Parallel Markov Chain Monte Carlo for Pitman-Yor Mixture Models: Supplement

1 Appendix

1.1 Theorem

Theorem 1 (Auxiliary variable representation for the PYMM). For $\alpha \geq 0$ we can re-write the generative process for a PYMM as

$$
\begin{align*}
& D_{j} \sim \operatorname{PY}\left(d, \frac{\alpha}{P}, H\right), \quad \phi \sim \operatorname{Dirichlet}\left(\frac{\alpha}{P}, \ldots, \frac{\alpha}{P}\right), \\
& \pi_{i} \sim \phi, \quad \theta_{i} \sim D_{\pi_{i}}, \quad x_{i} \sim f\left(\theta_{i}\right), \tag{1}
\end{align*}
$$

for $j=1, \ldots, P$ and $i=1, \ldots, N$. The posterior distribution over the θ_{i} remains the same as

$$
D \sim P Y(\alpha, d, H), \quad \theta_{i} \sim D, \quad x_{i} \sim f\left(\theta_{i}\right)
$$

Proof. We will prove that the posterior predictive will be the same as that of Pitman-Yor Mixture Model.

Let $\theta_{1}, \theta_{2}, \ldots$ be a sequence of random variable distributed according to $G \sim P Y(d, \alpha, H)$. Then the conditional distribution of θ_{n+1} given $\theta_{1}, \ldots, \theta_{n}$ where G has been integrated is given by

$$
\begin{align*}
\theta_{n+1} \mid \theta_{1}, \ldots, \theta_{n} \sim & \sum_{l=1}^{n} \frac{1}{n+\alpha} \delta_{\theta_{l}}\left(\theta_{n+1}\right)+\frac{\alpha}{n+\alpha} H \\
& -\frac{d}{n+\alpha} \delta\left(\left\{\sum_{i=1}^{n} \delta_{\theta_{l}}\left(\theta_{n+1}\right)\right\} \geq 1\right) \\
& +\frac{d}{n+\alpha}\left(\sum_{\text {unique } \theta_{i}} 1\right) H . \tag{2}
\end{align*}
$$

For the model following theorem 1 the conditional distribution of θ_{n+1} given $\theta_{1}, \ldots, \theta_{n}$ where $D_{j} \forall j$ and ϕ has been integrated out is (N_{j} is the number of points on processor j):

$$
\begin{align*}
& \theta_{n+1} \mid \theta_{1}, \ldots, \theta_{n} \\
& \sim \sum_{j=1}^{P} P\left(\pi_{n+1}=j \mid \pi_{1}, \ldots, \pi_{n}\right) \\
& \quad \cdot P\left(\theta_{n+1} \mid \pi_{n+1}=j, \pi_{1}, \ldots, \pi_{n}, \theta_{1}, \ldots \theta_{n}, H\right) \\
& =\sum_{j} \frac{N_{j}+\alpha / P}{n+\alpha} \\
& \quad\left\{\begin{array}{l}
\sum_{l=1}^{n} \frac{1}{N_{j}+\alpha / P} \delta_{\theta_{l}}\left(\theta_{n+1}\right) \delta_{j}\left(\pi_{i}\right) \\
\quad-\frac{d}{N_{j}+\alpha / P} \delta\left(\left\{\sum_{i=1}^{n} \delta_{\theta_{l}}\left(\theta_{n+1}\right) \delta_{j}\left(\pi_{i}\right)\right\} \geq 1\right) \\
\quad+\frac{\alpha / P}{N_{j}+\alpha / P} H \\
\left.\quad+\frac{d}{N_{j}+\alpha / P}\left(\sum_{u n i q u e \theta_{i}} \delta_{j}\left(\pi_{i}\right)\right) H\right\} \\
=\sum_{l=1}^{n} \frac{1}{n+\alpha} \delta_{\theta_{l}\left(\theta_{n+1}\right)+\frac{\alpha}{n+\alpha} H} \\
\quad-\frac{d}{n+\alpha} \delta\left(\left\{\sum_{i=1}^{n} \delta_{\theta_{l}}\left(\theta_{n+1}\right)\right\} \geq 1\right) \\
\quad+\frac{d}{n+\alpha}\left(\sum_{u n i q u e \theta_{i}} 1\right) H .
\end{array}\right.
\end{align*}
$$

