can be used.

The sign(rml) in (2.4) ensures that two positively correlated inputs would tend to
influence the output in the same direction, whereas two negatively correlated inputs
impose opposite effect. Since the fusion effect is calibrated by the edge weight,
the graph-guided-fused-lasso penalty in (2.4) encourages highly inter-correlated
inputs corresponding to a densely connected subnetwork in G to be jointly selected
as relevant.

It is noteworthy that when rml = 1 for all e = (m, l) ∈ E, and G is simply a
chain over nodes, we have

�(β) = γ

J−1∑
j=1

|βj+1 − βj |,(2.5)

which is identical to the standard fused lasso penalty [Tibshirani and Saunders
(2005)].

3. Smoothing proximal gradient. Although (2.2) defines a convex program,
of which a globally optimal solution to β is attainable, the main difficulty in solv-
ing (2.2) arises from the nonseparability of elements of β in the nonsmooth penalty
function �(β). As we show in the next subsection, although the overlapping-
group-lasso and graph-guided-fused-lasso penalties are seemingly very different,
we can reformulate the two types of penalties as a common matrix algebraic form,
to which a generic Nesterov smoothing technique can be applied. The key in our
approach is to decouple the nonseparable structured sparsity-inducing penalties
into a simple linear transformation of β via the dual norm. Based on that, we intro-
duce a smooth approximation to �(β) using the technique from Nesterov (2005)
such that its gradient with respect to β can be easily calculated.
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3.1. Reformulation of structured sparsity-inducing penalty. In this section we
show that utilizing the dual norm, the nonseparable structured sparsity-inducing
penalty in both (2.3) and (2.4) can be decoupled; and reformulated into a common
form as a maximization problem over the auxiliary variables.

(1) Reformulating overlapping-group-lasso penalty. Since the dual norm of
an �2-norm is also �2-norm, we can write ‖βg‖2 as ‖βg‖2 = max‖αg‖2≤1 αT

g βg ,
where αg ∈ R

|g| is a vector of auxiliary variables associated with βg . Let α =
[αT

g1
, . . . ,αT

g|G| ]T . Then, α is a vector of length
∑

g∈G |g| with domain Q ≡
{α|‖αg‖2 ≤ 1,∀g ∈ G}, where Q is the Cartesian product of unit balls in Euclidean
space and, therefore, a closed and convex set. We can rewrite the overlapping-
group-lasso penalty in (2.3) as

�(β) = γ
∑
g∈G

wg max‖αg‖2≤1
αT

g βg = max
α∈Q

∑
g∈G

γwgα
T
g βg = max

α∈Q
αT Cβ,(3.1)

where C ∈ R

∑
g∈G |g|×J is a matrix defined as follows. The rows of C are indexed

by all pairs of (i, g) ∈ {(i, g)|i ∈ g, i ∈ {1, . . . , J }, g ∈ G}, the columns are indexed
by j ∈ {1, . . . , J }, and each element of C is given as

C(i,g),j =
{

γwg, if i = j ,
0, otherwise.

(3.2)

Note that C is a highly sparse matrix with only a single nonzero element in each
row and

∑
g∈G |g| nonzero elements in the entire matrix, and, hence, can be stored

with only a small amount of memory during the optimization procedure.
(2) Reformulating graph-guided-fused-lasso penalty. First, we rewrite the

graph-guided-fused-lasso penalty in (2.4) as follows:

γ
∑

e=(m,l)∈E,m<l

τ (rml)|βm − sign(rml)βl| ≡ ‖Cβ‖1,

where C ∈ R
|E|×J is the edge-vertex incident matrix:

Ce=(m,l),j =
⎧⎨⎩

γ · τ(rml), if j = m,
−γ · sign(rml)τ (rml), if j = l,
0, otherwise.

(3.3)

Again, we note that C is a highly sparse matrix with 2 · |E| nonzero elements.
Since the dual norm of the �∞-norm is the �1-norm, we can further rewrite the
graph-guided-fused-lasso penalty as

‖Cβ‖1 ≡ max‖α‖∞≤1
αT Cβ,(3.4)

where α ∈ Q = {α|‖α‖∞ ≤ 1,α ∈ R
|E|} is a vector of auxiliary variables associ-

ated with ‖Cβ‖1, and ‖ · ‖∞ is the �∞-norm defined as the maximum absolute
value of all entries in the vector.
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REMARK 1. As a generalization of the graph-guided-fused-lasso penalty, the
proposed optimization method can be applied to the �1-norm of any linear mapping
of β [i.e., �(β) = ‖Cβ‖1 for any given C].

3.2. Smooth approximation to structured sparsity-inducing penalty. The com-
mon formulation of �(β) given above [i.e., �(β) = maxα∈Q αT Cβ] is still a non-
smooth function of β , and this makes the optimization challenging. To tackle this
problem, using the technique from Nesterov (2005), we construct a smooth ap-
proximation to �(β) as follows:

fμ(β) = max
α∈Q

(
αT Cβ − μd(α)

)
,(3.5)

where μ is a positive smoothness parameter and d(α) is a smoothing function
defined as 1

2‖α‖2
2. The original penalty term can be viewed as fμ(β) with μ = 0;

and one can verify that fμ(β) is a lower bound of f0(β). In order to bound the gap
between fμ(β) and f0(β), let D = maxα∈Q d(α). In our problems, D = |G|/2 for
the overlapping-group-lasso penalty and D = |E|/2 for the graph-guided-fused-
lasso penalty. Then, it is easy to verify that the maximum gap between fμ(β) and
f0(β) is μD:

f0(β) − μD ≤ fμ(β) ≤ f0(β).

From Theorem 1 as presented below, we know that fμ(β) is a smooth function for
any μ > 0. Therefore, fμ(β) can be viewed as a smooth approximation to f0(β)

with a maximum gap of μD; and the μ controls the gap between fμ(β) and f0(β).
Given a desired accuracy ε, the convergence result in Section 3.5 suggests μ = ε

2D
to achieve the best convergence rate.

Now we present the key theorem [Nesterov (2005)] to show that fμ(β) is
smooth in β with a simple form of the gradient.

THEOREM 1. For any μ > 0, fμ(β) is a convex and continuously-differen-
tiable function in β , and the gradient of fμ(β) takes the following form:

∇fμ(β) = CT α∗,(3.6)

where α∗ is the optimal solution to (3.5). Moreover, the gradient ∇fμ(β) is Lips-
chitz continuous with the Lipschitz constant Lμ = 1

μ
‖C‖2, where ‖C‖ is the matrix

spectral norm of C defined as ‖C‖ ≡ max‖v‖2≤1‖Cv‖2.

By viewing fμ(β) as the Fenchel conjugate of d(·) at Cβ
μ

, the smoothness can
be obtained by applying Theorem 26.3 in Rockafellar (1996). The gradient in (3.6)
can be derived from the Danskin’s theorem [Bertsekas (1999)] and the Lipschitz
constant is shown in Nesterov (2005). The details of the proof are given in the
Appendix.
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Geometric illustration of Theorem 1. To provide insights on why fμ(β) is a
smooth function as Theorem 1 suggests, in Figure 1 we show a geometric il-
lustration for the case of a one-dimensional parameter (i.e., β ∈ R) with μ and
C set to 1. First, we show geometrically that f0(β) = maxα∈[−1,1] z(α,β) with
z(α,β) ≡ αβ is a nonsmooth function. The three-dimensional plot for z(α,β)

with α restricted to [−1,1] is shown in Figure 1(a). We project the surface in
Figure 1(a) onto the β − z space as shown in Figure 1(b). For each β , the value of
f0(β) is the highest point along the z-axis since we maximize over α in [−1,1].
We can see that f0(β) is composed of two segments with a sharp point at β = 0
and hence is nonsmooth. Now, we introduce d(α) = 1

2α2, let zs(α,β) ≡ αβ − 1
2α2

and fμ(β) = maxα∈[−1,1] zs(α,β). The three-dimensional plot for zs(α,β) with α

restricted to [−1,1] is shown in Figure 1(c). Similarly, we project the surface in
Figure 1(c) onto the β − zs space as shown in Figure 1(d). For fixed β , the value
of fμ(β) is the highest point along the z-axis. In Figure 1(d), we can see that the
sharp point at β = 0 is removed and fμ(β) becomes smooth.

