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Abstract

Tree structured graphical models are powerful at expressing long range or hierarchical de-
pendency among many variables, and have been widely applied in different areas of computer
science and statistics. However, existing methods for parameter estimation, inference, and struc-
ture learning mainly rely on the Gaussian or discrete assumptions, which are restrictive under
many applications. In this paper, we propose new nonparametric methods based on reproducing
kernel Hilbert space embeddings of distributions that can recover the latent tree structures, esti-
mate the parameters, and perform inference for high dimensional continuous and non-Gaussian
variables. The usefulness of the proposed methods are illustrated by thorough numerical results.
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1 Introduction

Modern data acquisition routinely produces massive amounts of high dimensional data with complex
statistical dependency structures. Latent variable graphical models provide a succinct representa-
tion of such complex dependency structures by relating the observed variables to a set of latent
ones. By defining a joint distribution over observed and latent variables, the marginal distribution
of the observed variables can be obtained by integrating out the latent ones. This allows com-
plex distributions over observed variables (e.g., clique models) to be expressed in terms of more
tractable joint models (e.g., tree models) over the augmented variable space. Probabilistic graph-
ical models with latent variables have been deployed successfully to a diverse range of problems
such as in document analysis (Blei et al., 2002), social network modeling (Hoff et al., 2002), speech
recognition (Rabiner and Juang, 1986) and bioinformatics (Clark, 1990).

In this paper, we focus on latent variable models where the latent structures are trees (we call
it a “latent tree” for short). In these tree-structured graphical models, the leaves are the set of
observed variables (e.g., taxa, pixels, words) while the internal nodes are hidden and intuitively
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“represent” the common properties of their descendants (e.g., distinct ancestral species, objects in
an image, latent semantics). This class of models strike a nice balance between their representation
power (e.g., it can still model cliques) and the complexity of learning and inference processes on
these structures (e.g., the message passing inference algorithm is exact on trees). In particular, we
propose a unified nonparametric framework for addressing three key questions in tree-structured
latent variable models:

• Estimating latent tree structures

• Estimate model parameters

• Conduct inference on the obtained tree graphical models.

In the current literature, the problem of estimating the structure of latent trees has largely been
tackled by heuristic algorithms since exhaustively searching over the whole latent tree space is in-
tractable. For instance, Zhang (2004) proposed a search heuristic for hierarchical latent class models
by defining a series of local search operations and using the expectation-maximization (EM) algo-
rithm to compute the likelihood of candidate structures. Harmeling and Williams (2010) proposed
a greedy algorithm to learn binary trees by joining two nodes with a high mutual information and
iteratively performing the EM algorithm to compute the mutual information among newly added
hidden nodes. Alternatively, Heller and Ghahramani (2005) proposed the Bayesian hierarchical
clustering method, which is an agglomerative clustering technique that merges clusters based on
statistical hypothesis testing. Many other local search heuristics based on maximum parsimony
and maximum likelihood methods can also be found from the phylogenetic community (Semple
and Steel, 2003). Poon et al. (2010) propose a related model to latent trees called “pouch latent
tree models” which allows for multiple observed variables to be placed in the same leaf (pouch) of
the tree. Similar to the above methods, learning is done heuristically via a greedy BIC score search.
However, none of these methods extends easily to the nonparametric setting since they require the
data to be either discrete or at least the distributions have a parametric form such that likelihood
based testing and estimation can be easily computed.

Besides these heuristic approaches, many methods with provable guarantees have also been
proposed in the phylogenetic community (Erdös et al., 1999a,b; Mossel and Roch, 2006; Mossel,
2007; Roch, 2010; Mossel et al., 2011a,b; Gronau et al., 2008; Daskalakis et al., 2006, 2011; Anand-
kumar et al., 2011; Anandkumar and Valluvan, 2013). For instnace, neighbor joining algorithm
(Saitou et al., 1987) and recursive grouping algorithm (Choi et al., 2010) take a pairwise distance
matrix between all observed variables as input and output an estimated tree graph by iteratively
adding hidden nodes. While these methods are iterative, they have strong theoretical guarantees
on structure recovery when the true distance matrix forms an additive tree metric, i.e., the distance
between nodes s and t is equal to the sum of the distances of the edges along its path in a tree
T . In this case these methods are guaranteed to recover the correct structure (binary for neighbor
joining, but arbitrary branching for the recursive grouping method). However, a major challenge
in applying these distance based methods to the continuous, nonparametric case is that it is not
clear how to define a valid additive tree metric, and after recovering the latent tree structure, how
to perform efficient parameter learning and probabilistic inference (e.g., calculating the marginal
or conditional distributions).

Once the latent tree structure is correctly recovered, estimating the model parameters has
predominantly relied on likelihood maximization and local search heuristics such as the EM al-
gorithm (Dempster et al., 1977). Besides the problem of local minima, non-Gaussian statistical
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features such as multimodality and skewness may pose additional challenge for EM. For instance,
parametric models such as mixture of Gaussians may lead to an exponential blowup in terms of
their representation during the inference stage of the EM algorithm. Further approximations are
needed to make the computation tractable. These approximations make it even harder to analyze
the theoretical properties of the obtained estimator. In addition, the EM algorithm in general
requires many iterations to reach a pre-specified training precision.

In this paper, we all propose a method for learning the parameters of tree-structured latent
variable models with continuous and non-Gaussian observation based on the concept of Hilbert
space embedding of distributions (Smola et al., 2007a). The problems we try to address include:
(1) How to estimate the structures of latent trees with strong theoretical guarantees; (2) How
to perform local-minimum-free learning and inference based on the estimated tree structures, all
in nonparametric setting. The main idea of our method is to exploit the spectral properties of
the joint embedding (or covariance operators) in all the structure recovery, parameter learning,
and probabilistic inference stages. For structure learning, we define a distance measure between
pairwise variables based on singular value decomposition of covariance operators. This allows us to
generalize existing distance based latent tree learning procedures such as neighbor joining (Saitou
et al., 1987) and recursive grouping (Choi et al., 2010) to fully nonparametric settings. In this paper,
we focus on the case where the set of observed variables (leaves) are continuous-valued and their
joint distributions can not be easily characterized by a parametric family (e.g., Gaussian). Thus our
approach fundamentally differs from almost all others, which mainly consider the case of discrete
or Gaussian variables. Similar to their parametric counterparts, the obtained structure learning
algorithms have strong theoretical guarantees. After tree structures have been recovered, we further
exploit the principal singular vectors of the covariance operator to estimate the parameters of the
latent variables. One advantage of our spectral algorithm is that it is local-minimum-free and hence
amenable for further theoretical analysis. In particular, we will demonstrate the advantage of our
method over existing approaches in both simulation and real data experiments.

The rest of this paper is organized as follows. First, we will explain our terminology of latent
tree graphical models in Section 2. In Section 3, we will provide a road map of our nonparametric
framework which uses kernel embedding of distributions as key technique. In Section 4, we will
present connection between kernel density estimation for tree-structured latent variable models and
kernel embedding of the distributions of such models. Then in Section 5, we will first explain our
nonparametric methods for inference and parameter learning. And in Section 6, a nonparametric
method for structure learning, both based on the idea of Hilbert space embedding of distributions.
Last, we will present our experimental results in synthetic and real datasets in Section 7. An
introduction of the concept of Hilbert space embedding of distributions and conditional distributions
is provided in Appendix A and B respectively. Furthermore, the connection between Hilbert space
embedding of distributions and higher order tensors is presented in Section C instead.

2 Latent Tree Graphical Models

In this paper, we focus on latent variable models where the observed variables are continuous non-
Gaussian. We also assume the conditional independence structures of the joint distribution of the
observed and latent variables are fully specified by trees. We will use uppercase letters to denote
random variables (e.g., Xi) and lowercase letters to denote the corresponding realizations (e.g., xi).
For notational simplicity, we assume that the domain Ω of all variables are the same. Generalization
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to the cases where the variables have different domains is straightforward. A latent tree model
defines a joint distribution over a set of O observed variables, denoted by O = {X1, . . . , XO}, and
a set of H hidden variables, denoted by H = {XO+1, . . . , XO+H}. The complete set of variables is
denoted by X = O ∪H . For simplicity, we assume that

(A1) All observed variables have the same domain XO , and all hidden variables are discrete and
take k values from XH . Furthermore, all observed variables are leaf nodes of the tree, and
each hidden node in the tree has exactly 3 neighbors.

In this case, after we re-root the tree and redirect all the edges, for a node s (corresponding to
the variable Xs), we use αs to denote its sibling, πs to denote its parent, ιs to denote its left child
and ρs to denote its right child; the root node will have 3 children, we use ωs to denote the extra
child of the root node. All the observed variables are leaves in the tree, and we will use ι∗s, ρ

∗
s, π

∗
s

to denote an arbitrary observed variable which is found by tracing in the direction from node s to
its left child ιs, right child ρs, and its parent πs respectively. See Figure 1 for a summary of the
notation.

  𝑋𝜋𝑠
 

 𝑋𝑠 
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 𝑋𝜄𝑠
   𝑋𝜌𝑠
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  𝑋𝜄𝑟
   𝑋𝜔𝑟
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      …       … 

      … 

      …       … 
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𝑋𝜋𝑠
∗  
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𝑋𝜋𝑠
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𝑋𝛼𝑠
: sibling of 𝑋𝑠 

𝑋𝜄𝑠
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𝑋𝜌𝑠
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𝑋𝜔𝑟
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𝑋𝜄𝑟
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𝑋𝜌𝑟
: right child of 𝑋𝑟 

 

subtree 

𝑋𝜄𝑠
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 from 𝑋𝑠 → 𝑋𝜄𝑠

 

𝑋𝜌𝑠
∗  
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 from 𝑋𝑠 → 𝑋𝜌𝑠

 

Figure 1: Illustration of a tree-structured latent variable model (or latent tree model). Open circle
denotes hidden variables, and filled circles for observed ones. For a node s, we use αs to denote its
sibling, πs to denote its parent, ιs to denote its left child and ρs to denote its right child; the root
node will have 3 children, we use ωs to denote the extra child.

