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1 Appendix

1.1 Theorem

Theorem 1 (Auxiliary variable representation for the
PYMM). For α ≥ 0 we can re-write the generative
process for a PYMM as

Dj ∼ PY
(
d,
α

P
,H
)
, φ ∼ Dirichlet

(α
P
, . . . ,

α

P

)
,

πi ∼ φ, θi ∼ Dπi , xi ∼ f(θi),

(1)

for j = 1, . . . , P and i = 1, . . . , N . The posterior dis-
tribution over the θi remains the same as

D ∼ PY (α, d,H) , θi ∼ D , xi ∼ f(θi) .

.

Proof. We will prove that the posterior predictive will
be the same as that of Pitman-Yor Mixture Model.

Let θ1, θ2, . . . be a sequence of random variable dis-
tributed according to G ∼ PY (d, α,H). Then the
conditional distribution of θn+1 given θ1, . . . , θn where
G has been integrated is given by

θn+1|θ1, . . . , θn ∼
n∑
l=1

1

n+ α
δθl(θn+1) +

α

n+ α
H

− d

n+ α
δ({

n∑
i=1

δθl(θn+1)} ≥ 1)

+
d

n+ α
(
∑

uniqueθi

1)H . (2)

For the model following theorem 1 the conditional dis-
tribution of θn+1 given θ1, . . . , θn where Dj ∀j and φ
has been integrated out is (Nj is the number of points
on processor j):

θn+1|θ1, . . . , θn

∼
P∑
j=1

P (πn+1 = j|π1, . . . , πn)

· P (θn+1|πn+1 = j, π1, . . . , πn, θ1, . . . θn, H)

=
∑
j

Nj + α/P

n+ α{
n∑
l=1

1

Nj + α/P
δθl(θn+1)δj(πi)

− d

Nj + α/P
δ({

n∑
i=1

δθl(θn+1)δj(πi)} ≥ 1)

+
α/P

Nj + α/P
H

+
d

Nj + α/P
(
∑

uniqueθi

δj(πi))H


=

n∑
l=1

1

n+ α
δθl(θn+1) +

α

n+ α
H

− d

n+ α
δ({

n∑
i=1

δθl(θn+1)} ≥ 1)

+
d

n+ α
(
∑

uniqueθi

1)H .

(3)

1.2 Metropolis Hastings acceptance
probabilities

We just need the likelihood ratio to calculate MH
acceptance probabilities since q({πi} → {π∗

i }) =
q({π∗

i } → {πi})



1.2.1 PYMM

For the Pitman-Yor mixture model the likelihood ratio
is given by:

p({π∗
i })

p({πi})

=
p({xi}|π∗

i )p({π∗
i }|α, P )

p({xi}|πi)p({πi}|α, P )

=
p({zi}|π∗

i )p({π∗
i }|α, P )

p({zi}|πi)p({πi}|α, P )

=

P∏
j=1

Γ(N∗
j + α/P )

Γ(Nj + α/P )

(α/P )(d;K
∗
j−1)

(α/P )(d;Kj−1)

(α/P + 1− d)(1;Nj−1)

(α/P + 1− d)(1;N
∗
j −1)

max(Nj ,N
∗
j )∏

i=1

[(1− d)(1;i−1))](a
∗
ij−aij) aij !

a∗ij !

(4)

where

(a)(b;c) =

{
1 if c = 0
a(a+ b) . . . (a+ (c− 1)b) for c = 1, 2, . . .

Proof. Let Nj be the number of points on processor
j and njk be the number of points in cluster k on
processor j. Let Kj be the total number of cluster on
processor j and aij is the number of cluster of size i on
cluster j. The probability of the processor allocations
is described by the Dirichlet compound multinomial,
or multivariate Pólya, distribution,

p({πi}|α, P ) =
N !∏P
j=1Nj !

Γ(
∑P
j=1 α/P )

Γ(N +
∑P
j=1 α/P )

·
P∏
j=1

Γ(Nj + α/P )

Γ(α/P )

=
N !∏P
j=1Nj !