To compute the ∇fμ(β) and Lμ, we need to know α∗ and ‖C‖. We present
the closed-form equations for α∗ and ‖C‖ for the overlapping-group-lasso penalty
and graph-guided-fused-lasso penalty in the following propositions. The proof is
presented in the Appendix.

(a) (b)

(c) (d)

FIG. 1. A geometric illustration of the smoothness of fμ(β). (a) The 3-D plot of z(α,β), (b) the
projection of (a) onto the β-z space, (c) the 3-D plot of zs(α,β) and (d) the projection of (c) onto
the β-z space.
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(1) α∗ under overlapping-group-lasso penalty.

PROPOSITION 1. Let α∗, which is composed of {α∗
g}g∈G , be the optimal solu-

tion to (3.5) for the overlapping-group-lasso penalty in (2.3). For any g ∈ G ,

α∗
g = S

(
γwgβg

μ

)
,

where S is the projection operator which projects any vector u to the �2 ball:

S(u) =
⎧⎨⎩

u
‖u‖2

, ‖u‖2 > 1,

u, ‖u‖2 ≤ 1.

In addition, we have ‖C‖ = γ maxj∈{1,...,J }
√∑

g∈G s.t. j∈g(wg)2.

(2) α∗ under graph-guided-fused-lasso penalty.

PROPOSITION 2. Let α∗ be the optimal solution of (3.5) for the graph-guided-
fused-lasso penalty in (2.4). Then, we have

α∗ = S

(
Cβ

μ

)
,

where S is the projection operator defined as follows:

S(x) =
⎧⎨⎩

x, if −1 ≤ x ≤ 1,
1, if x > 1,
−1, if x < −1.

For any vector α, S(α) is defined as applying S on each and every entry of α.

‖C‖ is upper-bounded by
√

2γ 2 maxj∈V dj , where

dj = ∑
e∈E s.t. e incident on j

(τ (re))
2(3.7)

for j ∈ V in graph G, and this bound is tight. Note that when τ(re) = 1 for all
e ∈ E, dj is simply the degree of the node j .

3.3. Smoothing proximal gradient descent. Given the smooth approximation
to the nonsmooth structured sparsity-inducing penalties, now, we apply the fast
iterative shrinkage-thresholding algorithm (FISTA) [Beck and Teboulle (2009),
Tseng (2008)] to solve a generically reformulated optimization problem, using the
gradient information from Theorem 1. We substitute the penalty term �(β) in
(2.2) with its smooth approximation fμ(β) to obtain the following optimization
problem:

min
β

f̃ (β) ≡ g(β) + fμ(β) + λ‖β‖1.(3.8)



SMOOTHING PROXIMAL GRADIENT METHOD 729

Let

h(β) = g(β) + fμ(β) = 1
2‖y − Xβ‖2

2 + fμ(β)(3.9)

be the smooth part of f̃ (β). According to Theorem 1, the gradient of h(β) is given
as

∇h(β) = XT (Xβ − y) + CT α∗.(3.10)

Moreover, ∇h(β) is Lipschitz-continuous with the Lipschitz constant,

L = λmax(XT X) + Lμ = λmax(XT X) + ‖C‖2

μ
,(3.11)

where λmax(XT X) is the largest eigenvalue of (XT X).
Since f̃ (β) only involves a very simple nonsmooth part (i.e., the �1-norm

penalty), we can adopt FISTA [Beck and Teboulle (2009), Tseng (2008)] to mini-
mize f̃ (β) as shown in Algorithm 1. Algorithm 1 alternates between the sequences
{wt } and {β t } and θt can be viewed as a special “step-size,” which determines the
relationship between {wt } and {β t } as in Step 4 of Algorithm 1. As shown in Beck
and Teboulle (2009), such a way of setting θt leads to Lemma 1 in the Appendix,
which further guarantees the convergence result in Theorem 2.

Algorithm 1 Smoothing proximal gradient descent (SPG) for structured sparse
regression

Input: X, y, C, β0, Lipschitz constant L, desired accuracy ε.
Initialization: set μ = ε

2D
where D = maxα∈Q

1
2‖α‖2

2 (D = |G|/2 for the
overlapping-group-lasso penalty and D = |E|/2 for the graph-guided-fused-lasso
penalty), θ0 = 1, w0 = β0.
Iterate: For t = 0,1,2, . . . , until convergence of β t :

1. Compute ∇h(wt ) according to (3.10).
2. Solve the proximal operator associated with the �1-norm:

β t+1 = arg min
β

QL(β,wt )

(3.12)

≡ h(wt ) + 〈β − wt ,∇h(wt )〉 + λ‖β‖1 + L

2
‖β − wt‖2

2.

3. Set θt+1 = 2
t+3 .

4. Set wt+1 = β t+1 + 1−θt

θt
θt+1(β

t+1 − β t ).

Output: β̂ = β t+1.



730 X. CHEN ET AL.

Rewriting QL(β,wt ) in (3.12),

QL(β,wt ) = 1

2

∥∥∥∥β −
(

wt − 1

L
∇h(wt )

)∥∥∥∥2

2
+ λ

L
‖β‖1.

Letting v = (wt − 1
L
∇h(wt )), the closed-form solution for β t+1 can be obtained

by soft-thresholding [Friedman et al. (2007)] as presented in the next proposition.

PROPOSITION 3. The closed-form solution of

min
β

1

2
‖β − v‖2

2 + λ

L
‖β‖1

can be obtained by the soft-thresholding operation:

βj = sign(vj )max
(

0, |vj | − λ

L

)
, j = 1, . . . , J.(3.13)

An important advantage of using the proximal operator associated with the �1-
norm QL(β,wt ) is that it can provide us with sparse solutions, where the coef-
ficients for irrelevant inputs are set exactly to zeros, due to the soft-thresholding
operation in (3.13). When the term λ‖β‖1 is not included in the objective, for
overlapping group lasso, we can only obtain the group level sparsity but not the
individual feature level sparsity inside each group. However, as for optimization,
Algorithm 1 still applies in the same way. The only difference is that Step 2 of Al-
gorithm 1 becomes β t+1 = arg minβ h(wt ) + 〈β − wt ,∇h(wt )〉 + L

2 ‖β − wt‖2
2 =

wt − 1
L
∇h(wt ). Since there is no soft-thresholding step, the obtained solution β̂

has no exact zeros. We then need to set a threshold (e.g., 10−5) and select the rel-
evant groups which contain the variables with the parameter above this threshold.

3.4. Issues on the computation of the Lipschitz constant. When J is large, the
computation of λmax(XT X) and hence the Lipschitz constant L could be very ex-
pensive. To further accelerate Algorithm 1, a line search backtracking step could
be used to dynamically assign a constant Lt for the proximal operator in each itera-
tion [Beck and Teboulle (2009)]. More specifically, given any positive constant R,
let

QR(β,wt ) = h(wt ) + 〈β − wt ,∇h(wt )〉 + λ‖β‖1 + R

2
‖β − wt‖2

2

and

β t+1 ≡ βR(wt ) = arg min
β

QR(β,wt ).

The key to guarantee the convergence rate of Algorithm 1 is to ensure that the
following inequality holds for each iteration:

f̃ (β t+1) = h(β t+1) + λ‖β t+1‖1 ≤ QR(β t+1,wt ).(3.14)
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It is easy to check that when R is equal to the Lipschitz constant L, it will satisfy
the above inequality for any β t+1 and wt . However, when it is difficult to compute
the Lipschitz constant, instead of using a global constant L, we could find a se-
quence {Lt }Tt=0 such that Lt+1 satisfies the inequality (3.14) for the t th iteration.
In particular, we start with any small constant L0. For each iteration, we find the
smallest integer a ∈ {0,1,2, . . .} such that by setting Lt+1 = τaLt , where τ > 1 is
a predefined scaling factor, we have

f̃ (βLt+1
(wt )) ≤ QLt+1(βLt+1

(wt ),wt ).(3.15)

Then we set β t+1 = βLt+1
(wt ) ≡ arg minQLt+1(β,wt ).