The joint distribution of X in a latent tree model is fully characterized by a set of conditional
distributions. More specifically, we can select an arbitrary latent node in the tree as the root, and
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reorient all edges away from the root. Then the set of conditional distributions between nodes and
their parents p(Xi|Xπi) are sufficient to characterize the joint distribution (for the root node Xr,
we set p(Xr|Xπr) = p(Xr)) and use p(·) to refer to density in continuous case with

p(X ) =

O+H∏
i=1

p(Xi|Xπi). (1)

Compared to tree models which are defined solely on observed variables (e.g., models obtained
from the Chow-Liu algorithm (Chow and Liu, 1968)), latent tree models encompass a much larger
classes of models, allowing more flexibility in modeling observed variables. This is evident if we
compute the marginal distribution of the observed variables by summing out the latent ones,

p(O) =
∑
H

∏O+H

i=1
p(Xi|Xπi). (2)

This expression leads to complicated conditional independence structures between observed vari-
ables depending on the tree structure. In other words, latent tree models allow complex distributions
over observed variables (e.g., clique models) to be expressed in terms of more tractable joint models
over the augmented variable space. This leads to a significant saving in model parametrization.

3 Overview of Our Technique

To address nonparametric problems in tree-structured latent variable models, we will use a crucial
technique called Hilbert space embedding of distributions and conditional distributions (an intro-
duction is provided in Appendix A and B). The key idea is that the joint density of the observed
variables under a tree-structured latent variable model can be expressed using a Hilbert space em-
bedding CO which can be viewed as a higher order tensor (or multilinear operator). The density at
point x1, . . . , xO can be evaluated by applying the multilinear operator on the feature-mapped data
point, i.e., CO •1 φ(x1) •2 . . . •O φ(xO) (This operation means multiplying each side of the tensor CO
by feature vector φ(x1), ..., φ(xO) respectively). Under this view, the information about the density
is fully captured by the Hilbert space embedding CO .

Furthermore, the presence of the latent variables endows further structures in the Hilbert space
embedding CO . That is CO can be derived from a collection of simpler Hilbert of space embeddings
{C} each of which involves only two or three observed variables. This decomposition allows us to
design computationally efficient algorithms for learning both the structure and parameters asso-
ciated with the latent variable model, and carry out efficient inference based on the decomposed
representation.

One characteristic of our algorithms for learning structure and parameters is that they are based
on the spectral property, especially low rank property, of the Hilbert space embedding CO due to
the presence of latent variables. Our use of the spectral property of CO results in algorithms which
are based on simple linear algebraic operation (or kernel matrix operation) and yet equipped with
provable guarantee.

In the following, we will describe our techniques in 5 section. First, we will connect kernel
density estimation with Hilbert space embedding of distributions. Second, we will explain the
decomposed representation of the joint embedding CO of the tree-structured latent variable models.
Third, we will use the decomposed form to design an efficient nonparametric inference algorithm.
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Fourth, we will derive our nonparametric parameter learning algorithm. Last, we will design the
nonparametric structure learning algorithm using the spectral property of the embedding.

4 Kernel Density Estimator as Hilbert Space Embeddings

In this section, we connect traditional kernel density estimators (KDE) (Rosenblatt, 1956; Parzen,
1962; Silverman, 1986; Wasserman, 2006) with Hilbert space embeddings of distributions (Smola
et al., 2007a). These two sets of methods are closely related to each other by the fact that both are
trying to model non-Gaussian distribution in a nonparametric fashion, and kernel functions play
a key role in both methods. The difference is that the studies of Hilbert space embeddings focus
more on injectively representing distributions in a function space, while kernel density estimations
concern more about estimating the actual values of the density. By building the connections, our
purpose is to show that KDE can benefit from the view of Hilbert space embedding. In particular,
we will later show that the Hilbert space embedding framework allows us to exploit KDE to model
latent tree structures.

4.1 Kernel density estimator

The kernel density estimator (KDE), also called Parzen window estimator, is a nonparametric
method for estimating the density function p(x1, . . . , xO) for a set of continuous random variables
O = {X1, . . . , XO} from the domain XO . Given a dataset D =

{(
xi1, . . . , x

i
O

)}n
i=1

drawn i.i.d. from
p(x1, . . . , xO), the KDE using product kernel is defined by

p̂(x1, . . . , xO) =
1

n

∑n

i=1

∏O

j=1
K(xj , x

i
j), (3)

where K(x, x′) is a kernel function. A commonly used kernel function, which we will focus on, is
the Gaussian RBF kernel K(x, x′) = 1√

2πσ
exp(−‖x − x′‖2/2σ2). For the Gaussian RBF kernel,

there exists a feature map

φ(·) : R 7→ F such that K(x, x′) =
〈
φ(x), φ(x′)

〉
F ,

and the feature space has the reproducing property, i.e., for all f ∈ F , f(x) = 〈f, φ(x)〉F .

Products of kernels are also kernels, which allows us to write
∏O
j=1K(xj , x

′
j) as a single in-

ner product
〈
⊗Oj=1φ(xj),⊗Oj=1φ(x′j)

〉
FO

. Here ⊗Oj=1(·) denotes the outer product of O feature

vectors which results in a rank-1 tensor of order O, and the inner product can be understood
by analogy with the finite dimensional case: given x, y, z, x′, y′, z′ ∈ Rd, (x>x′)(y>y′)(z>z′) =
〈x⊗ y ⊗ z, x′ ⊗ y′ ⊗ z′〉Rd3 .

4.2 A Hilbert space embedding view of KDE

To see the connection between KDE and Hilbert space embeddings of distributions, we compute
the expected value of a KDE with respect to the random sample D ,

ED [p̂(x1, . . . , xO)] = EO

[∏O

j=1
K(xj , Xj)

]
=
〈
EO

[
⊗Oj=1φ(Xj)

]
,⊗Oj=1φ(xj)

〉
FO , (4)
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where CO := EO

[
⊗Oj=1φ(Xj)

]
is called the Hilbert space embedding of the density p(x1, . . . , xO)

with tensor features ⊗Oj=1φ(xj) (Smola et al., 2007a). Furthermore, if we replace the embedding CO
by its finite sample estimate ĈO := 1

n

∑n
i=1

(
⊗Oj=1φ(xij)

)
, we recover the density estimator in (3).

4.3 Tensor expression for KDE

Using the tensor notation we can write equation (4) as〈
EO

[
⊗Oj=1φ(Xj)

]
,⊗Oj=1φ(xj)

〉
FO = CO •1 φ(x1) •2 . . . •O φ(xO), (5)

which means that the expected value of a KDE can be equivalently computed by first embedding
the distributions into a tensor space and then multiply the embedding with the feature vectors of
x1, . . . , xO. We note that it is not easy for traditional KDE to exploit the fact that the embedding
CO may have low rank structure due to the latent tree structure. In the next section, we will show
that we can exploit the latent tree structure and come up with a factorized estimator for CO .

5 Latent Tree Representation via Hilbert Space Embedding

When the conditional independent relation underlying a set of observed variables O = {X1, . . . , XO}
and hidden variables H = {XO+1, . . . , XO+H} follows a latent tree structure, the joint embedding
CO can factorize according to the tree structure. Instead of representing the density of the observed
variables as a single Hilbert space embedding, we can represent it as a collection of Hilbert space
embedding of conditional distributions, each of which involving only two variables. This is analogous
to the factorization of a latent tree graphical model in equation (2), where we can represent such
as a model using only the marginal distribution of the root node and the conditional distributions
of variables with parent-child relations in the tree. Under a tree structure constraint, each variable
has exactly one parent. In the nonparametric setting, we will instead use Hilbert space embedding
of the marginal distributions and conditional distributions. More specifically,

• We will use the same kernel, L(x, x′) = 〈ψ(x), ψ(x′)〉G (with the associated RKHS G), for all
discrete latent variables. In particular, each latent variable x can take up to k distinct values
x ∈ XH = {1, . . . , k}. The feature map

ψ(·) : {1, . . . , k} 7→ G := {0, 1}k ⊂ Rk

such that ψ(x) is a length k vector with all entries equal to 0 except the xth entry take value
1. For x, x′ ∈ {1, . . . , k}, their kernel function l(x, x′) is computed as the Euclidean inner
product of ψ(x) and ψ(x′).

• For each conditional distribution between observed continuous variable Xs and its parent
Xπs , p(Xs|Xπs), we also represent it as a conditional Hilbert space embedding

Cs|πs : Rk 7→ F , such that Cs|πsψ(Xπs) := EXs|Xπs [φ(Xs)].

One can think of this embedding as a second order tensor where one side is of infinite dimen-
sion but another side is of dimension k. Let the first mode of Cs|πs corresponds to variable
Xs, then Cs|πsψ(Xπs) can be equivalently written as Cs|πs •2 ψ(Xπs). This operator will used
to integrate out observed variable Xs as we will see in later inference section.
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• For each conditional distribution between discrete latent variables Xs and its parent Xπs ,
p(Xs|Xπs), we represent it as a conditional Hilbert space embedding

Cs2|πs : Rk 7→ Rk × Rk, such that Cs2|πsψ(Xπs) := EXs|Xπs [ψ(Xs)⊗ ψ(Xs)]

One can also think of this embedding as a third order tensor where each side is of dimension
k. Let the first two modes of Cs2|πs correspond to variable Xs, then Cs2|πsψ(Xπs) can be
equivalently written as Cs2|πs •3 ψ(Xπs) The reason why we need third order tensor here is
because the latent variable has one parent and two children (Figure 1). This operator will be
used to integrate out variable Xs as we will see in the inference section.

• Given the latent tree structure, we will choose an arbitrary latent variable as the root node
r, Then we will represent the marginal distribution, p(Xr), of the root node of the latent tree
model as a Hilbert space embedding

Cr3 := EXr [ψ(xr)⊗ ψ(xr)⊗ ψ(xr)] : Rk × Rk × Rk 7→ R.

One can also think of this embedding as a third order tensor where each side is of dimension
k. The reason why we need third order tensor here is because the root node has three children
(Figure 1). In the factorization presented in (1), Xr will appear in the conditioning of three
factors. The tensor Cr3 will be used to integrate out the variable Xr as we will see in the
inference section.

With the above representations, we will then be able to perform inference task on the latent tree
graphical models, such as computing the marginal distribution of all observed variables by summing
out all latent variables, or conditioning on the values of some observed variables to compute the
distribution of other observed variables.

In the next section, we will first explain the inference (or query) task on a latent tree graphical
model assuming that we are given the latent tree structures and the above mentioned conditional
Hilbert space embedding representation of a latent tree graphical model. In this case, we can carry
out the computation using a message passing algorithm. Next, we will discuss learning the Hilbert
space embedding representation given information of the tree structure and the observed variables.
Then, we will present our algorithm for discovering the tree structure of a latent variable model
based on Hilbert space embedding of the joint distributions of pairs of observed variables.