1.2 Metropolis Hastings acceptance probabilities

We just need the likelihood ratio to calculate MH acceptance probabilities since $q\left(\left\{\pi_{i}\right\} \rightarrow\left\{\pi_{i}^{*}\right\}\right)=$ $q\left(\left\{\pi_{i}^{*}\right\} \rightarrow\left\{\pi_{i}\right\}\right)$

1.2.1 PYMM

For the Pitman-Yor mixture model the likelihood ratio is given by:

$$
\begin{align*}
& \frac{p\left(\left\{\pi_{i}^{*}\right\}\right)}{p\left(\left\{\pi_{i}\right\}\right)} \\
& \quad=\frac{p\left(\left\{x_{i}\right\} \mid \pi_{i}^{*}\right) p\left(\left\{\pi_{i}^{*}\right\} \mid \alpha, P\right)}{p\left(\left\{x_{i}\right\} \mid \pi_{i}\right) p\left(\left\{\pi_{i}\right\} \mid \alpha, P\right)} \\
& \quad=\frac{p\left(\left\{z_{i}\right\} \mid \pi_{i}^{*}\right) p\left(\left\{\pi_{i}^{*}\right\} \mid \alpha, P\right)}{p\left(\left\{z_{i}\right\} \mid \pi_{i}\right) p\left(\left\{\pi_{i}\right\} \mid \alpha, P\right)} \\
& =\prod_{j=1}^{P} \frac{\Gamma\left(N_{j}^{*}+\alpha / P\right)}{\Gamma\left(N_{j}+\alpha / P\right)} \frac{(\alpha / P)^{\left(d ; K_{j}^{*}-1\right)}}{(\alpha / P)^{\left(d ; K_{j}-1\right)}} \tag{4}\\
& \quad \frac{(\alpha / P+1-d)^{\left(1 ; N_{j}-1\right)}}{(\alpha / P+1-d)^{\left(1 ; N_{j}^{*}-1\right)}} \\
& \left.\quad \prod_{i=1}^{\max \left(N_{j}, N_{j}^{*}\right)}\left[(1-d)^{(1 ; i-1)}\right)\right]^{\left(a_{i j}^{*}-a_{i j}\right)} \frac{a_{i j}!}{a_{i j}^{*}!}
\end{align*}
$$

where
$(a)^{(b ; c)}= \begin{cases}1 & \text { if } c=0 \\ a(a+b) \ldots(a+(c-1) b) & \text { for } c=1,2, \ldots\end{cases}$

Proof. Let N_{j} be the number of points on processor j and $n_{j k}$ be the number of points in cluster k on processor j. Let K_{j} be the total number of cluster on processor j and $a_{i j}$ is the number of cluster of size i on cluster j. The probability of the processor allocations is described by the Dirichlet compound multinomial, or multivariate Pólya, distribution,

$$
\begin{aligned}
p\left(\left\{\pi_{i}\right\} \mid \alpha, P\right)= & \frac{N!}{\prod_{j=1}^{P} N_{j}!} \frac{\Gamma\left(\sum_{j=1}^{P} \alpha / P\right)}{\Gamma\left(N+\sum_{j=1}^{P} \alpha / P\right)} \\
& \cdot \prod_{j=1}^{P} \frac{\Gamma\left(N_{j}+\alpha / P\right)}{\Gamma(\alpha / P)} \\
= & \frac{N!}{\prod_{j=1}^{P} N_{j}!} \frac{\Gamma(\alpha)}{\Gamma(N+\alpha)} \prod_{j=1}^{P} \frac{\Gamma\left(N_{j}+\alpha / P\right)}{\Gamma(\alpha / P)}
\end{aligned}
$$