3.5. Convergence rate and time complexity. Although we optimize the ap-
proximation function f̃ (β) rather than the original f (β) directly, it can be proven
that f (β̂) is sufficiently close to the optimal objective value of the original func-
tion f (β∗). The convergence rate of Algorithm 1 is presented in the next theorem.

THEOREM 2. Let β∗ be the optimal solution to (2.2) and β t be the approxi-
mate solution at the t th iteration in Algorithm 1. If we require f (β t ) − f (β∗) ≤ ε

where f is the original objective, and set μ = ε
2D

, then the number of iterations t

is upper-bounded by√
4‖β∗ − β0‖2

2

ε

(
λmax(XT X) + 2D‖C‖2

ε

)
.(3.16)

The key idea behind the proof of this theorem is to decompose f (β t ) − f (β∗)
into three parts: (i) f (β t ) − f̃ (β t ), (ii) f̃ (β t ) − f̃ (β∗) and (iii) f̃ (β∗) − f (β∗).
(i) and (iii) can be bounded by the gap of the approximation μD; and (ii) only
involves the function f̃ and can be upper bounded by O( 1

t2 ) as shown in Beck
and Teboulle (2009). We obtain (3.16) by balancing these three terms. The details
of the proof are presented in the Appendix. According to Theorem 2, Algorithm 1

converges in O(
√

2D
ε

) iterations, which is much faster than the subgradient method
with the convergence rate of O( 1

ε2 ). Note that the convergence rate depends on D

through the term
√

2D, and the D depends on the problem size.

REMARK 2. Since there is no line search in Algorithm 1, we cannot guar-
antee that the objective values are monotonically decreasing over iterations theo-
retically. But empirically, based on our own experience, the objective values al-
ways decrease over iterations. One simple strategy to guarantee the monotone
decreasing property is to first compute β̃ t+1 = arg minβ QL(β,wt ) and then set

β t+1 = arg minβ∈{β̃ t+1,β t } f (β).
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TABLE 1
Comparison of per-iteration time complexity

Overlapping group lasso Graph-guided fused lasso

SPG O(J min(J,N) + ∑
g∈G |g|) O(J min(J,N) + |E|)

IPM O((J + |G|)2(N + ∑
g∈G |g|)) O((J + |E|)3)

REMARK 3. Theorem 2 only shows the convergence rate for the objective
value. As for the estimator β t , since it is a convex optimization problem, it is
well known that β t will eventually converge to β∗. However, the speed of conver-
gence of β t to β∗ depends on the structure of the input X. If h(β) is a strongly
convex function with the strong convexity parameter, σ > 0. In our problem, it is
equivalent to saying that XT X is a nonsingular matrix with the smallest eigenvalue
σ > 0. Then we can show that if f (β t ) − f (β∗) ≤ ε at the convergence, then

‖β t −β∗‖2 ≤
√

2ε
σ

. In other words, β t converges to β∗ in �2-distance at the rate of

O( 1
ε2 ). For general high-dimensional sparse learning problems with J > N , XT X

is singular and, hence, the optimal solution β∗ is not unique. In such a case, one
can only show that β t will converge to one of the optimal solutions. But the speed
of the convergence of ‖β t −β∗‖2 or its relationship with f (β t )−f (β∗) is widely
recognized as an open problem in the optimization community.

As for the time complexity, the main computational cost in each iteration comes
from calculating the gradient ∇h(wt ). Therefore, SPG shares almost the same per-
iteration time as the subgradient descent but with a faster convergence rate. In
more details, if J < N and XT X and XT y can be pre-computed and stored in
memory, the computation of the first part of ∇h(wt ), (XT X)wt − (XT y), takes
the time complexity of O(J 2). Otherwise, if J > N , we can compute this part
by XT (Xwt − y), which takes the time complexity of O(JN). As for the generic
solver, IPM for SOCP for overlapping group lasso or IPM for QP for graph-guided
fused lasso, although it converges in fewer iterations [i.e., log(1

ε
)], its per-iteration

complexity is higher by orders of magnitude than ours as shown in Table 1. In
addition to time complexity, IPM requires the pre-storage of XT X and each IPM
iteration requires significantly more memory to store the Newton linear system.
Therefore, the SPG is much more efficient and scalable for large-scale problems.

3.6. Summary and discussions. The insight of our work was drawn from two
lines of earlier works. The first one is the proximal gradient methods (e.g., Nes-
terov’s composite gradient method [Nesterov (2007)], FISTA [Beck and Teboulle
(2009)]. They have been widely adopted to solve optimization problems with a
convex loss and a relatively simple nonsmooth penalty, achieving O( 1√

ε
) conver-

gence rate. However, the complex structure of the nonseparable penalties consid-
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ered in this paper makes it intractable to solve the proximal operator exactly. This
is the challenge that we circumvent via smoothing.

The general idea of the smoothing technique used in this paper was first intro-
duced by Nesterov (2005). The algorithm presented in Nesterov (2005) only works
for smooth problems so that it has to smooth out the entire nonsmooth penalty.
Our approach separates the simple nonsmooth �1-norm penalty from the complex
structured sparsity-inducing penalties. In particular, when an �1-norm penalty is
used to enforce the individual-feature-level sparsity (which is especially necessary
for fused lasso), we smooth out the complex structured-sparsity-inducing penalty
while leaving the simple �1-norm as it is. One benefit of our approach is that it
can lead to solutions with exact zeros for irrelevant features due to the �1-norm
penalty and hence avoid the post-processing (i.e., truncation) step.3 Moreover, the
algorithm in Nesterov (2005) requires the condition that β is bounded and that the
number of iterations is predefined, which are impractical for real applications.

As for the convergence rate, the gap between O(1
ε
) and the optimal rate O( 1√

ε
)

is due to the approximation of the structured sparsity-inducing penalty. It is possi-
ble to show that if X has a full column rank, O( 1√

ε
) can be achieved by a variant of

the excessive gap method [Nesterov (2003)]. However, such a rate cannot be eas-
ily obtained for sparse regression problems where J > N . For some special cases
as discussed in the next section, such as tree-structured or the �1/�∞ mixed-norm
based overlapping groups, O( 1√

ε
) can be achieved at the expense of more compu-

tation time for solving the proximal operator. It remains an open question whether
we can further boost the generally-applicable SPG method to achieve O( 1√

ε
).

4. Related optimization methods.

4.1. Connections with majorization–minimization. The idea of constructing
a smoothing approximation has also been adopted in another widely used opti-
mization method, majorization–minimization (MM) for minimization problem (or
minorization–maximization for maximization problem) [Lange (2004)]. To mini-
mize a given objective, MM replaces the difficult-to-optimize objective function
with a simple (and smooth in most cases) surrogate function which majorizes the
objective. It minimizes the surrogate function and iterates such a procedure. The
difference between our approach and MM is that our approximation is a uniformly
smooth lower bound of the objective with a bounded gap, whereas the surrogate
function in MM is an upper bound of the objective. In addition, MM is an itera-
tive procedure which iteratively constructs and minimizes the surrogate function,
while our approach constructs the smooth approximation once and then applies the

3When there is no �1-norm penalty in the model (i.e., λ = 0), our method still applies. However, to
conduct variable selection, as for other optimization methods (e.g., IPM), we need a post-processing
step to truncate parameters below a certain threshold to zeros.
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proximal gradient descent to optimize it. With the quadratic surrogate functions for
the �2-norm and fused-lasso penalty derived in Wu and Lange (2008) and Zhang
et al. (2010), one can easily apply MM to solve the structured sparse regression
problems. However, in our problems, the Hessian matrix in the quadratic surrogate
will no longer have a simple structure (e.g., tridiagonal symmetric structure in
chain-structured fused signal approximator). Therefore, one may need to apply the
general optimization methods, for example, conjugate-gradient or quasi-Newton
method, to solve a series of quadratic surrogate functions. In addition, since the
objective functions considered in our paper are neither smooth nor strictly convex,
the local and global convergence results for MM in Lange (2004) cannot be ap-
plied. It seems to us still an open problem to derive the local, global convergence
and the convergence rate for MM for the general nonsmooth convex optimization.