Γ(α)

Γ(N + α)

P∏
j=1

Γ(Nj + α/P )

Γ(α/P )
,

where N =
∑P
j=1Nj is the total number of data

points. So,

p({π∗
i }|α, P )

p({πi}|α, P )
=

P∏
j=1

Nj !

N∗
j !

Γ(N∗
j + α/P )

Γ(Nj + α/P )
.

Conditioned on the processor indicators, the probabil-
ity of the data can be written

p({zi}|{πi}) =

P∏
j=1

p({njk}|Nj),

where njk is the number of data points in the kth
on processor j. This can be found by two parame-
ter generalization of Ewens random partition structure
[TODO cite Pitman].

p({njk}|Nj) =
Nj !∏Kj
k=1 njk!

(α/P )(d;Kj−1)

(α/P + 1− d)(1;Nj−1)

Nj∏
i=1

[(1− d)(1:i−1)]aij

aij !

Thus

P ({n∗jk}|α, π)

P ({njk}|α, π)
=

P∏
j=1

N∗
j !

Nj !

(α/P )(d;K
∗
j−1)

(α/P )(d;Kj−1)

(α/P + 1− d)(1;Nj−1)

(α/P + 1− d)(1;N
∗
j −1)

max(Nj ,N
∗
j )∏

i=1

[(1− d)1;i−1)](a
∗
ij−aij) aij !

a∗ij !

Thus giving equation 4

Specific case

Let us assume that we want to calculate the acceptance
probability of transferring cluster k1 of size i1 = nj1k1
from processor j1 to cluster j2. Assume that (Nj1 −
nj1k1) > 0 (ie there is atleast one point in the processor
j1 after removing cluster k1 ), Kj1 > 1 (its the same
as the assumption before since if there is atleast one
point in processor j1 other than in cluster k1 then it
has more than one cluster) and Kj2 > 0 (atleast one
cluster in processor j2) Then the transfer probability
is given by

p({π∗
i })

p({πi})

=
Γ (Nj1 − nj1k1 + α/P ) Γ (Nj2 + nj1k1 + α/P )

Γ (Nj1 + α/P ) Γ (Nj2 + α/P )

Γ (Nj1 + α/P − d) Γ (Nj2 + α/P − d)

Γ (Nj1 − nj1k1 + α/P − d) Γ (Nj2 + nj1k1 + α/P − d)

α/P + (Kj2 − 1)d

α/P + (Kj1 − 2)d

ai1j1
ai1j2 + 1

(5)

When d = 0 PYMM is same as DPMM. The accep-
tance ratio for DPMM is

ai1j1
ai1j2+1 which can also be

obtained by setting d = 0 in equation 5.



Proof. If c > 0 then

(a)(1;c) =
Γ(a+ c)

Γ(a)

Also a∗i1j1 = ai1j1 − 1, a∗i1j2 = ai2j2 + 1, N∗
j1

= N∗
j1
−

nj1k1 and N∗
j2

= Nj2−nj1k1 . Substitute these in 4 and
cancel terms to get 5

1.2.2 Hierarchical Version

For the hierarchical auxiliary variable PY model dis-
cussed in ?? the ratio is given by

p({xmi}|{π∗
mi γ, ξ

∗, α, P )

p({xmi}|{πmi γ, ξ, α, P )

p({π∗
mi}|γ, ξ

∗)

p({πmi}|γ, ξ)
p(ξ∗|α, P )

p(ξ|α, P )
.

(6)

We consider an equivalent Chinese restaurant franchise
representation [?], where each data point is associated
with a table (corresponding to clustering in the lower-
level DP), and each table is associated with a dish
(corresponding to clustering in the upper-level PY).

Let tj be the count vector for the top-level PY on pro-
cessor j – in Chinese restaurant franchise terms, tjd is
the number of tables on processor j serving dish d. Let
njm be the count vector for the mth bottom-level DP
on processor j – in Chinese restaurant franchise terms,
njmk is the number of customers in the mth restau-
rant sat at the kth table of the jth processor. Let Tmj
be the total number of occupied tables from the mth
restaurant on processor j, and let Uj be the total num-
ber of unique dishes on processor j. Let ajmi be the
total number of tables in restaurant m on processor j
with exactly i customers, and bji be the total number
of dishes on processor j served at exactly i tables. We
use the notation njm· =

∑
k njmk, T·j =

∑
m Tmj , etc.