where $N=\sum_{j=1}^{P} N_{j}$ is the total number of data points. So,

$$
\frac{p\left(\left\{\pi_{i}^{*}\right\} \mid \alpha, P\right)}{p\left(\left\{\pi_{i}\right\} \mid \alpha, P\right)}=\prod_{j=1}^{P} \frac{N_{j}!}{N_{j}^{*}!} \frac{\Gamma\left(N_{j}^{*}+\alpha / P\right)}{\Gamma\left(N_{j}+\alpha / P\right)} .
$$

Conditioned on the processor indicators, the probability of the data can be written

$$
p\left(\left\{z_{i}\right\} \mid\left\{\pi_{i}\right\}\right)=\prod_{j=1}^{P} p\left(\left\{n_{j k}\right\} \mid N_{j}\right)
$$

where $n_{j k}$ is the number of data points in the k th on processor j. This can be found by two parameter generalization of Ewens random partition structure [TODO cite Pitman].

$$
\begin{aligned}
p\left(\left\{n_{j k}\right\} \mid N_{j}\right)= & \frac{N_{j}!}{\prod_{k=1}^{K_{j}} n_{j k}!} \frac{(\alpha / P)^{\left(d ; K_{j}-1\right)}}{(\alpha / P+1-d)^{\left(1 ; N_{j}-1\right)}} \\
& \prod_{i=1}^{N_{j}} \frac{\left[(1-d)^{(1: i-1)}\right]^{a_{i j}}}{a_{i j}!}
\end{aligned}
$$

Thus

$$
\begin{aligned}
\frac{P\left(\left\{n_{j k}^{*}\right\} \mid \alpha, \pi\right)}{P\left(\left\{n_{j k}\right\} \mid \alpha, \pi\right)}= & \prod_{j=1}^{P} \frac{N_{j}^{*}!}{N_{j}!} \frac{(\alpha / P)^{\left(d ; K_{j}^{*}-1\right)}}{(\alpha / P)^{\left(d ; K_{j}-1\right)}} \\
& \frac{(\alpha / P+1-d)^{\left(1 ; N_{j}-1\right)}}{(\alpha / P+1-d)^{\left(1 ; N_{j}^{*}-1\right)}} \\
& \left.\prod_{i=1}^{\max \left(N_{j}, N_{j}^{*}\right)}\left[(1-d)^{1 ; i-1}\right)\right]^{\left(a_{i j}^{*}-a_{i j}\right)} \frac{a_{i j}!}{a_{i j}^{*}!}
\end{aligned}
$$

Thus giving equation 4

Specific case

Let us assume that we want to calculate the acceptance probability of transferring cluster k_{1} of size $i_{1}=n_{j_{1} k_{1}}$ from processor j_{1} to cluster j_{2}. Assume that $\left(N_{j_{1}}-\right.$ $\left.n_{j_{1} k_{1}}\right)>0$ (ie there is atleast one point in the processor j_{1} after removing cluster k_{1}), $K_{j 1}>1$ (its the same as the assumption before since if there is atleast one point in processor j_{1} other than in cluster k_{1} then it has more than one cluster) and $K_{j 2}>0$ (atleast one cluster in processor j_{2}) Then the transfer probability is given by