Recently, many first-order approaches have been developed for various sub-
classes of overlapping group lasso and graph-guided fused lasso. Below, we pro-
vide a survey of these methods:

4.2. Related work for mixed-norm based group-lasso penalty. Most of the
existing optimization methods developed for mixed-norm penalties can handle
only a specific subclass of the general overlapping-group-lasso penalties. Most
of these methods use the proximal gradient framework [Beck and Teboulle (2009),
Nesterov (2007)] and focus on the issue of how to exactly solve the proximal oper-
ator. For nonoverlapping groups with the �1/�2 or �1/�∞ mixed-norms, the proxi-
mal operator can be solved via a simple projection [Duchi and Singer (2009), Liu,
Ji and Ye (2009)]. A one-pass coordinate ascent method has been developed for
tree-structured groups with the �1/�2 or �1/�∞ [Liu and Ye (2010b), Jenatton et al.
(2010)], and quadratic min-cost network flow for arbitrary overlapping groups with
the �1/�∞ [Mairal et al. (2010)].

Table 2 summarizes the applicability, the convergence rate and the per-iteration
time complexity for the available first-order methods for different subclasses of
group lasso penalties. More specifically, the methods in the first three rows adopt
the proximal gradient framework. The first column of these rows gives the solver
for the proximal operator. Each entry in Table 2 contains the convergence rate and
the per-iteration time complexity. For the sake of simplicity, for all methods, we
omit the time for computing the gradient of the loss function which is required for
all of the methods [i.e., ∇g(β) with O(J 2)]. The per-iteration time complexity in
the table may come from the computation of the proximal operator or subgradient
of the penalty. “N.A.” stands for “not applicable” or no guarantee in the conver-
gence. As we can see from Table 2, although our method is not the most ideal
one for some of the special cases, our method along with FOBOS [Duchi and
Singer (2009)] are the only generic first-order methods that can be applied to all
subclasses of the penalties.

As we can see from Table 2, for arbitrary overlaps with the �1/�∞, although
the method proposed in Mairal et al. (2010) achieves O( 1√

ε
) convergence rate, the
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TABLE 2
Comparisons of different first-order methods for optimizing mixed-norm based overlapping-group-lasso penalties

No overlap No overlap Overlap Overlap Overlap Overlap
Method �1/�2 �1/�∞ tree �1/�2 tree �1/�∞ arbitrary �1/�2 arbitrary �1/�∞
Projection O( 1√

ε
), O(J ) O( 1√

ε
), O(J logJ ) N.A. N.A. N.A. N.A.

[Liu, Ji and Ye (2009)]

Coordinate ascent O( 1√
ε
), O(J ) O( 1√

ε
), O(J logJ ) O( 1√

ε
), O( 1√

ε
), N.A. N.A.

[Jenatton et al. (2010), O(
∑

g∈G |g|) O(
∑

g∈G |g| log|g|)
Liu and Ye (2010b)]

Network Flow [Mairal N.A. O( 1√
ε
), quadratic N.A. O( 1√

ε
), quadratic N.A. O( 1√

ε
), quadratic

et al. (2010)] min-cost flow min-cost flow min-cost flow

FOBOS [Duchi and O( 1
ε ), O(J ) O( 1

ε ), O(J logJ ) O( 1
ε ), O( 1

ε ), O( 1
ε2 ), O( 1

ε ), quadratic
Singer (2009)] O(

∑
g∈G |g|) O(

∑
g∈G |g| log|g|) O(

∑
g∈G |g|) min-cost flow

(subgradient)

SPG O( 1
ε ), O(J ) O( 1

ε ), O(J logJ ) O( 1
ε ), O( 1

ε ), O( 1
ε ), O( 1

ε ),
O(

∑
g∈G |g|) O(

∑
g∈G |g| log|g|) O(

∑
g∈G |g|) O(

∑
g∈G |g| log|g|)
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per-iteration complexity can be high due to solving a quadratic min-cost network
flow problem. From the worst-case analysis, the per-iteration time complexity for
solving the network flow problem in Mairal et al. (2010) is at least O(|V ||E|) =
O((J + |G|)(|G| + J + ∑

g∈G |g|)), which is much higher than our method with
O(

∑
g∈G |g| log|g|). More importantly, for the case of arbitrary overlaps with the

�1/�2, our method has a superior convergence rate to all the other methods.
In addition to these methods, an active-set algorithm was proposed that can be

applied to the square of the �1/�2 mixed-norm with overlapping groups [Jenatton,
Audibert and Bach (2009)]. This method formulates each subproblem involving
only the active variables either as an SOCP, which can be computationally expen-
sive for a large active set, or as a jointly convex problem with auxiliary variables,
which is then solved by an alternating gradient descent. The latter approach in-
volves an expensive matrix inversion at each iteration and lacks the global conver-
gence rate. Another method [Liu and Ye (2010a)] was proposed for the overlapping
group lasso which approximately solves the proximal operator. However, the con-
vergence of this type of approach cannot be guaranteed, since the error introduced
in each proximal operator will be accumulated over iterations.

4.3. Related work for fused lasso. For the graph-guided-fused-lasso penalty,
when the structure is a simple chain, the pathwise coordinate descent method
[Friedman et al. (2007)] can be applied. For the general graph structure, a first-
order method that approximately solves the proximal operator was proposed in
Liu, Yuan and Ye (2010). However, the convergence cannot be guaranteed due to
the errors introduced in computing the proximal operator over iterations.

Recently, two different path algorithms have been proposed [Tibshirani and Tay-
lor (2010), Zhou and Lange (2011)] that can be used to solve the graph-guided
fused lasso as a special case. Unlike the traditional optimization methods that solve
the problem for a fixed regularization parameter, they solve the entire path of so-
lutions, and, thus, have great practical advantages. In addition, for both methods,
updating solutions from one hitting time to another is computationally very cheap.
More specifically, a QR decomposition based updating scheme was proposed in
Tibshirani and Taylor (2010) and the updating in Zhou and Lange (2011) can be
done by an efficient sweep operation.

However, for high-dimensional data with J � N , the path algorithms can have
the following problems:

(1) For a general design matrix X other than the identity matrix, the method in
Tibshirani and Taylor (2010) needs to first compute the pseudo-inverse of X : X+ =
(XT X)+XT , which could be computationally expensive for large J .

(2) The original version of the algorithms in Tibshirani and Taylor (2010) and
Zhou and Lange (2011) requires that X has a full column rank. When J > N ,
although one can add an extra ε‖β‖2

2 term, this changes the original objective value
especially when ε is large. For smaller ε, the matrix (X∗)T X∗ with X∗ = [ X

εI

]
is
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TABLE 3
Comparisons of different methods for optimizing graph-guided fused lasso

Method Preprocessing Per-iteration No. of
and condition time time complexity iterations

[Zhou and O(J 3) O((|E| + J )2) O(|E| + J )

Lange (2011)]
(X full column
rank, entire path)

[Tibshirani and O(J 3 + N(|E| + J ) O(min((|E| + J )2,N2)) O(|E| + J )

Taylor (2010)] ×min((|E| + J ),N)) (lower bound)
(X full column
rank, entire path)

[Tibshirani and O(J 3 + J 2N + (|E| + J )2N) O(N2) O(|E| + J )

Taylor (2010)] (lower bound)
(X not full column
rank, entire path)

SPG (single O(NJ 2) O(J 2 + |E|) O( 1
ε )

regularization
parameter)

highly ill-conditioned; and hence computing its inverse as the initialization step in
Tibshirani and Taylor (2010) is very difficult. There is no known result on how to
balance this trade-off.

