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ABSTRACT

Motivation: The problem of identifying victims in a mass disaster

using DNA fingerprints involves a scale of computation that requires

efficient and accurate algorithms. In a typical scenario there are

hundreds of samples taken from remains that must be matched to

the pedigrees of the alleged victim’s surviving relatives. Moreover

the samples are often degraded due to heat and exposure. To develop

a competent method for this type of forensic inference problem, the

complicated quality issues of DNA typing need to be handled appropri-

ately, the matches between every sample and every family must be

considered, and the confidence of matches need to be provided.

Results: We present a unified probabilistic framework that efficiently

clusters samples, conservatively eliminates implausible sample-

pedigree pairings, and handles both degraded samples (missing

values) and experimental errors in producing and/or reading a geno-

type. We present a method that confidently exclude forensically

unambiguous sample-family matches from the large hypothesis

spaceof candidatematches, basedonposterior probabilistic inference.

Due to the high confidentiality of disaster DNA data, simulation exp-

eriments are commonly performed and used here for validation. Our

framework is shown to be robust to these errors at levels typical in real

applications. Furthermore, the flexibility in the probabilistic models

makes it possible to extend this framework to include other biological

factors such as interdependent markers, mitochondrial sequences,

and blood type.

Availability: The software and data sets are available from the

authors upon request.

Contact: epxing@cs.cmu.edu

1 INTRODUCTION

Rapid advances in genotyping technology and mathematical

theories of pedigrees have enabled their application in traditional

forensic applications such as victim or perpetrator identification and

paternity testing common place, even when family structures are

complex or sample mixtures and mutations are involved (Mortera

et al., 2003). A natural next step is to enlarge the scale of genetic

forensic inference to mass disasters, such as airplane crashes,

terrorist bombings, or battlefields, in which hundreds or even

thousands of remains, usually highly degraded, have to be identified

for all the victims according to DNA evidences from candidate

family members (Egeland et al., 2000; Lauritzen and Sheehan,

2003). In addition to issues related to the increased scale of the

problem, such a problem also poses new technical challenges such

as the presence of errors in the genotypes and pedigrees, incomplete

genetic information, and the need for decision making with very

high confidence. (This last issue is typical of forensic cases, where

seemingly low probability event such as incorrect victim/family

matching can have serious legal consequence, and must be deter-

mined with a confidence much more stringent than usually adopted

in experimental biology.)

DNA typing has long been used in forensic investigations, but until

a decade ago, mass disaster victim identification has generally relied

on dental and medical records, fingerprints, and even photographic

evidence and personal effects (Ballantyne, 1997). These techniques

require comparison between ante mortem (AM) information for the

victim and post mortem (PM) information of the remains. However,

in most mass disaster scenarios, AM information is not available for

all victims and bodies are not intact, rendering such methods inef-

fective. Whitaker et al. (1995) established the use of short tandem

repeat (STR) typing, or microsatellite markers, in mass disaster

identification, and Olaisen et al. (1997) applied it to victim identi-

fication in the 1996 Spitsbergen aircraft accident, in which it proved

to be highly reliable. A thirteen STR loci fingerprint set called the

Combined DNA Index System (CODIS) is now in routine usage by

the FBI, and has become a major tool in difficult disaster victim

identification cases (Hsu et al., 1999; Cash et al., 2003).
While the basic problem of computing the likelihood ratio that

a given sample is part of a given pedigree versus the null hypothesis

of a random sample has been extensively studied (Olaisen et al.,
1997), the inference problem of matching many pedigrees

against many samples has not. Specialized software tools have

been developed for large scale mass disaster identification (Cash

et al., 2003) including the use of mitochondrial DNA (mtDNA) and

single nucleotide polymorphism (SNP), but the matching algo-

rithms utilized only rank the likely samples for each victim, and

rank the likely victims for each sample. The complex interactions

of all family evidence and all samples are not explored, and a great

amount of expert involvement is still required. Moreover there

is currently no systematic solution that addresses all the complicat-

ing factors: body part clustering, arbitrary pedigrees and their

vetting, experimental genotyping error for the samples, partial

genotypes due to heat and pressure damage of the DNA, and

confidence of a cluster to family match based on other likely and�To whom correspondence should be addressed.
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unlikely family. This paper presents an architecture for the problem

and a probabilistic framework that incorporates these uncertainties

and scales to the required problem sizes.

We consider the following problem. We are given N family

pedigrees for which the genotypes for some members are known,

and the (potentially partial) genotypes of M samples belonging to

the victims of a mass disaster. The problem is to match, with high

confidence, the samples to the variable nodes (the purported victim

reported by the family) of the pedigrees. Furthermore, we address

how to screen out unambiguous matching outcomes and extract the

truly ambiguous cases that merit costly personalized forensic

investigation.

We approach the problem in two phases. First the samples

are clustered into groups that have the same genotype. This reduces

the problem of matchingM samples to N pedigrees, to a smaller one

of matching J � M sample clusters to N pedigrees. During

clustering possible errors in the STR data must be considered,

especially when the DNA is degraded or when thousands of geno-

types have been collected. We include a model for the types of

errors that can occur in our probabilistic framework. In second

phase, the cluster samples are matched to the variable nodes in

the pedigrees. Forensic conclusions must be satisfactory from a

legal perspective, as the purpose is to confirm the death of the

victim, to return the remains to the families for closure, and in

some cases to identify some of the victims as the perpetrators

(in the case of terrorist acts). Therefore one can only make con-

clusions if there is a very small probability, typically 10�6 or

smaller, of being wrong. We present a method to calculate the

confidence of a certain match considering its likelihood ratio and

other competitors for the slot. Then a forensically impossible match

can be removed with high confidence.