6 Inference on Latent Tree Graphical Models

In this section, we assume the latent tree structure is known, i.e., for each variable Xs, we know
its parent Xπs . In addition, we assume all the conditional Hilbert space embedding of p(Xs|Xπs)
is given. Our goal is to conduct inference on the tree. For this, we can carry out the computation
using a message passing algorithm.

6.1 Message passing algorithm in density space

We will focus on computing the expected KDE, ED [p̂(x1, . . . , xd)] = EO

[∏O
j=1K(xj , Xj)

]
, for

the observed variables in a latent tree graphical model. We will show that the computation can
be carried out based on the representation we discussed in the last section. More specifically,
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in a tree graphical model, we can carry out the computation efficiently via the message passing
algorithm (Pearl, 2001):

• At a leaf node (corresponding to an observed variable), we pass the following message to its
parent

ms(·) = EXs|Xπs=·[K(xs, Xs)] ∈ Rk.

This step corresponds to evaluate the expected density at xs for variable Xs given latent
variable Xπs .

• An internal latent variable aggregates incoming messages from its two children and then sends
an outgoing message to its own parent

ms(·) = EXs|Xπs=·[mιs(Xs)mρs(Xs)] ∈ Rk.

This step corresponds to summing out a latent variable Xs by first multiplying together the
two messages (or intermediate results), mιs and mρs , from its left child Xιs and right child
Xρs respectively (Figure 1).

• Finally, at the root node, all incoming messages are aggregated

br = EO

 O∏
j=1

K(xj , Xj)

 = EXr [mιr(Xr)mρr (Xr)mωr(Xr)] ∈ R.

This step corresponds to summing out the latent variable Xr at the root of the tree by first
multiplying together the three messages, mιs , mωr and mρs , from its three children, Xιr , Xωr

and Xρr respectively (Figure 1). The result br is also equal to the expected KDE in this case,
i.e.,

br = ED [p̂(x1, . . . , xd)]

In the case where the domains the variable X is discrete with small cardinality |X |, or X
is continuous but the random variables are Gaussians (Weiss and Freeman, 2001), computing the
above update step can be carried out efficiently. For general continuous domains or discrete domains
where |X | is too large to enumerate, however, the expectation in the updates becomes intractable to
compute. This is the situation in our case where the observed continuous variables follow general
distribution, and our graphical model is a mix of such continuous variables and discrete latent
variables.

A number of approaches have been used to define message passing or belief propagation in
higher dimensional spaces, and for more complex probability models. Minka (2001) proposes the
expectation-propagation algorithm, where only certain moments of the messages are estimated.
Unfortunately, this method does not address distributions that cannot be well-characterized by the
first few moments. To address this problem, Sudderth et al. (2003) represent messages as mixtures
of Gaussians, however the number of mixture components grows exponentially as the message is
propagated: they alleviate this problem through subsampling. Ihler and McAllester (2009) propose
a particle BP approach, where messages are expressed as functions of a distribution of particles at
each node, and the expectation in the function update becomes sums over the particles.

Our algorithm deals with complex continuous variables in the message passing algorithm using
a different approach. More specifically we use RKHS functions to express the messages ms(·). As

10



a result of this representation, the messages ms(·) from an observed leaf nodes can be combined
in a straightforward linear operation in feature space that implements the sum and product steps,
producing a new message ms′(·) that remains an RKHS function.

6.2 Message passing algorithm using kernel embeddings

We now express the three message update operations in the previous section using the corresponding
Hilbert space embeddings and linear operations in the Hilbert space (Song et al., 2010).

• At a leaf node, we have ms(·) = EXs|Xπs=·[K(xs, Xs)]. Using the reproducing property of the
kernel function, K(xs, Xs) = 〈φ(xs), φ(Xs)〉F , we have that

EXs|Xπs=·[K(xs, Xs)] = EXs|Xπs=· [〈φ(xs), φ(Xs)〉F ] =
〈
φ(xs),EXs|Xπs=·[φ(Xs)]

〉
F .

Notice that EXs|Xπs=·[φ(Xs)] can be expressed using conditional embedding operator Cs|πs .
Treating Cs|πs as a second order tensor results in the kernel embedding message update for
leaf node

ms(·) = Cs|πs •1 φ(xs) ∈ Rk. (6)

• At internal nodes, we use a tensor product reproducing kernel Hilbert space R2k := Rk ⊗Rk,
under which the product of incoming messages can be written as a single inner product,

mιs(Xs)mρs(Xs) = 〈mιs , ψ(Xs)〉Rk 〈mρs , ψ(Xs)〉Rk = 〈mιs ⊗mρs , ψ(Xs)⊗ φ(Xs)〉R2k .

Then the message update becomes

ms(·) = EXs|Xπs=· [mιs(Xs)mρs(Xs)] =
〈
mιs ⊗mρs , EXs|Xπs=· [φ(Xs)⊗ φ(Xs)]

〉
R2k

Notice that EXs|Xπs=· [φ(Xs)⊗ φ(Xs)] can be expressed using conditional embedding operator
Cs2|πs . Treating Cs2|πs as a third order tensor results in the kernel embedding message update
for the internal nodes

ms(·) = Cs2|πs •1 mιs •2 mρs ∈ Rk. (7)

• Finally, at the root nodes, we use the property of tensor product feature space R3k := Rk ⊗
Rk ⊗ Rk and arrive at

Er[mιr(Xr) mρr(Xr) mωr(Xr)] = 〈mιr ⊗mρr ⊗mωr ,EXr [φ(Xr)⊗ φ(Xr)⊗ φ(Xr)]〉R3k

Notice that EXr [φ(Xr) ⊗ φ(Xr) ⊗ φ(Xr)] can be expressed using the kernel embedding C3
r .

Treating C3
r as a third order tensor results in the kernel embedding message update for the

root node

br = Cr3 •1 mιr •2 mρr •3 mωr ∈ R. (8)

We note that traditional kernel density estimator needs to maintain a tensor of order O involving
all observed variables (i.e., Equation (5)). By exploiting the conditional independence structure
of latent tree models, we only need to maintain tensors of much smaller orders. In particular, we
only need to maintain tensors involving up to three variables (for each parent-child relation), then
the density can be computed via message passing algorithms using these tensors of much smaller
order. The overall inference algorithm is summarized in Algorithm 1.
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Algorithm 1 Inference

In: Latent tree structure, root node r, and the corresponding conditional embedding operators.
Out: Belief br at root.

1: Root the tree at node r, orient the edges in the tree pointing away from the root. The resulting
directed acyclic graph (DAG) induces a topological ordering of the set of nodes V.

2: for all s ∈ V in reverse topological order do
3: if s is the root r then
4: bs = Cs3 •1 mιs •2 mρs •3 mωs

5: else if s is an observed continuous variable taking value xs then
6: ms(·) = Cs|πs •1 φ(xs)
7: else if s is an internal latent variable then
8: ms(·) = Cs2|πs •1 mιs •2 mρs

9: end if
10: end for

7 Observable Representation and Parameter Estimation

In this section, we assume the latent tree structure is known, i.e., for each variable Xs, we know
its parent Xπs . Our goal is to estimate all the conditional embedding operators, Cs|πs or Cs2|πs ,
associated with p(Xs|Xπs), and the embedding, Cr3 , associated with the root node.

From (6), (7) and (8), our key observation is that if we can recover the conditional embedding
operators up to some invertible transformations, we will still be able to obtain the same final results
for the message passing algorithm. More specifically,

• For each leaf node Xs, we define an invertible transformation Ts ∈ Rk×k, where the subscript
is used to indicate that the transformation Ts is specific to node Xs. If we change to a different
node Xs′ , then the transformation Ts′ will also change accordingly. Then we can transform
the message, ms, from a leaf node as

m̃s(·) = (Cs|πs ×2 Ts) •1 φ(xs) = TsC>s|πsφ(xs), (9)

where the tensor-matrix product notation C ×i T means that we multiply the i-th mode of C
with the columns of T (Kolda and Bader, 2009).

• For an internal node, we will introduce three invertible transformations Ts, Tιs , Tρs ∈ Rk×k.
We note that in this case, we do not have complete freedom in choosing the invertible trans-
formations: Tιs and Tρs are determined by the transformation chosen by the child node Xιs

and Xρs of the current node Xs. Then the outgoing message, ms, from this internal node
becomes

m̃s(·) = (Cs2|πs ×1 T
−1
ιs ×2 T

−1
ρs ×3 Ts) •1 m̃ιs •2 m̃ρs (10)

where we have defined m̃ιs = Tιsmιs and m̃ρs = Tρsmρs .

• Finally, at the root node, we also introduce three invertible transformations Tιs , Tρs , Tωs ∈
Rk×k which are determined by the choice of transformations from its three child nodes. Then
we obtain the final result

br = (Cr3 ×1 T
−1
ιr ×2 T

−1
ρr ×3 T

−1
ωr ) •1 m̃ιr •2 m̃ρr •3 m̃ωr , (11)

12



where m̃ωr = Tωrmωr .

Basically, all the invertible transformations T ’s cancel out with each other, and the final result br
remains unchanged. However, these transformations provide us additional degrees of freedom for
algorithm design: We can choose the invertible transforms more carefully so that the transformed
representation can be recovered from observed quantities without the need for accessing the latent
variables. Furthermore, we will show that these transformations T ’s can be constructed from
singular vectors U of cross covariance operator of certain pairs of observed variables.

To explain the idea, we will introduce a set of notation for relabeling the observed variables.
Such relabeling is carried out with respect to a variable of interest and is determined by the relative
positions of these variables to the focused variable. For instance, if the focused variable is Xs, then
we will introduce relabeling notation, Xι∗s , Xρ∗s and Xπ∗s , as in Figure 1. Each notation denotes a
set of variables, and their respective meanings are

• Xι∗s is the set of observed variables (or leaf nodes) which can be reached by following the
direction of the edge from Xs to its left child Xιs .

• Xρ∗s is the set of observed variables which can be reached by following the direction of the
edge from Xs to its left child Xρs .

• Xπ∗s is the set of observed variables which can be reached by following the reverse direction
of the edge from Xs to its parent Xπs .

In later use of these sets, each time we will typically select one variable from each set. The exact
identity of the selected variable is not important. Thus, for simplicity of notation, we will also use,
Xι∗s , Xρ∗s and Xπ∗s , to denote those selected variables. For the root node Xr, we also introduce
notation Xω∗r which denotes the additional set of variables reached by following the direction of the
edge from Xr to its middle child Xωr .