(3) In both Tibshirani and Taylor (2010) and Zhou and Lange (2011), the au-
thors extend their algorithm to deal with the case when X does not have a full
column rank. The extended version requires a Gramm–Schmidt process as the ini-
tialization, which could take some extra time.

In Table 3 we present the comparisons for different methods. From our analysis,
the method in Zhou and Lange (2011) is more efficient than the one in Tibshirani
and Taylor (2010) since it avoids the heavy computation of the pseudo-inverse
of X. In practice, if X has a full column rank and one is interested in solutions on
the entire path, the method in Zhou and Lange (2011) is very efficient and faster
than our method. Instead, when J � N , the path following methods may require
a time-consuming preprocessing procedure.

5. Extensions to multi-task regression with structures on outputs. The
structured sparsity-inducing penalties as discussed in the previous section can be
similarly used in the multi-task regression setting [Kim and Xing (2010), Kim,
Sohn and Xing (2009)], where the prior structural information is available for the
outputs instead of inputs. For example, in genetic association analysis, where the
goal is to discover few genetic variants or single nucleotide polymorphisms (SNPs)
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FIG. 2. Illustration of the multi-task regression with graph structure on outputs.

out of millions of SNPs (inputs) that influence phenotypes (outputs) such as gene
expression measurements, the correlation structure of the phenotypes can be nat-
urally represented as a graph, which can be used to guide the selection of SNPs
as shown in Figure 2. Then, the graph-guided-fused-lasso penalty can be used to
identify SNPs that are relevant jointly to multiple related phenotypes.

In a sparse multi-task regression with structure on the output side, we encounter
the same difficulties of optimizing with nonsmooth and nonseparable penalties as
in the previous section, and the SPG can be extended to this problem in a straight-
forward manner. Due to the importance of this class of problems and its appli-
cations, in this section, we briefly discuss how our method can be applied to the
multi-task regression with structured-sparsity-inducing penalties.

5.1. Multi-task linear regression regularized by structured sparsity-inducing
penalties. For the simplicity of illustration, we assume all different tasks share
the same input matrix. Let X ∈ R

N×J denote the matrix of input data for J inputs
and Y ∈ R

N×K denote the matrix of output data for K outputs over N samples. We
assume a linear regression model for each of the kth outputs: yk = Xβk +εk,∀k =
1, . . . ,K , where βk = [β1k, . . . , βJk]T is the regression coefficient vector for the
kth output and εk is Gaussian noise. Let B = [β1, . . . ,βK ] ∈ R

J×K be the ma-
trix of regression coefficients for all of the K outputs. Then, the multi-task (or
multivariate-response) structured sparse regression problem can be naturally for-
mulated as the following optimization problem:

min
B∈RJ×K

f (B) ≡ 1

2
‖Y − XB‖2

F + �(B) + λ‖B‖1,(5.1)

where ‖ · ‖F denotes the matrix Frobenius norm, ‖ · ‖1 denotes the matrix entry-
wise �1 norm, and �(B) is a structured sparsity-inducing penalty with a structure
over the outputs.

(1) Overlapping-group-lasso penalty in multi-task regression. We define the
overlapping-group-lasso penalty for a structured multi-task regression as follows:

�(B) ≡ γ

J∑
j=1

∑
g∈G

wg‖βjg‖2,(5.2)
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where G = {g1, . . . , g|G|} is a subset of the power set of {1, . . . ,K} and βjg is the
vector of regression coefficients corresponding to outputs in group g : {βjk, k ∈
g,g ∈ G}. Both the �1/�2 mixed-norm penalty for multi-task regression in
Obozinski, Taskar and Jordan (2009) and the tree-structured overlapping-group-
lasso penalty in Kim and Xing (2010) are special cases of (5.2).

(2) Graph-guided-fused-lasso penalty in multi-task regression. Assuming that
a graph structure over the K outputs is given as G with a set of nodes V =
{1, . . . ,K}, each corresponding to an output variable and a set of edges E, the
graph-guided-fused-lasso penalty for a structured multi-task regression is given as

�(B) = γ
∑

e=(m,l)∈E

τ(rml)

J∑
j=1

|βjm − sign(rml)βj l|.(5.3)

5.2. Smoothing proximal gradient descent. Using similar techniques in Sec-
tion 3.1, �(B) can be reformulated as

�(B) = max
A∈Q

〈CBT ,A〉,(5.4)

where 〈U,V〉 ≡ Tr(UT V) denotes a matrix inner product. C is constructed in a
similar way as in (3.2) or (3.3), just by replacing the index of the input variables
with the output variables, and A is the matrix of the auxiliary variables.

Then we introduce the smooth approximation of (5.4):

fμ(B) = max
A∈Q

(〈CBT ,A〉 − μd(A)),(5.5)

where d(A) ≡ 1
2‖A‖2

F . Following a proof strategy similar to that in Theorem 1,
we can show that fμ(B) is convex and smooth with gradient ∇fμ(B) = (A∗)T C,
where A∗ is the optimal solution to (5.5). The closed-form solution of A∗ and the
Lipschitz constant for ∇fμ(B) can be derived in the same way.

By substituting �(B) in (5.1) with fμ(B), we can adopt Algorithm 1 to solve
(5.1) with convergence rate of O(1

ε
). The per-iteration time complexity of SPG

as compared to IPM for SOCP or QP formulation is presented in Table 4. As we
can see, the per-iteration complexity for SPG is linear in max(|K|,∑

g∈G |g|) or
max(|K|, |E|), while traditional approaches based on IPM scape at least cubically
to the size of outputs K .

TABLE 4
Comparison of per-iteration time complexity for multi-task regression

Overlapping group lasso Graph-guided fused lasso

SPG O(JK min(J,N) + J
∑

g∈G |g|) O(JK min(J,N) + J |E|)
IPM O(J 2(K + |G|)2(KN + J (

∑
g∈G |g|))) O(J 3(K + |E|)3)
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6. Experiment. In this section we evaluate the scalability and efficiency of
the smoothing proximal gradient method (SPG) on a number of structured sparse
regression problems via simulation, and apply SPG to an overlapping group lasso
problem on real genetic data.

On an overlapping group lasso problem, we compare the SPG with FOBOS
[Duchi and Singer (2009)] and IPM for SOCP.4 On a multi-task graph-guided
fused lasso problem, we compare the running time of SPG with that of the FO-
BOS [Duchi and Singer (2009)] and IPM for QP.5 Note that for FOBOS, since
the proximal operator associated with �(β) cannot be solved exactly, we set the
“loss function” to l(β) = g(β) + �(β) and the penalty to λ‖β‖1. According to
Duchi and Singer (2009), for the nonsmooth loss l(β), FOBOS achieves O( 1

ε2 )

convergence rate, which is slower than our method.
All experiments are performed on a standard PC with 4GB RAM and the soft-

ware is written in MATLAB. The main difficulty in comparisons is a fair stop-
ping criterion. Unlike IPM, SPG and FOBOS do not generate a dual solution and,
therefore, it is not possible to compute a primal-dual gap, which is the traditional
stopping criterion for IPM. Here, we adopt a widely used approach for comparing
different methods in the optimization literature. Since it is well known that IPM
usually gives a more accurate (i.e., lower) objective, we set the objective obtained
from IPM as the optimal objective value and stop the first-order methods when the
objective is below 1.001 times the optimal objective. For large data sets for which
IPM cannot be applied, we stop the first-order methods when the relative change
in the objective is below 10−6. In addition, maximum iterations are set to 20,000.

Since our main focus is on the optimization algorithm, for the purpose of sim-
plicity, we assume that each group in the overlapping group lasso problem receives
the same amount of regularization and, hence, set the weights wg for all groups to
be 1. In principle, more sophisticated prior knowledge of the importance for each
group can be naturally incorporated into wg . In addition, we notice that each vari-
able j with the regularization λ|βj | in λ‖β‖1 can be viewed as a singleton group.
To ease the tuning of parameters, we again assume that each group (including the
singleton group) receives the same amount of regularization and, hence, constrain
the regularization parameters λ = γ .