$$
\begin{align*}
& \frac{p\left(\left\{\pi_{i}^{*}\right\}\right)}{p\left(\left\{\pi_{i}\right\}\right)} \\
& \quad=\frac{\Gamma\left(N_{j_{1}}-n_{j_{1} k_{1}}+\alpha / P\right) \Gamma\left(N_{j_{2}}+n_{j_{1} k_{1}}+\alpha / P\right)}{\Gamma\left(N_{j_{1}}+\alpha / P\right) \Gamma\left(N_{j_{2}}+\alpha / P\right)} \\
& \frac{\Gamma\left(N_{j_{1}}+\alpha / P-d\right) \Gamma\left(N_{j_{2}}+\alpha / P-d\right)}{\Gamma\left(N_{j_{1}}-n_{j_{1} k_{1}}+\alpha / P-d\right) \Gamma\left(N_{j_{2}}+n_{j_{1} k_{1}}+\alpha / P-d\right)} \\
& \frac{\alpha / P+\left(K_{j 2}-1\right) d}{\alpha / P+\left(K_{j 1}-2\right) d} \frac{a_{i_{1} j_{1}}}{a_{i_{1} j_{2}}+1} \tag{5}
\end{align*}
$$

When $d=0$ PYMM is same as DPMM. The acceptance ratio for DPMM is $\frac{a_{i_{1} j_{1}}}{a_{i_{1} j_{2}+1}}$ which can also be obtained by setting $d=0$ in equation 5 .

Proof. If $c>0$ then

$$
(a)^{(1 ; c)}=\frac{\Gamma(a+c)}{\Gamma(a)}
$$

Also $a_{i_{1} j_{1}}^{*}=a_{i_{1} j_{1}}-1, a_{i_{1} j_{2}}^{*}=a_{i_{2} j_{2}}+1, N_{j_{1}}^{*}=N_{j_{1}}^{*}-$ $n_{j_{1} k_{1}}$ and $N_{j_{2}}^{*}=N_{j_{2}}-n_{j_{1} k_{1}}$. Substitute these in 4 and cancel terms to get 5

1.2.2 Hierarchical Version

For the hierarchical auxiliary variable PY model discussed in ?? the ratio is given by

$$
\begin{equation*}
\frac{p\left(\left\{x_{m i}\right\} \mid\left\{\pi_{m i}^{*} \gamma, \boldsymbol{\xi}^{*}, \alpha, P\right)\right.}{p\left(\left\{x_{m i}\right\} \mid\left\{\pi_{m i} \gamma, \boldsymbol{\xi}, \alpha, P\right)\right.} \frac{p\left(\left\{\pi_{m i}^{*}\right\} \mid \gamma, \boldsymbol{\xi}^{*}\right)}{p\left(\left\{\pi_{m i}\right\} \mid \gamma, \boldsymbol{\xi}^{\prime}\right.} \frac{p\left(\boldsymbol{\xi}^{*} \mid \alpha, P\right)}{p(\boldsymbol{\xi} \mid \alpha, P)} . \tag{6}
\end{equation*}
$$

We consider an equivalent Chinese restaurant franchise representation [?], where each data point is associated with a table (corresponding to clustering in the lowerlevel DP), and each table is associated with a dish (corresponding to clustering in the upper-level PY).

Let \mathbf{t}_{j} be the count vector for the top-level PY on processor j - in Chinese restaurant franchise terms, $t_{j d}$ is the number of tables on processor j serving dish d. Let $\mathbf{n}_{j m}$ be the count vector for the m th bottom-level DP on processor j - in Chinese restaurant franchise terms, $n_{j m k}$ is the number of customers in the m th restaurant sat at the k th table of the j th processor. Let $T_{m j}$ be the total number of occupied tables from the m th restaurant on processor j, and let U_{j} be the total number of unique dishes on processor j. Let $a_{j m i}$ be the total number of tables in restaurant m on processor j with exactly i customers, and $b_{j i}$ be the total number of dishes on processor j served at exactly i tables. We use the notation $n_{j m} .=\sum_{k} n_{j m k}, T_{\cdot j}=\sum_{m} T_{m j}$, etc.