Now we consider the simple case for the transformed message m̃s from the leaf node (Equa-
tion 9). We first find Xπ∗s , and compute the embedding, Csπ∗s , of the joint density of Xs and Xπ∗s .
Let Usπ∗s be the left singular vectors of Csπ∗s corresponding to the top k singular values. We note
that the number, k, of singular vectors needs to be the same as the number of possible value
that the latent variables can take; Such choice ensures that some intermediate matrices are invert-
ible. Hence the same notation, k, is used for both cases. Then we construct the transformation
Ts = (C>s|πsUsπ∗s )−1, and we have

m̃s = (Cs|πs ×2 (C>s|πsUsπ∗s )−1) •1 φ(xs) = (C>s|πsUsπ∗s )−1C>s|πsφ(xs).

Then, to remove the dependency of the expression on latent variable Xπs , we multiply both sides
by CαssUsπ∗s (Xαs is the sibling node of Xs as in Figure 1) and obtain

CαssUsπ∗s m̃s = CαssUsπ∗s (C>s|πsUsπ∗s )−1C>s|πsφ(xs)

= Cαs|πsCπsπsC
>
s|πsUsπ∗s (C>s|πsUsπ∗s )−1C>s|πsφ(xs)

= Cαs|πsCπsπsC
>
s|πsφ(xs)

= Cαssφ(xs) (12)
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where in the second and third equalities we have used Hilbert space embedding expression for the
relation p(Xαs , Xs) =

∑
xπs

p(Xαs |xπs)p(xπs)p(Xs|xπs), i.e., Cαss = Cαs|πsCπsπsC>s|πs . Finally, based

on the derivation in equation (12), we have that

m̃s = (CαssUsπ∗s )†Cαssφ(xs),

which depends only on information of observed variables. Define C̃s|πs := Cs|πs×2 Ts = (CαssUsπ∗s )†Cαss
as a new and transformed representation for the operator Cs|πs . Then one can replace Cs|πs by C̃s|πs
in Algorithm 1 and define a message passing algorithm in the transformed space as we will see
later.

The general pattern of the derivation in (12) is that we can relate the transformed latent
quantity to the observed quantities by choosing appropriate invertible transformations. Similar
strategy can be applied to C̃s2|πs := Cs2|πs ×1 T

−1
ιs ×2 T

−1
ρs ×3 Ts in the internal message update, and

to C̃r3 := Cr3 ×1 T
−1
ιs ×2 T

−1
ρs ×3 T

−1
ωr in the update at the root (for more details, see (Parikh et al.,

2011)). We summarize the results below

Theorem 1. The transformed quantities involving latent variables can be computed via observed
quantities using the following formulas

• For observed variables, C̃s|πs = (CαssUsπ∗s )†Cαss.

• For latent variables, C̃s2|πs = Cι∗sρ∗sπ∗s ×1 U
>
ι∗sπ
∗
s
×2 U

>
ρ∗sπ
∗
s
×3 (Cπ∗s ι∗sUι∗sπ∗s )†.

• For the root node, C̃r3 = Cι∗rρ∗rω∗r ×1 U
>
ι∗rρ
∗
r
×2 U

>
ρ∗rω
∗
r
×3 U

>
ω∗r ι
∗
r
.

Then the overall message passing algorithm can be expressed purely based on embeddings of
observed variables, and it is summarized in Algorithm 2

7.1 Computation

When we use the factorization of Hilbert space embeddings from Theorem 1, and the message
passing algorithm in Algorithm 2 for density estimation, it leads us to a very efficient algorithm

for computing the expected kernel density ED [p̂(x1, . . . , xO)] = EO

[∏O
j=1K(xj , Xj)

]
. The main

computational cost only involves a sequence of singular value decompositions of the embedding of
joint distributions (or pairwise cross-covariance operators). Once the transformed quantities are
obtained, we can then use them in the message passing algorithm to obtain the final belief.

Given a sample D =
{

(xi1, . . . , x
i
O)
}n
i=1

drawn i.i.d. from p(x1, . . . , xO), the spectral algorithm
for latent tree graphical models proceeds by first performing a “thin” SVD of the sample covariance
operators. For instance, for two variables Xs and Xt, we denote the feature matrices by Υ =
(φ(x1

s), . . . , φ(xns )) and Φ = (φ(x1
t ), . . . , φ(xnt )), and estimate Ĉts = 1

nΦΥ>. Then the left singular
vector v = Φα (α ∈ Rn) can be estimated as follows

ΦΥ>ΥΦ>v = βv ⇔ LKLα = βLα (β ∈ R), (13)

where K = Υ>Υ and L = Φ>Φ are the kernel matrices, and α is the generalized eigenvector.
After normalization, we have v = Φα/

√
α>Lα. Then the U is the column concatenation of the

top k left singular vectors, i.e., Û = (v1, . . . , vk). In practice, fast computation of the kernel
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Algorithm 2 Inference using observable representations

In: Latent tree structure, root node r, and the corresponding conditional embedding operators.
Out: Belief br at root.

1: Root the tree at node r, orient the edges in the tree pointing away from the root. The resulting
directed acyclic graph (DAG) induces a topological ordering of the set of nodes V.

2: for all s ∈ V in reverse topological order do
3: if s is the root r then
4: Find Xι∗r , Xω∗r and Xρ∗r .
5: Compute embeddings Cι∗rρ∗rω∗r , Cι∗rρ∗r , Cρ∗rω∗r and Cω∗r ι∗r .
6: Compute the leading k left singular vectors Uι∗rρ∗r , Uρ∗rω∗r and Uω∗r ι∗r of the embeddings Cι∗rρ∗r ,

Cρ∗rω∗r and Cω∗r ι∗r respectively.

7: C̃r3 = Cι∗rρ∗rω∗r ×1 U
>
ι∗rρ
∗
r
×2 U

>
ρ∗rω
∗
r
×3 U

>
ω∗r ι
∗
r
.

8: br = C̃r3 •1 m̃ιr •2 m̃ρr •3 m̃ωr

9: else if s is an observed continuous variable taking value xs then
10: Find Xπ∗s and Xαs .
11: Compute embeddings Csπ∗s and Cαss.
12: Compute the leading k left singular vectors Usπ∗s of the embedding Csπ∗s .

13: C̃s|πs = (CαssUsπ∗s )†Cαss
14: m̃s(·) = C̃s|πs •1 φ(xs)
15: else if s is an internal latent variable then
16: Find Xι∗s , Xρ∗s and Xπ∗s .
17: Compute embeddings Cι∗sρ∗sπ∗s , Cι∗sπ∗s , Cρ∗sπ∗s and Cπ∗s ι∗s .
18: Compute the leading k left singular vectors Uι∗sπ∗s , Uρ∗sπ∗s of the embeddings Cι∗sπ∗s and Cρ∗sπ∗s

respectively.
19: C̃s2|πs = Cι∗sρ∗sπ∗s ×1 U

>
ι∗sπ
∗
s
×2 U

>
ρ∗sπ
∗
s
×3 (Cπ∗s ι∗sUι∗sπ∗s )†

20: m̃s(·) = C̃s2|πs •1 m̃ιs •2 m̃ρs

21: end if
22: end for

SVD can be carried out by first performing an incomplete Cholesky decomposition of the kernel
matrices (Shawe-Taylor and Cristianini, 2004). If we let A := (α1, . . . , αk) ∈ Rn×k be the column
concatenation of the k top αi, and D := diag

(
(α>1 Lα1)−1/2, . . . , (α>k Lαk)

−1/2
)
∈ Rk×k, we can

concisely express Û = ΦAD.
When the number of samples is large, we will use incomplete Cholesky decomposition for kernel

matrices to further speed up the computation. In this case the kernel matrix K for samples
from a variable X can be factorized as K = R>XRX , where RX ∈ Rr×n comes from Cholesky
decomposition with r � n. Basically, with incomplete Cholesky decomposition, everything goes
back to finite dimensional operations.
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X1

X2

X3

X4

H1 H2

Figure 2: A tree-structured latent variable model with 4 observed variable X1, X2, X3, X4, con-
nected via two hidden variables H1, H2.

7.2 Example

We can factorize the embedding of the marginal distributions of the four observed variables in the
latent tree structure in Figure 2 as

CX1X2X3X4 = EX1X2X3X4 [φ(X1)⊗ φ(X2)⊗ φ(X3)⊗ φ(X4)]

= (CH3
1
×1 CX1|H1

×2 CX2|H2
)×3 (CH2

2 |H1
×1 CX3|H2

×2 CX4|H2
).

Then the term CH3
1

can be transformed as

CH3
1
×1 SX1 ×2 SX2 ×3 SX3 = CH3

1
×1 (U>X1

CX1|H1
)×2 (U>X2

CX2|H1
)×3 (U>X3|H1

CX3|H1
)

= CX1X2X3 ×1 U
>
X1
×2 U

>
X2
×3 U

>
X3
.

The term CH2
2 |H1

can be transformed as

CH2
2 |H1
×3 (CX1|H1

CH2
1
S>X3

S−>X3
)×1 SX3 ×2 SX4

= CH2
2 |H1
×3 (CX1X3UX3S

−>
X3

)×1 (U>X3
CX3|H2

)×2 (U>X4
CX4|H2

)

= CH2
2 |H1
×3 (CX1X3UX3S

−>
X3

)×1 (U>X3
CX3|H2

)×2 (U>X4
CX4|H2

)

= CX3X4X1 ×1 U
>
X3
×2 U

>
X4
.

We therefore have

CH2
2 |H1
×3 S

−>
X3
×1 SX3 ×2 SX4 = CX3X4X1 ×1 U

>
X3
×2 U

>
X4
×3 (CX1X3UX3)†

and the term CX1|H1
can be transformed as

CX1|H1
S−1
X1

= CX1X2(U>X1
CX1X2)†.

Then the computation of U using the approximated covariance matrix can be carried out as follows

1

n2
(RX1R

>
X2

)(RX2R
>
X1

)UX1 = UX1Γ1 (14)

1

n2
(RX2R

>
X1

)(RX1R
>
X2

)UX2 = UX2Γ2 (15)

1

n2
(RX3R

>
X1

)(RX1R
>
X3

)UX3 = UX3Γ3 (16)

1

n2
(RX4R

>
X1

)(RX1R
>
X4

)UX4 = UX4Γ4, (17)
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where Γ is a diagonal matrix of the corresponding eigenvalues. Furthermore, the transformed
parameters of the latent tree graphical model can also be obtained from the Cholesky factor. For
example

CX1X2(U>X1
CX1X2)† ≈ 1

n
RX1R

>
X2

(U>X1

1

n
RX1R

>
X2

)†. (18)

To evaluate a new point, we first obtain the incomplete Cholesky decomposition for the new
point rX1 , rX2 , rX3 , rX4 . Then we obtain the density estimation by

CX1X2X3X4 •1 rX1 •2 rX2 •3 rX3 •4 rX4 (19)

which can be computed by message passing algorithm.