The smoothing parameter μ is set to ε
2D

according to Theorem 2, where D is
determined by the problem size. It is natural that for large-scale problems with
large D, a larger ε can be adopted without affecting the recovery quality signifi-
cantly. Therefore, instead of setting ε, we directly set μ = 10−4, which provided
us with reasonably good approximation accuracies for different scales of problems
based on our experience for a range of μ in simulations. As for FOBOS, we set the

4We use the state-of-the-art MATLAB package SDPT3 [Tütüncü, Toh and Todd (2003)] for SOCP.
5We use the commercial package MOSEK (http://www.mosek.com/) for QP. The graph-guided

fused lasso can also be solved by SOCP, but it is less efficient than QP.

http://www.mosek.com/
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stepsize rate to c√
t

as suggested in Duchi and Singer (2009), where c is carefully

tuned to be 0.1√
NJ

for univariate regression and 0.1√
NJK

for multi-task regression.

6.1. Simulation study I: Overlapping group lasso. We simulate data for a uni-
variate linear regression model with the overlapping group structure on the inputs
as described below. Assuming that the inputs are ordered, we define a sequence of
groups of 100 adjacent inputs with an overlap of 10 variables between two succes-
sive groups so that

G = {{1, . . . ,100}, {91, . . . ,190}, . . . , {J − 99, . . . , J }}
with J = 90|G| + 10. We set βj = (−1)j exp(−(j − 1)/100) for 1 ≤ j ≤ J . We
sample each element of X from i.i.d. Gaussian distribution, and generate the output
data from y = Xβ + ε, where ε ∼ N(0, IN×N).

To demonstrate the efficiency and scalability of SPG, we vary J , N and γ and
report the total CPU time in seconds and the objective value in Table 5. The regu-
larization parameter γ is set to either |G|/5 or |G|/20. As we can see from Table 5,

TABLE 5
Comparisons of different optimization methods on the overlapping group lasso

N = 1,000 N = 5,000 N = 10,000

CPU (s) Obj. CPU (s) Obj. CPU (s) Obj.

|G| = 10 (J = 910)

γ = 2 SOCP 103.71 266.683 493.08 917.132 3,777.46 1,765.518
FOBOS 27.12 266.948 1.71 918.019 1.48 1,765.613

SPG 0.87 266.947 0.71 917.463 1.28 1,765.692

γ = 0.5 SOCP 106.02 83.304 510.56 745.102 3,585.77 1,596.418
FOBOS 32.44 82.992 4.98 745.788 4.65 1,597.531

SPG 0.42 83.386 0.41 745.104 0.69 1,596.452

|G| = 50 (J = 4,510)

γ = 10 SOCP 4,144.20 1,089.014 – – – –
FOBOS 476.91 1,191.047 394.75 1,533.314 79.82 2,263.494

SPG 56.35 1,089.052 77.61 1,533.318 78.90 2,263.601

γ = 2.5 SOCP 3,746.43 277.911 – – – –
FOBOS 478.62 286.327 867.94 559.251 183.72 1,266.728

SPG 33.09 277.942 30.13 504.337 26.74 1,266.723

|G| = 100 (J = 9,010)

γ = 20 FOBOS 1,336.72 2,090.808 2,261.36 3,132.132 1,091.20 3,278.204
SPG 234.71 2,090.792 225.28 2,692.981 368.52 3,278.219

γ = 5 FOBOS 1,689.69 564.209 2,287.11 1,302.552 3,342.61 1,185.661
SPG 169.61 541.611 192.92 736.559 176.72 1,114.933
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first, both SPG and FOBOS are more efficient and scalable by orders of magnitude
than IPM for SOCP. For larger J and N , we are unable to collect the results for
SOCP. Second, SPG is more efficient than FOBOS for almost all different scales of
the problems.6 Third, for SPG, a smaller γ leads to faster convergence. This result
is consistent with Theorem 2, which shows that the number of iterations is linear
in γ through the term ‖C‖. Moreover, we notice that a larger N does not increase
the computational time for SPG. This is also consistent with the time complexity
analysis, which shows that for linear regression, the per-iteration time complexity
is independent of N .

However, we find that the solutions from IPM are more accurate and, in fact,
it is hard for first-order approaches to achieve the same precision as IPM. Assum-
ing that we require ε = 10−6 for the accuracy of the solution, it takes IPM about
O(log(1

ε
)) ≈ 14 iterations to converge, while it takes O(1

ε
) = 106 iterations for

SPG. This is the drawback for any first-order method. However, in many real ap-
plications, we do not require the objective to be extremely accurate (e.g., ε = 10−3

is sufficiently accurate in general) and first-order methods are more suitable. More
importantly, first-order methods can be applied to large-scale high-dimensional
problems while IPM can only be applied to small or moderate scale problems due
to the expensive computation necessary for solving the Newton linear system.

6.2. Simulation study II: Multi-task graph-guided fused lasso. We simulate
data using the following scenario analogous to the problem of genetic association
mapping, where we are interested in identifying a small number of genetic vari-
ations (inputs) that influence the phenotypes (outputs). We use K = 10, J = 30
and N = 100. To simulate the input data, we use the genotypes of the 60 indi-
viduals from the parents of the HapMap CEU panel [The International HapMap
Consortium (2005)], and generate genotypes for an additional 40 individuals by
randomly mating the original 60 individuals. We generate the regression coeffi-
cients βk’s such that the outputs yk’s are correlated with a block-like structure in
the correlation matrix. We first choose input-output pairs with nonzero regression
coefficients as we describe below. We assume three groups of correlated output
variables of sizes 3, 3 and 4. We randomly select inputs that are relevant jointly
among the outputs within each group, and select additional inputs relevant across
multiple groups to model the situation of a higher-level correlation structure across
two subgraphs as in Figure 3(a). Given the sparsity pattern of B, we set all nonzero
βij to a constant b = 0.8 to construct the true coefficient matrix B. Then, we simu-
late output data based on the linear regression model with noise distributed as stan-
dard Gaussian, using the simulated genotypes as inputs. We threshold the output

6In some entries in Table 5, the Obj. from FOBOS is much larger than other methods. This is
because that FOBOS has reached the maximum number of iterations before convergence. Instead,
for our simulations, SPG generally converges in hundreds of, or, at most, a few thousand, iterations
and never pre-terminates.
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FIG. 3. Regression coefficients estimated by different methods based on single simulated data.
b = 0.8 and threshold ρ = 0.3 for the output correlation graph are used. Red pixels indicate large
values. (a) The correlation coefficient matrix of phenotypes, (b) the edges of the phenotype correlation
graph obtained at threshold 0.3 are shown as black pixels and (c) the true regression coefficients
used in simulation. Absolute values of the estimated regression coefficients are shown for (d) lasso,
(e) �1/�2 regularized multi-task regression and (f) graph-guided fused lasso. Rows correspond to
outputs and columns to inputs.

correlation matrix in Figure 3(a) at ρ = 0.3 to obtain the graph in Figure 3(b), and
use this graph as prior structural information for the graph-guided fused lasso. As
an illustrative example, the estimated regression coefficients from different regres-
sion models for recovering the association patterns are shown in Figures 3(d)–(f).
While the results of the lasso and �1/�2-regularized multi-task regression with
�(B) = ∑J

j=1 ‖βj,:‖2 [Obozinski, Taskar and Jordan (2009)] in Figures 3(d) and
(e) contain many false positives, the results from the graph-guided fused lasso in
Figure 3(f) show fewer false positives and reveal clear block structures. Thus, the
graph-guided fused lasso proves to be a superior regression model for recover-
ing the true regression pattern that involves structured sparsity in the input/output
relationships.