Since the Metropolis-Hastings step does not change
the table and dish assignments of the data, the likeli-
hood ratio in Eq. 6 can be re-written as:

p({t∗jd}, {n∗jmk}|{π∗
mi γ, ξ

∗, α, P )

p({tjd}, {njmk}|{πmi γ, ξ, α, P )

· p({π
∗
mi}|γ, ξ

∗)

p({πmi}|γ, ξ)
p(ξ∗|α, P )

p(ξ|α, P )
.

(7)

The first term in the Eq. 7 is the ratio of the joint prob-
abilities of the topic- and table-allocations in the local
HDPs. This can be obtained by applying the Ewen’s
sampling formula to both top-level PY and bottom-
level DPs.

p({njmk}|γ, ξ)

=

M∏
m=1

P∏
j=1

(γξj)
Tmj

njm·!∏Tmj
k=1 njmk!

Γ(γξj)

Γ(γξj + njm·)

Nj∏
i=1

1

ajmi!
,

and

p({tjd}|α, P )

=

P∏
j=1

T·j !∏Uj
d=1 tjd!

(α/p)(d;Uj−1)

(α/P + 1− d)(1;Tj−1)

T·j∏
i=1

[(1− d)(1:i−1)]bji

bji
,

so

p({t∗jd}, {n∗jmk}|{π∗
mi γ, ξ

∗, α, P ))

p({tjd}, {njmk}|{πmi γ, ξ, α, P ))

=

P∏
j=1

(ξ∗j )T
∗
·j

(ξj)T·j

T ∗
·j !

T·j !

(α/P )(d;U
∗
j −1)

(α/P )(d;Uj−1)

(
Γ(γξ∗j )

Γ(γξj)

)M
(α/P + 1− d)(1;Tj−1)

(α/P + 1− d)(1;T
∗
j −1)

·
{∏max(T·j ,T

∗
·j)

i=1 [(1− d)(1;i−1)]b
∗
ji−bji bji!

b∗ji!

}
M∏
m=1

n∗jm·!

njm·!

Γ(γξj + njm·)

Γ(γξ∗j + n∗jm·)

max(Nj ,N
∗
j )∏

i=1

ajmi!

a∗jmi!
.

(8)

The probability of the processor assignments is given
by:

p({πmi}|γ, ξ) =

M∏
m=1

n·m·!∏P
j=1 njm·!

Γ(γ)

Γ(n·m· + γ)

P∏
j=1

Γ(γξj + njm·)

Γ(γξj)
,

so the second term is given by

p({π∗
mi}|γ, ξ

∗)

p({πmi}|γ, ξ)
=

P∏
j=1

(
Γ(γξj)

Γ(γξ∗j )

)M
M∏
m=1

njm·!

n∗jm·!

Γ(γξ∗j + n∗jm·)

Γ(γξj + njm·)
.

(9)

The third term is given by

p(ξ∗|α, P )

p(ξ|α, P )
=

P∏
j=1

(
ξ∗j
ξj

) α
P

. (10)

Combining the ratio is given by

r =

P∏
j=1

(ξ∗j )(T
∗
.j+α/P )

((ξj)(T.j+α/P ))

T ∗
.j !

T ∗
.j !

(α/P )(d;U
∗
j −1)

(α/P )(d;Uj−1)

(α/P + 1− d)(1;T.j−1)

(α/P + 1− d)(1;T
∗
.j−1)

·
{∏max(T·j ,T

∗
·j)

i=1 [(1− d)(1;i−1)]b
∗
ji−bji bji!

b∗ji!

}
M∏
m=1

max(Nj ,N
∗
j )∏

i=1

ajmi!

a∗jmi!
.

(11)