8 Structure Learning

In the last section we focuses on estimating the Hilbert space embedding under the assumption that
the structure of the latent tree is known. In this section, we focus on learning latent tree structure
based observational data. We exploit a distance-based method for iteratively constructing latent
trees which takes a distance matrix between all pairs of observed variables as input and outputs
an estimated tree structure by iteratively adding hidden nodes.We provide theoretical guarantees
of the structure learning algorithm. We start with some definitions.

8.1 Tree Metric and Pseudo-determinant for Non-Gaussian Variables

One concept that plays a pivotal role in our latent tree structure learning algorithm is tree metric.
More specifically, if the joint probability distribution p(X ) has a latent tree structure, then a
distance measure dst between an arbitrary pair of variables Xs and Xt is called tree metric if it
satisfies the path additive condition: dst =

∑
(u,v)∈Path(s,t) duv. The formal definition of tree metric

is as follows.

Definition 2 (Tree Metric). Let V be a set of nodes. A metric (V, d) is a tree metric if there is a
tree T with non-negative edge lengths whose nodes contain V such that for every s, t ∈ V, we have
that dst is equal to the sum of the lengths of the edges on the unique (s, t) path in the tree T . Tree
metrics are also called additive metrics.

For discrete and Gaussian variables, tree metric can be defined via the determinant | · |

dst = − log |Cst|+ 1
2 log |Css|+ 1

2 log |Ctt|, (20)

where Cst is the joint probability matrix in the discrete case and the covariance matrix in the
Gaussian case; Css is the diagonalized marginal probability matrix in the discrete case and marginal
variance matrix in the Gaussian case. However, the definition of tree metric in (20) is restrictive
since it requires all discrete variables to have the same number of states and all Gaussian variables
to have the same dimension. For our case where the observed variables are continuous and non-
Gaussian. The problem with the above definition is that determinant is only defined for square and
non-singular matrices. Therefore, the definition in (20) is not suitable. To overcome this drawback,
we define a tree metric based on pseudo-determinant which works for more general operators. First,
we list an extra assumption.
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(A2) Let σk(Cst) be the kth singular value of C, we assume that σmin := infs,t σk(Cst) > 0.

Under the condition that the value k in Assumption (A1) is known, we define the pseudo-
determinant of a covariance operator C as the product of all its non-zero singular values, i.e.,

|C|∗ =
∏k

i=1
σi(C).

We then generalize the definition of tree metric in (20) from the covariance matrix setting to the
more general covariance operator setting. In particular, we define a nonparametric distance metric
between two variables s and t as

dst = − log |Cst|∗ + 1
2 log |Css|∗ + 1

2 log |Ctt|∗. (21)

The following theorem shows that (21) is a valid tree metric.

Theorem 3. The distance define in equation (21) is a tree metric.

Proof. We prove this by induction on the path length. We first show that the additive property
holds for a path Xs−Xu−Xt which only involves a single hidden variable Xu. For this, we exploit
the relationship between eigenvalues and singular values and have

dst = −1
2 log |CstC>st|∗ + 1

4 log |CssC>ss|∗ + 1
4 log |CttC>tt |. (22)

Furthermore, using the Markov property, we factorize |CstC>st|∗ into |Cs|uCuuC>t|uCt|uCuuC
>
s|u|∗. Ac-

cording to the Sylvester’s determinant theorem, the latter is equal to |C>s|uCs|uCuuC
>
t|uCt|uCuu|∗ by

flipping C>s|u to the front. By introducing two copies of |Cuu| and rearraging the terms, we have

|CstC>st|∗ =
|Cs|uCuuCuuC>s|u|∗|Ct|uCuuCuuC

>
t|u|∗

|Cuu||Cuu|
=
|CsuC>su|∗|CtuC>tu|∗
|CuuCuu|∗

. (23)

We then plug this into (22) and get

dst = −1
2 log |CsuC>su|∗ − 1

2 log |CtuC>tu|∗ + 1
2 log |CuuC>uu|∗ + 1

4 log |CssC>ss|∗ + 1
4 log |CttC>tt |

= dsu + dut.

The proof of the general cases follows similar arguments.

8.2 Empirical Tree Metric Estimator and Its Concentration Property

The definition in (21) involves population quantities. Given observational data, the pseudo-
determinant tree distance between two variables s and t can be estimated by the following plug-in
estimator

d̂st = −
k∑
i=1

log
[
σi(Ĉst)

]
+

1

2

k∑
i=1

log
[
σi(Ĉss)

]
+

1

2

k∑
i=1

log
[
σi(Ĉtt)

]
, (24)

where Ĉ is an estimator of the covariance operator. From the definition in (24), we see that the key
to evaluate the tree metric is to calculate σi(Ĉst) and σi(Ĉss). For this, we use the same generalized
eigenvalue decomposition method as described in Section 7.1.
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In this subsection, we show that the the estimated distance d̂st converges to its popular quantity
dst with a fast rate of convergence. More specifically, let K(x, x′) be a universal reproducing kernel
satisfying

sup
x,x′

K(x, x′) ≤ κ.

We define

T
(ss)
F =

∫
Ω
〈·,K(xs, ·)〉FK(xs, ·)dP (xs) = Css, (25)

T (ss)
n =

1

n

n∑
i=1

〈·,K(xis, ·)〉FK(xis, ·) = Ĉss, (26)

and

T
(st)
F =

∫
Ω×Ω
〈·,K(xt, ·)〉FK(xs, ·)dP (xs, xt) = Cst, (27)

T (st)
n =

1

n

n∑
i=1

〈·,K(xit, ·)〉FK(xis, ·) = Ĉst. (28)

The following lemmas from Rosasco et al. (2010) show that T
(ss)
F and T

(st)
F have the same set

of eigenvalues (up to possible zero entries ) as T
(ss)
n and T

(st)
n .

Lemma 4 (Rosasco et al. (2010) ). T
(ss)
F and T

(st)
F have the same set of eigenvalues (up to possible

zero entries) as T
(ss)
n and T

(st)
n .

The following theorem is proved by Rosasco et al. (2010)

Theorem 5. Let δ ∈ (0, 1) and ‖ · ‖HS be the Hilbert-Schdmit norm, we have

P

(∥∥∥T (ss)
F − T (ss)

n

∥∥∥
HS
≤ 2
√

2κδ√
n

)
≥ 1− 2 exp(−δ). (29)

P

(∥∥∥T (st)
F − T (st)

n

∥∥∥
HS
≤ 2
√

2κδ√
n

)
≥ 1− 2 exp(−δ). (30)

Proof. The result in (29) has been shown by Rosasco et al. (2010). We only need to show (30).
Let ξi be defined as

ξi = 〈·,K(xit, ·)〉FK(xis, ·)− T
(st)
H . (31)

It is easy to see that Eξi = 0. Furthermore , we have

sup
s,t
‖〈·,K(xt, ·)〉FK(xs, ·)‖2HS ≤ κ

2, (32)

which implies that
∥∥∥T (st)
F

∥∥∥
HS
≤ 2κ. The result then follows from the Hoeffding’s inequality in

Hilbert space.
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The next theorem provides a uniform concentration result of the estimated tree metric d̂st to
its population quantity.

Theorem 6. Under Assumption (A3), we have

P

(
sup
st

∣∣∣d̂st − dst∣∣∣ ≤ 8κ

σmin
·
√

2k log |O|
n

)
≥ 1− o(1). (33)

Proof. Recall from Assumption (A2) that σmin = infs,t σk(Cst), there exists a finite n0, for n ≥ n0,
we have, for 1 ≤ i ≤ k,

1

2
≤ inf

s,t

σi(Ĉst)
σi(Cst)

≤ sup
s,t

σi(Ĉst)
σi(Cst)

≤ 3

2
.

We then have ∣∣∣∣∣
k∑
i=1

log
[
σi(Ĉst)

]
−

k∑
i=1

log
[
σi(Cst)

]∣∣∣∣∣ ≤
k∑
i=1

∣∣∣∣∣log

[
σi(Ĉst)− σi(Ctt))

σi(Cst)
+ 1

]∣∣∣∣∣
≤ 2

k∑
i=1

∣∣∣σi(Ĉst)− σi(Cst)∣∣∣
σi(Cst)

≤ 2

σmin

k∑
i=1

∣∣∣σi(Ĉst)− σi(Cst)∣∣∣
≤ 2
√
k

σmin

√√√√ k∑
i=1

[
σi(Ĉst)− σi(Cst)

]2

≤ 2
√
k

σmin

∥∥∥T (st)
F − T (st)

n

∥∥∥
HS

≤
√
k

σmin

4
√

2κ
√
δ√

n

with probability larger than 1 − 2 exp(−δ). Here the second to last inequality follows from the
Mirsky Theorem. Using the above arguments and the union bound, we get the desired result.

8.3 Structure Learning Algorithm

Once we define the tree metric as in the previous section, we can the neighbor-joint algorithm from
the phylogeny tree literature to recover the latent tree structure (Saitou et al., 1987). The neighbor
joint algorithm takes a distance matrix between any pair of observed variables as input and output
a tree by iteratively adding hidden nodes. More specifically, let s and t be two nodes in the latent
tree structure. They could be either observed or latent variables. We call dst to be the information
distance between s and t. The neighbor joining algorithm requires the input of the distance matrix
between all observed variables. We summarize the algorithm in Algorithm 3.