To compare SPG with FOBOS and IPM for QP in solving such a structured
sparse regression problem, we vary K , J , N and present the computation time in
seconds in Figures 4(a)–(c), respectively. We select the regularization parameter
γ using separate validation data, and report the CPU time for the graph-guided
fused lasso with the selected γ . The input/output data and true regression coeffi-
cient matrix B are generated in a way similar as above. More precisely, we assume
that each group of correlated output variables is of size 10. For each group of the
outputs, we randomly select 10% of the input variables as relevant. In addition,
we randomly select 5% of the input variables as relevant to every two consecutive
groups of outputs and 1% of the input variables as relevant to every three consecu-
tive groups. We set the ρ for each data item so that the number of edges is 5 times
the number of the nodes (i.e., |E| = 5K). Figure 4 shows that SPG is substantially
more efficient and can scale up to very high-dimensional and large-scale data sets.
Moreover, we notice that the increase of N almost does not affect the computation
time of SPG, which is consistent with the complexity analysis in Section 3.5.
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(a) (b)

(c)

FIG. 4. Comparisons of SPG, FOBOS and QP. (a) Vary K from 50 to 10,000, fixing N = 500,
J = 100; (b) vary J from 50 to 10,000, fixing N = 1,000, K = 50; and (c) vary N from 500 to
10,000, fixing J = 100, K = 50.

6.3. Real data analysis: Pathway analysis of breast cancer data. In this sec-
tion we apply the SPG to an overlapping group lasso problem with a logistic loss
on real-world data collected from breast cancer tumors [Jacob, Obozinski and Vert
(2009), van de Vijver (2002)]. The main goal is to demonstrate the importance
of employing structured sparsity-inducing penalties for performance enhancement
in real life high-dimensional regression problems, thereby further exhibiting and
justifying the needs of efficient solvers such as SPG for such problems.

The data are given as gene expression measurements for 8,141 genes in 295
breast-cancer tumors (78 metastatic and 217 nonmetastatic). A lot of research ef-
forts in biology have been devoted to identifying biological pathways that consist
of a group of genes participating in a particular biological process to perform a
certain functionality in the cell. Thus, a powerful way of discovering genes in-
volved in a tumor growth is to consider groups of interacting genes in each path-
way rather than individual genes independently [Ma and Kosorok (2010)]. The
overlapping-group-lasso penalty provides us with a natural way to incorporate this
known pathway information into the biological analysis, where each group con-
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sists of the genes in each pathway. This approach can allow us to find pathway-
level gene groups of significance that can distinguish the two tumor types. In our
analysis of the breast cancer data, we cluster the genes using the canonical path-
ways from the Molecular Signatures Database [Subramanian et al. (2005)], and
construct the overlapping-group-lasso penalty using the pathway-based clusters
as groups. Many of the groups overlap because genes can participate in multiple
pathways. Overall, we obtain 637 pathways over 3,510 genes, with each pathway
containing 23.47 genes on average and each gene appearing in four pathways on
average. Instead of analyzing all 8,141 genes, we focus on these 3,510 genes which
belong to certain pathways. We set up the optimization problem of minimizing the
logistic loss with the overlapping-group-lasso penalty to classify the tumor types
based on the gene expression levels, and solve it with SPG.

Since the number of positive and negative samples are imbalanced, we adopt
the balanced error rate defined as the average error rate of the two classes.7 We
split the data into the training and testing sets with the ratio of 2 : 1, and vary the
λ = γ from large to small to obtain the full regularization path.

In Figure 5 we compare the results from fitting the logistic regression with
the overlapping-group-lasso penalty with a baseline model with only the �1-norm
penalty. Figure 5(a) shows the balanced error rates for the different numbers of
selected genes along the regularization path. As we can see, the balanced error
rate for the model with the overlapping-group-lasso penalty is lower than the one
with the �1-norm, especially when the number of selected genes is between 500
to 1,000. The model with the overlapping-group-lasso penalty achieves the best
error rate of 29.23% when 696 genes are selected, and these 696 genes belong to
125 different pathways. In Figure 5(b), for the different numbers of selected genes,
we show the number of pathways to which the selected genes belong. From Fig-

(a) (b)

FIG. 5. Results from the analysis of breast cancer data. (a) Balanced error rate for varying the
number of selected genes, and (b) the number of pathways for varying the number of selected genes.

7See http://www.modelselect.inf.ethz.ch/evaluation.php for more details.

http://www.modelselect.inf.ethz.ch/evaluation.php
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ure 5(b) we see that when the group structure information is incorporated, fewer
pathways are selected. This indicates that regression with the overlapping-group-
lasso penalty selects the genes at the pathway level as a functionally coherent
group, leading to an easy interpretation for functional analysis. On the other hand,
the genes selected via the �1-norm penalty are scattered across many pathways, as
genes are considered independently for selection. The total computational time for
computing the whole regularization path with 20 different values for the regular-
ization parameters is 331 seconds for the overlapping group lasso.

We perform functional enrichment analysis on the selected pathways, using the
functional annotation tool [Huang, Sherman and Lempicki (2009)], and verify that
the selected pathways are significant in their relevance to the breast-cancer tumor
types. For example, in a highly sparse model obtained with the group-lasso penalty
at the very left end of Figure 5(b), the selected gene markers belong to only seven
pathways, and many of these pathways appear to be reasonable candidates for an
involvement in breast cancer. For instance, all proteins in one of the selected path-
ways are involved in the activity of proteases, whose function is to degrade unnec-
essary or damaged proteins through a chemical reaction that breaks peptide bonds.
One of the most important malignant properties of cancer involves the uncontrolled
growth of a group of cells, and protease inhibitors, which degrade misfolded pro-
teins, have been extensively studied in the treatment of cancer. Another interesting
pathway selected by the overlapping group lasso is known for its involvement in
nicotinate and nicotinamide metabolism. This pathway has been confirmed as a
marker for breast cancer in previous studies [Ma and Kosorok (2010)]. In par-
ticular, the gene ENPP1 (ectonucleotide pyrophosphatase/phosphodiesterase 1) in
this pathway has been found to be overly expressed in breast tumors [Abate et al.
(2005)]. Other selected pathways include the one related to ribosomes and another
related to DNA polymerase, which are critical in the process of generating proteins
from DNA and relevant to the property of uncontrolled growth in cancer cells.

We also examine the number of selected pathways that give the lowest error rate
in Figure 5. At the error rate of 29.23%, 125 pathways (696 genes) are selected.
It is interesting to notice that among these 125 pathways, one is closely related to
apoptosis, which is the process of programmed cell death that occurs in multicel-
lular organisms and is widely known to be involved in uncontrolled tumor growth
in cancer. Another pathway involves the genes BRCA1, BRCA2 and ATR, which
have all been associated with cancer susceptibility.

For comparison, we examine the genes selected with the �1-norm penalty that
does not consider the pathway information. In this case, we do not find any mean-
ingful functional enrichment signals that are relevant to breast cancer. For exam-
ple, among the 582 pathways that involve 687 genes at 37.55% error rate, we
find two large pathways with functional enrichments, namely, response to organic
substance (83 genes with p-value 3.3E−13) and the process of oxidation reduc-
tion (73 genes with p-value 1.7E−11). However, both are quite large groups and
matched to relatively high-level biological processes that do not provide much in-
sight on cancer-specific pathways.
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7. Conclusions and future work. In this paper we investigated an optimiza-
tion problem for estimating the structured-sparsity pattern in regression coeffi-
cients under a general class of structured sparsity-inducing penalties. Many of
the structured sparsity-inducing penalties including the overlapping-group-lasso
penalties and graph-guided-fused-lasso penalty share a common set of difficul-
ties in optimization such as nonseparability and nonsmoothness. We showed that
the optimization problems with these penalties can be transformed into a com-
mon form, and proposed a general optimization approach, called the smoothing
proximal gradient method, for efficiently solving the optimization problem of this
common form. Our results show that the proposed method enjoys both desirable
theoretical guarantee and practical scalability under various difficult settings in-
volving complex structure constraints, multi-task and high-dimensionality.