Since the Metropolis-Hastings step does not change the table and dish assignments of the data, the likelihood ratio in Eq. 6 can be re-written as:

$$
\begin{align*}
& \frac{p\left(\left\{t_{j d}^{*}\right\},\left\{n_{j m k}^{*}\right\} \mid\left\{\pi_{m i}^{*} \gamma, \boldsymbol{\xi}^{*}, \alpha, P\right)\right.}{p\left(\left\{t_{j d}\right\},\left\{n_{j m k}\right\} \mid\left\{\pi_{m i} \gamma, \boldsymbol{\xi}, \alpha, P\right)\right.} \tag{7}\\
& \cdot \frac{p\left(\left\{\pi_{m i}^{*}\right\} \mid \gamma, \boldsymbol{\xi}^{*}\right)}{p\left(\left\{\pi_{m i}\right\} \mid \gamma, \boldsymbol{\xi}^{\prime}\right.} \frac{p\left(\boldsymbol{\xi}^{*} \mid \alpha, P\right)}{p(\boldsymbol{\xi} \mid \alpha, P)}
\end{align*}
$$

The first term in the Eq. 7 is the ratio of the joint probabilities of the topic- and table-allocations in the local HDPs. This can be obtained by applying the Ewen's sampling formula to both top-level PY and bottomlevel DPs.

$$
\begin{aligned}
& p\left(\left\{n_{j m k}\right\} \mid \gamma, \boldsymbol{\xi}\right) \\
= & \prod_{m=1}^{M} \prod_{j=1}^{P}\left(\gamma \xi_{j}\right)^{T_{m j}} \frac{n_{j m} .!}{\prod_{k=1}^{T_{m j}} n_{j m k}!} \frac{\Gamma\left(\gamma \xi_{j}\right)}{\Gamma\left(\gamma \xi_{j}+n_{j m} .\right)} \prod_{i=1}^{N_{j}} \frac{1}{a_{j m i}!},
\end{aligned}
$$

and

$$
\begin{aligned}
& p\left(\left\{t_{j d}\right\} \mid \alpha, P\right) \\
= & \prod_{j=1}^{P} \frac{T_{\cdot j}!}{\prod_{d=1}^{U_{j}} t_{j d}!} \frac{(\alpha / p)^{\left(d ; U_{j}-1\right)}}{(\alpha / P+1-d)^{\left(1 ; T_{j}-1\right)}} \prod_{i=1}^{T_{\cdot j}} \frac{\left[(1-d)^{(1: i-1)}\right]^{b_{j i}}}{b_{j i}},
\end{aligned}
$$

so

$$
\begin{align*}
& \frac{p\left(\left\{t_{j d}^{*}\right\},\left\{n_{j m k}^{*}\right\} \mid\left\{\pi_{m i}^{*} \gamma, \boldsymbol{\xi}^{*}, \alpha, P\right)\right)}{p\left(\left\{t_{j d}\right\},\left\{n_{j m k}\right\} \mid\left\{\pi_{m i} \gamma, \boldsymbol{\xi}, \alpha, P\right)\right)} \\
= & \prod_{j=1}^{P} \frac{\left(\xi_{j}^{*}\right)^{T_{\cdot j}}}{\left(\xi_{j}\right)^{T_{\cdot j}}} \frac{T_{\cdot j}^{*}!}{T_{\cdot j}!} \frac{(\alpha / P)^{\left(d ; U_{j}^{*}-1\right)}}{(\alpha / P)^{\left(d ; U_{j}-1\right)}}\left(\frac{\Gamma\left(\gamma \xi_{j}^{*}\right)}{\Gamma\left(\gamma \xi_{j}\right)}\right)^{M} \\
& \frac{(\alpha / P+1-d)^{\left(1 ; T_{j}-1\right)}}{(\alpha / P+1-d)^{\left(1 ; T_{j}^{*}-1\right)}} \tag{8}\\
& \cdot\left\{\prod_{i=1}^{\max \left(T_{\cdot j}, T_{\cdot j}^{*}\right)}\left[(1-d)^{(1 ; i-1)}\right]_{j i}^{\left.b_{j i}^{*}-b_{j i} \frac{b_{j i}!}{b_{j i}^{*}!}\right\}}\right. \\
& \prod_{m=1}^{M} \frac{n_{j m}^{*}!}{n_{j m}!} \frac{\Gamma\left(\gamma \xi_{j}+n_{j m .}\right)}{\Gamma\left(\gamma \xi_{j}^{*}+n_{j m .}^{*}\right)} \prod_{i=1}^{\max \left(N_{j}, N_{j}^{*}\right)} \frac{a_{j m i}!}{a_{j m i}^{*}!} .
\end{align*}
$$