The next theorem shows that the neighbor joining algorithm recovers the true latent tree struc-
ture with high probability.
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Algorithm 3 Neighbor Joining Algorithm

Input: Pairwise distance dst between observed variables in O
Output: Latent tree structure T = (V ,E )

Initialize the latent tree structure: V = {1, ..., |O|} ,E = ∅
Define a working set: N = {1, ..., |O|}
u = |O|+ 1
while |N | ≥ 3 do

for s ∈ N do
for t ∈ N , t 6= s do

Qst = Qts = (|N | − 2)dst −
∑|N |

l=1 dsl −
∑|N |

l=1 dtl
end for

end for
(s∗, t∗) = argmins,t∈N ,s 6=tQst
Create a new node with index u to join node s∗ and t∗

Update distances to the new node u:

ds∗u = dus∗ =
1

2
ds∗t∗ +

1

2(|N | − 2)

|N |∑
l=1

ds∗l −
|N |∑
l=1

dt∗l

 ,

dt∗u = dut∗ = ds∗u − ds∗u

dlu = dul =
1

2
(ds∗l + dt∗l − ds∗t∗) ,∀l ∈ N , l 6= s∗, l 6= t∗

Update the working set:

N = N \ {s∗, t∗} , N = N ∪ {u} , u = u+ 1

Update latent tree structure T :

V = V ∪ {u} , E = E ∪ {(u, s∗), (u, t∗)}

end while
Create a new node with index u to join the 3 remaining nodes s, t, l ∈ N , and update the latent
tree structure T :

V = V ∪ {u} , E = E ∪ {(u, s), (u, t), (u, l)}

Theorem 7 (Sparsistency). Under Assumptions (A1) and (A2), let T̂ be the estimated tree struc-
ture using the neighbor joining algorithm and T ∗ be the true tree structure. We define

Imin := min
s,t

{
dst, (s, t) ∈ T ∗

}
, (34)

where dst is the population tree metric. Then, under the condition that

n

k log |O|
· Iminσ

2
min →∞, (35)
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we have lim infn→∞ P
(
T̂ = T ∗

)
= 1.

From the above theorem, we see that even though our latent variable tree model is nonpara-
metric, we get the nearly parametric scaling (we allow the dimension |O| to increase almost expo-
nentially fast than the sample size n) for structure estimation when k, Imin, and σmin are constants.

Proof. Our analysis is based on the stability result of the neighbor joining algorithm. From Theorem
34 of Mihaescu et al. (2007), we have that, if the estimated tree metric d̂st satisfies

max
s,t

∣∣d̂st − dst∣∣ ≤ Imin

4
, (36)

the neighbor joining algorithm correctly recovers the latent tree structure.
From Theorem 6, we have

P

(
sup
st

∣∣∣d̂st − dst∣∣∣ ≤ 8κ

σmin
·
√

2k log |O|
n

)
≥ 1− o(1). (37)

Therefore, it suffices if

8κ

σmin
·
√

2kδ log |O|
n

≤ Imin

4
. (38)

This proves the desired result.

9 Experiments

We evaluate our method on synthetic data as well as a real-world crime/communities dataset (Asun-
cion and Newman, 2007; Redmond and Baveja, 2002). For all experiments we compare to 2 existing
approaches. The first is to assume the data is multivariate Gaussian and use the tree metric defined
in (Choi et al., 2010) (which is essentially a function of the correlation coefficient). The second ex-
isting approach we compare to is the Nonparanormal (NPN) (Liu et al., 2009) which assumes that
there exist marginal transformations f1, . . . , fp such that f(X1), . . . , f(Xp) ∼ N(µ,Σ). If the data
comes from a Nonparanormal distribution, then the transformed data are assumed to be multivari-
ate Gaussian and the same tree metric as the Gaussian case can be used on the transformed data.
Our approach makes much fewer assumptions about the data than either of these two methods
which can be more favorably in practice.

To perform inference in our approach, we use the spectral algorithm described earlier in the
paper. For inference in the Gaussian (and nonparanormal) cases, we use the technique in (Choi
et al., 2010) to learn the model parameters (covariance matrix). Once the covariance matrix has
been estimated, marginalization in a Gaussian graphical model reduces to solving a linear equation
of one variable if we are only computing the marginal of one variable given a set of evidence (Bickson,
2008).
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Figure 3: Density estimation of 2-dimensional mixture of laplace distributions.

9.1 Synthetic data: density estimation

Before moving on to larger experiments, we first show that our model assumptions can result in
more accurate density estimation of non-Gaussian distributions. The underlying data is generated
as a two dimensional mixture of exponentials:

p(x1, x2) ∝ exp(‖x1 − µ1‖+ ‖x2 − µ2‖) + exp(‖x1 + µ1‖+ ‖x2 + µ2‖) (39)

Note that the first component has mean (µ1, µ2) while the second component has mean (−µ1,−µ2).
We experiment with the different values (µ1, µ2) = (2, 2), (µ1, µ2) = (4, 4), and (µ1, µ2) = (6, 6).
For all methods we evaluate the density on a grid G of evenly spaced points in [−2µ, 2µ]×[−2µ, 2µ].

The total error is measured as: err =
√∑

(x1,x2)∈G ‖p(x1, x2)− p̂(x1, x2)‖2.

Figure 3, shows the results where we compare our approach with the Gaussian and Gaussian
mixture distributions. As expected, the problem is more difficult when the components are closer
together. Our method performs the best for all the cases.

9.2 Synthetic data: structure recovery.

The second experiment is to demonstrate how our method compares to the Gaussian and Nonpara-
normal methods in terms of structure recovery for larger trees. We experiment with 3 different
tree types (each with 64 leaves or observed variables): a balanced binary tree, a completely binary
skewed tree (like an HMM), and randomly generated binary trees. Furthermore we explore with
two types of underlying distributions: (1) A multivariate Gaussian with mean zero and inverse
covariance matrix that respects the tree structure. (2) A highly non-Gaussian distribution that
uses the following generative process to generate the n-th sample from a node s in the tree (denoted

x
(n)
s ): If s is the root, sample from a mixture of 2 Gaussians. Else, with probability 1

2 sample from

a Gaussian with mean −x(n)
πs and with probability 1

2 sample from a Gaussian with mean x
(n)
πs .

We vary the training sample size from 200 to 100,000. Once we have computed the empirical
tree distance matrix for each algorithm, we use the neighbor joining algorithm (Saitou et al.,
1987) to learn the trees. For evaluation we compare the number of hops between each pair of
leaves in the true tree to the estimated tree. For a pair of leaves i, j the error is defined as:

error(i, j) = |hops∗(i,j)−ĥops(i,j)|
hops∗(i,j) + |hops∗(i,j)−ĥops(i,j)|

ĥops(i,j)
, where hops∗ is the true number of hops and
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ĥops is the estimated number of hops. The total error is then computed by adding the error for
each pair of leaves.

The performance of our method depends on the number of eigenvalues chosen and we experi-
mented with 2, 5 and 8 singular values. Furthermore, we choose the bandwidth σ for the Gaussian
RBF kernel needed for the covariance operators using median distance between pairs of training
points.

When the underlying distribution is not Gaussian, our method performs better than the Gaus-
sian and Nonparanormal methods for all the tree structures. This is to be expected, since the
non-Gaussian data we generated is neither Gaussian or Nonparanormal, yet our method is able to
learn the structure correctly. We also note that balanced binary trees are the easiest to learn while
the skewed trees are the hardest (Figure 4).

Even when the underlying distribution is Gaussian, our method still performs very well com-
pared to the Gaussian and NPN approaches and outperforms them for the binary and balanced
trees. It performs worse for the skewed case likely due to the fact that the eigenvalues (dependence)
decay along the length of the tree leading to larger errors in the empirical distance matrix.

Although it would be interesting to compare to the pouch latent tree model of Poon et al. Poon
et al. (2010), their model assumes multiple observed variables can exist in the same leaf of the
latent tree (unlike our approach) which makes a direct structure comparison difficult.

9.3 Synthetic data: model selection.

Next we evaluate the ability of our model to select the correct number of singular values via held-out
likelihood. For this experiment we use a balanced binary tree with 16 leaves (total of 31 nodes) and
100000 samples. A different generative process is used so that it is clear what the correct number
of singular values should be (When the hidden state space is continuous like in our first synthetic
experiment this is unclear). Each internal node is discrete and takes on d values. The leaf is a
mixture of d gaussians where which Gaussian to sample from is dictated by the discrete value of
the parent.

We vary d from 2 through 5 and then run our method for a range of 2 through 8 singular values.
We select the model that has the highest likelihood computed using our spectral algorithm on a
hold-out set of 500 examples. We then take the difference between the number of singular values
chosen and the true singular values, and plot histograms of this difference (Ideally all the trials
should be in the zero bin). The experiment is run for 20 trials. As we can see in Figure 5, when
d is low, the held-out likelihood computed by our method does a fairly good job in recovering the
correct number. However, as the true number of eigenvalues rises our method under-estimate the
true number (although it is still fairly close).

9.4 Crime Dataset.

Finally, we explore the performance of our method on a communities and crime dataset from the
UCI repository (Asuncion and Newman, 2007; Redmond and Baveja, 2002). In this dataset several
real valued attributes are collected for several communities, such as ethnicity proportions, income,
poverty rate, divorce rate etc., and the goal is to predict the number of violent crimes (proportional
to size of community) that occur based on these attributes. In general these attributes are highly
skewed and therefore not well characterized by a Gaussian model.
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Figure 4: Comparison of our kernel structure learning method to the Gaussian and Nonparanormal
methods on different tree structures. Top row: data points are generated from Gaussian distribu-
tions with latent variables connected by a tree structure. Bottom row: data points are generated
from mixture of Gaussian distributions with latent variables connected by a tree structure. Espe-
cially in the latter case, our kernel structure learning method is able to adapt the data distributions
and recover the structure in a much more accurate way.

We divide the data into 1400 samples for training, 300 samples for model selection (held-out like-
lihood), and 300 samples for testing. We pick the first 50 of these attributes, plus the violent crime
variable and construct a latent tree using our tree metric and neighbor joining algorithm (Saitou
et al., 1987). We depict the tree in Figure 6 and highlight a few coherent groupings. For example,
the “elderly” group attributes are those related to retirement and social security (and thus corre-
lated). The large clustering in the center is where the class variable (violent crimes) is located next
to the poverty rate, and the divorce rate among other relevant variables. Other groupings include
type of occupation and education level as well as ethnic proportions. Thus, overall our method is
able to capture sensible relationships.

For a more quantitative evaluation, we condition on a set of E evidence variables where |E| = 30
and predict the violent crimes class label. We experiment with a varying number of sizes of the
training set from 200 to 1400. At test, we evaluate on all the 300 test examples for 10 randomly
chosen evidence sets of evidence variables. Since the crime variable is a number between 0 and
1, our error measure is simply err(ĉ) = |ĉ − c∗| (where ĉ is the predicted value and c∗ is the true
value).