There are several future directions for this work. First, it is known that reducing
μ over iterations leads to better empirical results. However, in such a scenario, the
convergence rate is harder to analyze. Moreover, since the method is only based
on gradient, its online version with the stochastic gradient descent can be easily
derived. However, proving the regret bound will require a more careful investiga-
tion.

Another interesting direction is to incorporate other accelerating techniques into
our method to further boost the performance. For example, the technique intro-
duced in Zhou, Alexander and Lange (2011) can efficiently accelerate the algo-
rithms which essentially solve a fixed point problem as β = F(β). It uses an
approximation of the Jacobian of F(β). It is very interesting to incorporate this
technique into our framework. However, since there is an �1-norm penalty in our
model and the operator F is hence nondifferentiable, it is difficult to compute the
approximation of the Jacobian of F . One potential strategy is to use the idea from
the semi-smooth Newton method [Qi and Sun (1993), Sun, Womersley and Qi
(2002)] to solve the nonsmooth operator F .

APPENDIX

A.1. Proof of Theorem 1. We first introduce the concept of Fenchel conju-
gate.

DEFINITION 1. The Fenchel conjugate of a function ϕ(α) is the function
ϕ∗(β) defined as

ϕ∗(β) = sup
α∈dom(ϕ)

(
αT β − ϕ(α)

)
.

Recall that d(α) = 1
2‖α‖2 with the dom(α) = Q. According to Definition 1, the

conjugate of d(·) at Cβ
μ

is d∗(Cβ
μ

) = supα∈Q(αT Cβ
μ

− d(α)) and, hence,

fμ(β) ≡ arg max
α∈Q

(
αT Cβ − μd(α)

) = μd∗
(

Cβ

μ

)
.
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According to Theorem 26.3 in Rockafellar (1996), “a closed proper convex func-
tion is essentially strictly convex if and only if its conjugate is essentially smooth.”
Since d(α) is a closely proper strictly convex function, its conjugate is smooth.
Therefore, fμ(β) is a smooth function.

Now we apply Danskin’s theorem [Proposition B.25 in Bertsekas (1999)] to
derive ∇fμ(β). Let φ(α,β) = αT Cβ − μd(α). Since d(·) is a strongly convex
function, arg maxα∈Q φ(α,β) has a unique optimal solution and we denote it as α∗.
According to Danskin’s theorem,

∇fμ(β) = ∇βφ(α∗,β) = CT α∗.(A.1)

As for the proof of the Lipschitz constant of fμ(β), readers may refer to
Nesterov (2005).

A.2. Proof of Proposition 1.

α∗ = arg max
α∈Q

(
αT Cβ − μ

2
‖α‖2

2

)

= arg max
α∈Q

∑
g∈G

(
γwgα

T
g βg − μ

2
‖αg‖2

2

)
(A.2)

= arg min
α∈Q

∑
g∈G

∥∥∥∥αg − γwgβg

μ

∥∥∥∥2

2
.

Therefore, (A.2) can be decomposed into |G| independent problems: each one is
the Euclidean projection onto the �2-ball:

α∗
g = arg min

αg : ‖αg‖2≤1

∥∥∥∥αg − γwgβg

μ

∥∥∥∥2

2

and α∗ = [(α∗
g1

)T , . . . , (α∗
g|G|)

T ]T . According to the property of the �2-ball, it can
be easily shown that

α∗
g = S

(
γwgβg

μ

)
,

where

S(u) =
⎧⎨⎩

u
‖u‖2

, ‖u‖2 > 1,

u, ‖u‖2 ≤ 1.

As for ‖C‖,

‖Cv‖2 = γ

√∑
g∈G

∑
j∈g

(wg)2v2
j = λ

√√√√√ J∑
j=1

( ∑
g∈G s.t. j∈g

(wg)2
)
v2
j ,
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the maximum value of ‖Cv‖2, given ‖v‖2 ≤ 1, can be achieved by setting v
ĵ

for

j corresponding to the largest summation
∑

g∈G s.t. j∈g(wg)
2 to one, and setting

other vj ’s to zeros. Hence, we have

‖Cv‖2 = γ max
j∈{1,...,J }

√ ∑
g∈G s.t. j∈g

(wg)2.

A.3. Proof of Proposition 2. Similar to the proof technique of Proposition 1,
we reformulate the problem of solving α∗ as a Euclidean projection:

α∗ = arg max
α∈Q

(
αT Cβ − μ

2
‖α‖2

2

)
= arg min

α : ‖α‖∞≤1

∥∥∥∥α − Cβ

μ

∥∥∥∥2

2
,

and the optimal solution α∗ can be obtained by projecting Cβ
μ

onto the �∞-ball.
According to the construction of the matrix C, we have, for any vector v,

‖Cv‖2
2 = γ 2

∑
e=(m,l)∈E

(τ(rml))
2(

vm − sign(rml)vl

)2
.(A.3)

By the simple fact that (a±b)2 ≤ 2a2 +2b2 and the inequality holds as equality
if and only if a = ±b, for each edge e = (m, l) ∈ E, the value (vm − sign(rml)vl)

2

is upper bounded by 2v2
m + 2v2

l . Hence, when ‖v‖2 = 1, the right-hand side of
(A.3) can be further bounded by

‖Cv‖2
2 ≤ γ 2

∑
e=(m,l)∈E

2(τ (rml))
2(v2

m + v2
l )

= γ 2
∑
j∈V

( ∑
e incidenton k

2(τ (re))
2
)
v2
j

(A.4)
= γ 2

∑
j∈V

2djv
2
j

≤ 2γ 2 max
j∈V

dj ,

where

dj = ∑
e∈E s.t. e incident on j

(τ (re))
2.

Therefore, we have

‖C‖ ≡ max‖v‖2≤1
‖Cv‖2 ≤

√
2γ 2 max

j∈V
dj .

Note that this upper bound is tight because the first inequality in (A.4) is tight.
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A.4. Proof of Theorem 2. Based on the result from Beck and Teboulle
(2009), we have the following lemma:

LEMMA 1. For the function f̃ (β) = h(β)+λ‖β‖1, where h(β) is an arbitrary
convex smooth function and its gradient ∇h(β) is Lipschitz continuous with the
Lipschitz constant L, we apply Algorithm 1 to minimize f̃ (β) and let β t be the
approximate solution at the t th iteration. For any β , we have the following bound:

f̃ (β t ) − f̃ (β) ≤ 2L‖β − β0‖2
2

t2 .(A.5)

In order to use the bound in (A.5), we use the similar proof scheme as in Lan,
Lu and Monteiro (2011) and decompose f (β t ) − f (β∗) into three terms:

f (β t ) − f (β∗) = (
f (β t ) − f̃ (β t )

) + (
f̃ (β t ) − f̃ (β∗)

)
(A.6)

+ (
f̃ (β∗) − f (β∗)

)
.

According to the definition of f̃ , we know that for any β

f̃ (β) ≤ f (β) ≤ f̃ (β) + μD,

where D ≡ maxα∈Q d(α). Therefore, the first term in (A.6), f (β t ) − f̃ (β t ), is
upper-bounded by μD, and the last term in (A.6) is less than or equal to 0 [i.e.,
f̃ (β∗) − f (β∗) ≤ 0]. Combining (A.5) with these two simple bounds, we have

f (β t ) − f (β∗) ≤ μD + 2L‖β∗ − β0‖2
2

t2
(A.7)

≤ μD + 2‖β∗ − β0‖2
2

t2

(
λmax(XT X) + ‖C‖2

μ

)
.

By setting μ = ε
2D

and plugging this into the right-hand side of (A.7), we obtain

f (β t ) − f (β∗) ≤ ε

2
+ 2‖β∗‖2

2

t2

(
λmax(XT X) + 2D‖C‖2

ε

)
.(A.8)

If we require the right-hand side of (A.8) to be equal to ε and solve it for t , we
obtain the bound of t in (3.16).
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