The probability of the processor assignments is given by:

$$
\begin{aligned}
p\left(\left\{\pi_{m i}\right\} \mid \gamma, \boldsymbol{\xi}\right)= & \prod_{m=1}^{M} \frac{n \cdot m \cdot!}{\prod_{j=1}^{P} n_{j m} \cdot!} \frac{\Gamma(\gamma)}{\Gamma(n \cdot m \cdot+\gamma)} \\
& \prod_{j=1}^{P} \frac{\Gamma\left(\gamma \xi_{j}+n_{j m \cdot}\right)}{\Gamma\left(\gamma \xi_{j}\right)}
\end{aligned}
$$

so the second term is given by

$$
\begin{align*}
\frac{p\left(\left\{\pi_{m i}^{*}\right\} \mid \gamma, \boldsymbol{\xi}^{*}\right)}{p\left(\left\{\pi_{m i}\right\} \mid \gamma, \boldsymbol{\xi}\right)}= & \prod_{j=1}^{P}\left(\frac{\Gamma\left(\gamma \xi_{j}\right)}{\Gamma\left(\gamma \xi_{j}^{*}\right)}\right)^{M} \\
& \prod_{m=1}^{M} \frac{n_{j m}!!}{n_{j m}^{*}!} \frac{\Gamma\left(\gamma \xi_{j}^{*}+n_{j m \cdot}^{*}\right)}{\Gamma\left(\gamma \xi_{j}+n_{j m \cdot}\right)} . \tag{9}
\end{align*}
$$

The third term is given by

$$
\begin{equation*}
\frac{p\left(\boldsymbol{\xi}^{*} \mid \alpha, P\right)}{p(\boldsymbol{\xi} \mid \alpha, P)}=\prod_{j=1}^{P}\left(\frac{\xi_{j}^{*}}{\xi_{j}}\right)^{\frac{\alpha}{P}} \tag{10}
\end{equation*}
$$

Combining the ratio is given by

$$
\begin{align*}
& r=\prod_{j=1}^{P} \frac{\left(\xi_{j}^{*}\right)^{\left(T_{. j}^{*}+\alpha / P\right)}}{\left(\left(\xi_{j}\right)^{\left(T_{. j}+\alpha / P\right)}\right)} \frac{T_{. j}^{*}!}{T_{. j}^{*}!} \frac{(\alpha / P)^{\left(d ; U_{j}^{*}-1\right)}}{(\alpha / P)^{\left(d ; U_{j}-1\right)}} \\
& \frac{(\alpha / P+1-d)^{\left(1 ; T_{. j}-1\right)}}{(\alpha / P+1-d)^{\left(1 ; T_{. j}^{*}-1\right)}} \\
& \cdot\left\{\prod_{i=1}^{\max \left(T_{\cdot j}, T_{\cdot j}^{*}\right)}\left[(1-d)^{(1 ; i-1)}\right]^{b_{j i}^{*}-b_{j i}} \frac{b_{j i}!}{b_{j i}^{*}!}\right\} \tag{11}\\
& \prod_{m=1}^{M} \prod_{i=1}^{\max \left(N_{j}, N_{j}^{*}\right)} \frac{a_{j m i}!}{a_{j m i}^{*}!} .
\end{align*}
$$