In this experiment, in addition to comparing with the Gaussian and the Nonparanormal, we also
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Figure 5: Histogram of the differences between the estimated number of hidden states and the true
number of states.

compare with two standard classifiers, (Gaussian) Naive Bayes and Linear Regression. Although
Naive Bayes can easily handle missing values, linear regression cannot. To deal with this problem,
we simply use the mean value of a variable if it is not in E (this performed much better than setting
it to zero).

As one can see in Figure 6 our method outperforms all the other approaches. We find that our
method performs similarly for different choices of E . Moreover, the accuracy of the Gaussian and
nonparanormal vary widely for different evidence sets (and thus the more erratic overall perfor-
mance). Thus, in this case our method is better able to capture the skewed distributions of the
variables than the other methods.

10 Conclusions

We present a method that uses Hilbert space embeddings of distributions that can recover the latent
tree structures, and perform local-mininum-free spectral learning and inference for continuous and
non-Gaussian variables. Both simulation and results on real datasets show the advantage of our
proposed approach for non-Gaussian data.

A Kernel Embedding of Distributions

We begin by providing an overview of Hilbert space embedding of distributions, which are implicit
mappings of distributions into potentially infinite dimensional feature spaces. A reproducing kernel
Hilbert space (RKHS) F on Ω with a kernel K(x, x′) is a Hilbert space of functions f : Ω 7→ R with
inner product 〈·, ·〉F . Its element K(x, ·) satisfies the reproducing property: 〈f(·),K(x, ·)〉F = f(x),
and consequently, 〈K(x, ·),K(x′, ·)〉F = K(x, x′), meaning that we can view the evaluation of
a function f at any point x ∈ Ω as an inner product. Alternatively, K(x, ·) can be viewed as
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Figure 6: (a) visualization of kernel latent tree learned from crime data (b) Comparison of our
method to Gaussian and NPN in predictive task.

an implicit feature map φ(x) where K(x, x′) = 〈φ(x), φ(x′)〉F .1 Popular kernel functions on Rd
include the polynomial kernel K(x, x′) = (〈x, x′〉 + c)r and the Gaussian RBF kernel K(x, x′) =
exp(−σ ‖x− x′‖2), where ‖·‖ is the Euclidean norm on the corresponding domain. Kernel functions
have also been defined on graphs, time series, dynamical systems, images and other structured
objects (Schölkopf et al., 2004). Thus the methodology presented below can readily be generalized
to a diverse range of data types as long as kernel functions are defined for them.

A.1 Population Definition

The Hilbert space embedding approach represents a probability distribution P (X) by an element in
the RKHS associated with a kernel function (Fukumizu et al., 2004; Berlinet and Thomas-Agnan,
2004; Smola et al., 2007b; Sriperumbudur et al., 2008, 2010),

µX := EX [φ(X)] =

∫
Ω
φ(x) dP (x), (40)

where the distribution P (X) is mapped to its expected feature map, i.e., to a point in a potentially
infinite-dimensional and implicit feature space. The mean embedding µX has the property that the
expectation of any RKHS function f can be evaluated as an inner product in F , i.e.,

〈µX , f〉F := EX [f(X)] for all f ∈ F .

Kernel embeddings can be readily generalized to the joint distributions of two or more variables
using tensor product feature spaces. For instance, we can embed a joint distribution of two variables
X and Y into a tensor product feature space F ⊗ F by

CXY := EXY [φ(X)⊗ φ(Y )] =

∫
Ω×Ω

φ(x)⊗ φ(y) dP (x, y) (41)

1For notational simplicity, we use the same kernel for y, i.e., K(y, y′) = 〈φ(y), φ(y′)〉F
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where we assume for simplicity that the two variables share the same domain Ω and kernel k, and
the tensor product features satisfy 〈φ(x)⊗ φ(y), φ(x′)⊗ φ(y′)〉F⊗F = K(x, x′)K(y, y′).

The joint embeddings can also be viewed as an uncentered cross-covariance operator CXY : F 7→
F by the standard equivalence between a tensor and a linear map. That is, given two functions
f, g ∈ F , their covariance can be computed by EXY [f(X)g(Y )] = 〈f, CXY g〉F , or equivalently
〈f ⊗ g, CXY 〉F⊗F , where in the former we view CXY as an operator while in the latter we view
it as an element in tensor product space. By analogy, CXX := EX [φ(X) ⊗ φ(X)] and C(XX)Y :=
EX [φ(X)⊗ φ(X)⊗ φ(Y )] can also be defined, C(XX)Y can be regarded as a linear operator from F
to F ⊗F . It will be clear from the context whether we use CXY as an operator between two spaces
or as an element from a tensor product feature space.

Kernel embeddings can be readily generalized to joint distribution of O variables, X1, . . . , XO,
using the O-th order tensor product feature space FO (Here O := {X1, . . . , XO}). In this feature
space, the feature map is defined as ⊗Oi=1φ(xi) := φ(x1)⊗φ(x2)⊗ . . .⊗φ(xO), and the inner product
in this space satisfies

〈
⊗Oi=1φ(xi),⊗Oi=1φ(x′i)

〉
FO =

∏O
i=1 〈φ(xi), φ(x′i)〉F =

∏O
i=1K(xi, x

′
i). Then we

can embed a joint density p(x1, . . . , xO) into a tensor product feature space FO by

CO := EO

[
⊗Oi=1φ(Xi)

]
=

∫
ΩO

(
⊗Oi=1φ(xi)

)
dP (x1, . . . , xO). (42)

Although the definition of embedding in (40) is simple, it turns out to have both rich representa-
tional power and a well-behaved empirical estimate. First, the mapping is injective for characteristic
kernels (Sriperumbudur et al., 2008, 2010). That is, if two distributions, P (X) and Q(Y ), are dif-
ferent, they will be mapped to two distinct points in the feature space. Many commonly used
kernels are characteristic, such as the Gaussian RBF kernel exp(−σ‖x − x′‖2) and Laplace kernel
exp(−σ‖x−x′‖), which implies that if we embed distributions using these kernels, the distance of the
mappings in feature space will give us an indication on whether these two distributions are identical.
This intuition has been exploited to design state-of-the-art two-sample tests (Gretton et al., 2012)
and independence tests (Gretton et al., 2008). For the former case, the test statistic is the squared
distance between the embeddings of P (Y ) and Q(Y ), i.e., mmd(X,Y ) := ‖µX − µY ‖2F . For the
latter case, the test statistic is the squared distance between the embeddings of a joint distribution
P (X,Y ) and the product of its marginals P (X)P (Y ), i.e., hsic(X,Y ) := ‖CXY − µX ⊗ µY ‖2F⊗F .
Similarly, this statistic also has advantages over the Kernel density estimation based statistic.
We will further discuss these tests in the next section, following our introduction of finite sample
estimates of the distribution embeddings and test statistics.

A.2 Finite Sample Kernel Estimator

While we rarely have access to the true underlying distribution, P (X), we can readily estimate its
embedding using a finite sample average. Given a sample DX = {x1, . . . , xn} of size n drawn i.i.d. from
P (X), the empirical Hilbert space embedding is

µ̂X =
1

n

∑n

i=1
φ(xi). (43)

This empirical estimate converges to its population counterpart in RKHS norm, ‖µ̂X −µX‖F , with

a rate of Op(n
− 1

2 ) (Berlinet and Thomas-Agnan, 2004; Smola et al., 2007b). We note that this rate
is independent of the dimension of X, meaning that statistics based on Hilbert space embeddings
circumvent the curse of dimensionality.
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Kernel embeddings of joint distributions inherit the previous two properties of general em-
beddings: injectivity and easy empirical estimation. Given m pairs of training examples DXY =
{(x1, y1), . . . , (xn, yn)} drawn i.i.d. from P (X,Y ), the covariance operator CXY can then be esti-
mated as

ĈXY =
1

n

n∑
i=1

φ(xi)⊗ φ(yi). (44)

By virtue of the kernel trick, most of the computation required for statistical inference using
Hilbert space embeddings can be reduced to the Gram matrix manipulation. The entries in the
Gram matrix K correspond to the kernel value between data points xi and xj , i.e., Kij = K(xi, xj),
and therefore its size is determined by the number of data points in the sample (similarly Gram
matrix G has entries Gij = K(yi, yj) ). The size of the Gram matrices is in general much smaller
than the dimension of the feature spaces (which can be infinite). This enables efficient nonpara-
metric methods using the Hilbert space embedding representation. For instance, the empirical mmd
can be computed using kernel evaluations,

m̂md(P,Q) =

∥∥∥∥∥ 1

n

n∑
i=1

φ(xi)−
1

n

n∑
i=1

φ(yi)

∥∥∥∥∥
2

F

=
1

n2

n∑
i,j=1

(K(xi, xj) +K(yi, yj)− 2K(xi, yj)) .

If the sample size is large, the computation in Hilbert space embedding methods may be expensive.
In this case, a popular solution is to use a low-rank approximation of the Gram matrix, such
as incomplete Cholesky factorization Fine and Scheinberg (2001), which is known to work very
effectively in reducing computational cost of kernel methods, while maintaining the approximation
accuracy.

B Kernel Embeddings of Conditional Distributions

In this section, we define the Hilbert space embeddings of conditional distributions, which take into
account complex conditional independence relations in graphical models.

B.1 Population Definition

The Hilbert space embedding of a conditional distribution P (Y |X) is defined as (Song et al., 2009)

µY |x := EY |x[φ(Y )] =

∫
Ω
φ(y) dP (y|x). (45)

Given this embedding, the conditional expectation of a function g ∈ F can be computed as

EY |x[g(Y )] =
〈
g, µY |x

〉
F .

This may be compared with the property of the mean embedding in the previous section, where the
unconditional expectation of a function may be written as an inner product with the embedding.
Unlike the embeddings discussed in the previous section, an embedding of conditional distribution
is not a single element in the RKHS, but will instead sweep out a family of points in the RKHS,
each indexed by a fixed value x of the conditioning variable X. It is only by fixing X to a particular
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value x, that we will be able to obtain a single RKHS element, µY |x ∈ F . In other words, we need
to define an operator, denoted as CY |X , which can take as input an x and output an embedding.
More specifically, we require it to satisfy

µY |x = CY |Xφ(x). (46)

Based on the relation between conditional expectation and covariance operators, Song et al.
(2009) show that that, under the assumption EY |· [g(Y )] ∈ F ,

CY |X := CY XC−1
XX , and hence µY |x = CY XC−1

XXφ(x) (47)

satisfy the requirement in (46). We remark that the assumption EY |· [g(Y )] ∈ F always holds
for finite domains with characteristic kernels, but it is not necessarily true for continuous do-
mains (Fukumizu et al., 2004). In the cases where the assumption does not hold, we will use the
expression CY XC−1

XXφ(x) as an approximation of the conditional mean µY |x. In practice, the inver-
sion of the operator can be replaced by the regularized inverse (CXX +I)−1, where I is the identity
operator.

B.2 Finite Sample Kernel Estimator

Given a dataset DXY = {(x1, y1), . . . , (xn, yn)} of size n drawn i.i.d. from P (X,Y ), we will estimate
the conditional embedding operator as

ĈY |X = Φ(K + λI)−1Υ> (48)

where Φ := (φ(y1), . . . , φ(yn)) and Υ := (φ(x1), . . . , φ(xn)) are implicitly formed feature matrix,
K = Υ>Υ is the Gram matrix for samples from variable X, and I is an identity matrix. Further-
more, we need an additional regularization parameter λ to avoid overfitting. Then µ̂Y |x = ĈY |Xφ(x)
becomes a weighted sum of the feature mapped data points φ(y1), . . . , φ(yn),

µ̂Y |x =
m∑
i=1

βi(x)φ(yi) = Φβ(x) where (49)

β(x) = (β1(x), . . . , βn(x))> = (K + λI)−1K:x,

and K:x = (K(x,X1), . . . ,K(x,Xn))>. The empirical estimator of the conditional embedding is
similar to the estimator of the ordinary embedding from equation (43). The difference is that,
instead of applying uniform weights 1

n , the former applies non-uniform weights, βi(x), on observa-
tions which are, in turn, determined by the value x of the conditioning variable. These non-uniform
weights reflect the effects of conditioning on the embeddings. It is also shown that this empirical
estimate converges to its population counterpart in RKHS norm,

∥∥µ̂Y |x − µY |x∥∥F , with rate of

Op(n
− 1

4 ) if one decreases the regularization λ with rate O(n−
1
2 ). With appropriate assumptions on

the joint distribution of X and Y , better rates can be obtained (Grunewalder et al., 2012).

C Hilbert Space Embeddings as Infinite Dimensional Higher Or-
der Tensors

The above Hilbert space embedding CO can also be viewed as a multi-linear operator (tensor)
of order O mapping from FO to R. (More detailed and generic introduction to tensor and tensor
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notation can be found in Kolda and Bader (2009)). The operator is linear in each argument (mode)
when fixing other arguments. Furthermore, the application of the operator to a set of elements
{fi ∈ F}Oi=1 can be defined using the inner product from the tensor product feature space, i.e.,

CO •1 f1 •2 . . . •O fO :=
〈
CO , ⊗Oi=1fO

〉
FO = EO

[
O∏
i=1

〈φ(Xi), fi〉F

]
, (50)

where •i means applying fi to the i-th argument of CO . Furthermore, we can define Hilbert-Schmidt
norm ‖·‖HS of CO as ‖CO‖2HS =

∑∞
i1=1 · · ·

∑∞
iO=1(CO •1 ei1 •2 . . .•O eiO)2 using an orthonormal basis

{ei}∞i=1 ⊂ F 2. The Hilbert-Schmidt norm can be viewed as a generalization of the Frobenius norm
from matrices to general operators. For the space of operators with finite Hilbert-Schmidt norms,
we can also define the Hilbert-Schmidt inner product of such operators as〈

CO , C̃O
〉
HS

=
∞∑
i1=1

· · ·
∞∑

iO=1

(CO •1 ei1 •2 . . . •O eiO)(C̃O •1 ei1 •2 . . . •O eiO). (51)

When CO has the form of EO

[
⊗Oi=1φ(Xi)

]
, the above inner product reduces to EO [C̃O •1 φ(X1) •2

. . . •O φ(XO)].
In this paper, the ordering of the tensor modes is not essential. Therefore we simply label them

using the corresponding random variables. We can reshape a higher order tensor into a lower order
one by partitioning its modes into several disjoint groups. For instance, let I1 = {X1, . . . , Xs} be
the set of modes corresponding to the first s variables and I2 = {Xs+1, . . . , XO}. Similarly to the
Matlab notation, we can obtain a 2nd order tensor by

CI1;I2 = reshape (CO , I1, I2) : Fs ×FO−s 7→ R. (52)

To under the reshape operator, if we have a set of functions {fi}Oi=1, then

CO •1 f1 •2 f2 •3 ... •O fO = CI1;I2 •1 (f1 ⊗ f2 ⊗ ...⊗ fs) •2 (fs+1 ⊗ fs+2 ⊗ ...⊗ fO).

Note that given an orthonormal basis {ei}∞i=1 ∈ F , we can readily obtain an orthonormal basis for
Fs as {ei1 ⊗ . . .⊗ eis}

∞
i1,...,is=1, and for FO−s as

{
ei1 ⊗ . . .⊗ eiO−s

}∞
i1,...,iO−s=1

. Hence we can define

the Hilbert-Schmidt norm for CI1;I2 . Using (50), it is easy to see that
∥∥CI1;I2

∥∥
HS

= ‖CO‖HS .
In the reverse direction, we can also reshape a lower order tensor into a higher order one by

further partitioning certain mode of the tensor. For instance, we can partition I1 into I ′1 =
{X1, . . . , Xt} and I ′′1 = {Xt+1, . . . , Xs}, and turn CI1;I2 into a 3rd order tensor by

CI ′1;I ′′1 ;I2
= reshape

(
CI1;I2 , I ′1, I ′′1 , I2

)
: F t ×Fs−t ×FO−s 7→ R, (53)

meaning that if we have a set of functions {fi}Oi=1, then

CI1;I2•1(f1 ⊗ f2 ⊗ ...⊗ fs) •2 (fs+1 ⊗ fs+2 ⊗ ...⊗ fO)

= CI ′1;I ′′1 ;I2
•1 (f1 ⊗ f2 ⊗ ...⊗ ft) •2 (ft+1 ⊗ f2 ⊗ ...⊗ fs) •3 (fs+1 ⊗ fs+2 ⊗ ...⊗ fO),

and furthermore, we have
∥∥∥CI ′1;I ′′1 ;I2

∥∥∥
HS

= ‖CO‖HS .

2The definition of Hilbert-Schmidt norm is invariant to arbitrary orthonormal basis.
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The 2nd order tensor CI1;I2 are the same as the cross-covariance operator between two sets of
variables in I1 and I2. In this case, we adopt the same notation and operations as for matrices.
For instance, we can perform singular value decomposition of CI1;I2 =

∑∞
i=1 si(ui ⊗ vi) where

si ∈ R are ordered in non-increasing manner, {ui}∞i=1 ⊂ Fs and {vi}∞i=1 ⊂ Fd−s are left and right
singular vectors. The rank of CI1;I2 is the smallest r such that si = 0 for i ≥ r. In this case,
we will also define Ur = (u1, u2, . . . , ur), Vr = (v1, v2, . . . , vr) and Sr = diag (s1, s2, . . . , sr), and
denote the low rank representation as CI1;I2 = UrSrV>r . We denote this to be ”thin” SVD. Finally,
reshape (CO , {O} , ∅), a 1st order tensor, is simply a vector where we will use vector notation.

The Hilbert space embedding framework represents the building blocks from probabilistic graph-
ical models, such as marginal distributions over single variables, joint distributions over variable
pairs, triplets and more, as infinite-dimensional vectors, matrices, tensors and high-order tensors
respectively; furthermore, the operations fundamental to probabilistic reasoning and graphical mod-
els, i.e., conditioning, Sum Rule, Product Rule and Bayes’ Rule, become linear transformations and
relations between the embeddings (see Figure 7 for the analogy between discrete probability tables
and kernel embeddings of distributions). We may combine these building blocks so as to reason
about interactions between a large collection of variables, even in the absence of parametric models.

𝑃(𝑋) 

𝜇𝑋 ≔ 
𝔼𝑋[𝜙(𝑋)] 

 

𝑃(𝑋, 𝑌) 

𝒞𝑋𝑌 ≔ 
𝔼𝑋𝑌[𝜙 𝑋 ⊗𝜙(𝑌)] 

 

𝑃(𝑋, 𝑌, 𝑍) 

𝒞𝑋𝑌𝑍 ≔ 
𝔼𝑋𝑌𝑍[𝜙 𝑋 ⊗𝜙 𝑌 ⊗𝜙 𝑍 ] 

 

𝑑𝑋 × 1 

∞× 1 

𝑑𝑋 × 𝑑𝑌  

∞×∞ 

𝑑𝑋 × 𝑑𝑌 × 𝑑𝑍  

∞×∞×∞ 

𝑋 

𝑃(𝑋) 

𝑋 

𝑌 𝑃(𝑋, 𝑌) 

𝑌 

𝑋 

𝑍 𝑃(𝑋, 𝑌, 𝑍) 

𝑆𝑢𝑚 𝑅𝑢𝑙𝑒: 𝑄 𝑋 = 𝑃 𝑋 𝑌 𝜋(𝑌)

𝑌

 

𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝑅𝑢𝑙𝑒: 𝑄 𝑋, 𝑌 = 𝑃 𝑋 𝑌 𝜋(𝑌) 

𝐵𝑎𝑦𝑒𝑠 𝑅𝑢𝑙𝑒: 𝑄 𝑌|𝑥 =
𝑃 𝑥 𝑌 𝜋(𝑌)

𝑄(𝑋)
 

𝑆𝑢𝑚 𝑅𝑢𝑙𝑒: 𝜇𝑋
𝜋 = 𝒞𝑋|𝑌𝜇𝑌

𝜋 

𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝑅𝑢𝑙𝑒: 𝒞𝑋𝑌
𝜋 = 𝒞𝑋|𝑌𝒞𝑌𝑌

𝜋  

𝐵𝑎𝑦𝑒𝑠 𝑅𝑢𝑙𝑒:  𝜇𝑌|𝑥
𝜋 = 𝒞𝑌|𝑋

𝜋 𝜙(𝑥) 

𝜇𝑋 𝜇𝑌 

𝒞𝑌|𝑋 

Discrete 

Kernel 
Embedding 

Distributions  Probabilistic Operations  

Figure 7: Analogy between discrete and kernel embedding representations of marginal distributions
and joint distributions of variable pairs and triplets. Probabilistic operations, such as conditioning,
Sum Rule, Product Rule and Bayes’ Rule become linear operations on the embedding representa-
tions. The discrete case is a specific instance of our embedding framework, given an appropriate
choice of kernel.
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