Due to high confidentiality in disaster DNA data, simulation

experiment is commonly performed so that true identity is

known.We run three experiments with different simulation settings,

and show that our algorithm is robust even with a lot of missing

information and noise.

2 PRELIMINARIES

Consider M forensic samples from a mass disaster scene. Let s1,

s2,. . .sM denote the set of sample genetic states (to be specified

shortly) retrieved from the M DNA samples, each from one of

the forensic samples. Suppose there are N families that have

filed missing person reports regarding this case (for presentation

simplicity, we assume each family reports only one missing person,

although generalization to multiple missing persons is feasible with

our approach presented in the following), and have donated DNA

samples as genetic references for victim identification. Let f1, f2 . . .
fN denote the set of familial genetic states (defined in the sequel)

obtained from these families.

Typically, body remains from a mass disaster and samples from

donors are genetically characterized by a standard profile of K
microsatellite markers. Each allele of such a marker corresponds

to a numerical (in fact, discreet) reading from an electrophoresis

gel; formally, we define each marker to be a random variable, and

each of its alleles to be one of the realized states of this variable. For a

forensic sample j, its sample genetic state (SGS) sj� (sj1, sj2, . . . , sjK)
denote the genotype profile of K markers, where sjk � ðs0jk‚s1jkÞ rep-
resents an unordered pair of alleles of marker k from sample j. There

are two alleles for each marker as human somatic cells are diploid,

that is, there is a copy of a chromosome inherited from each parent.

The superscripts ‘‘1’’ and ‘‘0’’ correspond to the parental origin of

the alleles, i.e., paternal and maternal. Similarly, for each donor, we

define dj � (dj1, dj2, . . . , djK) to be his/her genotype profile. Each

family, say family i, may have multiple donors related by a pedigree
Ti, therefore the familial genetic state (FGS) of a family with ni
donors is denoted by f i � fd1‚ . . . ‚dni ; Tig. In typical mass disaster

scenarios,multiple forensic samples (e.g., body remains)maybelong

to the same victim; therefore the samples can be grouped into clus-

ters: i.e., s1, s2, . . .sM) c1, c2, . . .cJ, where cj ¼ ðcj1‚ . . . ‚cjmj
Þ andmj

denotes the size of cluster j (for simplicity, in the sequel we overload

the symbol cj to also represent the set of indices of SGSs belonging

to cluster j). The forensic inference problem we concern

here is that of determining the number of victims in the disaster,

and the correct mapping between the victims and the reporting fami-

lies.

In forensic applications, the microsatellite markers are chosen to

be independent from each other (e.g., on different chromosomes).

Via population censuring, the a priori probability (i.e., population

frequency) of every allele of a microsatellite marker can be deter-

mined. Thus, given no familial information, the probability of an

SGS of a forensic sample can be defined by the product of marker-

specific genotype probabilities (by assuming the alleles are random

samples from the population):

pðsjÞ ¼
YK
k¼1

pðsjkÞ‚ ð1Þ

where

pðsjkÞ ¼
ðpk‚ s0

jk
Þ2 ifs0jk ¼ s1jk

2pk‚ s0
jk
pk‚ s1

jk
ifs0jk 6¼ s1jk

‚

(

and pk,a denotes the population frequency of allele a of marker k.
The dependencies among donors from a family are captured by

a pedigree. In our current setting, we consider only sexual inheri-

tance among family members (i.e., donors plus the purported vic-

tim), and leave out nonsexual inheritance such as the mitochondria

inheritance (incorporating such information is feasible in our frame-

work and will be pursued in future research.) As illustrated in §3.4,

a pedigree can be used to define the probability of the FGS of a

family via a probabilistic graphical model (Pearl, 1988; Cowell
et al., 1999). Note that a pedigree contains members who are not

donors, nor victims, in order to specify the relations between the

donors and the victim. These members represent the hidden vari-

ables in the graphical model, and will be marginalized out when

computing the the FGS probability. For example, when the donor is

the victim’s brother, parents must appear on the pedigree even

though their DNA samples are not available. The pedigree may

have arbitrary structures, which are assumed to be correct after

passing the validity check.

3 BODY IDENTIFICATION

To formulate a likelihood-ratio matching criteria for body identi-

fication, let’s first assume that we have N reporting families and

J victims (J will be determined by sample clustering as described

in §3.2), and J ¼ N. That is, each family has exactly one victim

which corresponds to one cluster; and there is a one-to-one
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alignment between the family pedigrees and the sample clusters.

Our goal here is to find the optimal matching between {cj} and {fi}.

We will discuss how to relax the ‘‘J ¼ N’’ and ‘‘one-to-one corres-
pondence’’ assumptions later.

3.1 Matching via likelihood ratio

The matching between families and sample clusters can be repre-

sented by an N · N matching matrix z, of which an element zij
indicates the matching status between sample cluster j and family i:

zij ¼
1 if cj is assigned to f i
0 otherwise

:

�

In case of one-to-one matching, z must satisfy the following

constraints:

XN
i¼1

zij ¼ 1 8j‚
XJ
j¼1

zij ¼ 1 8i: ð2Þ

Let p(cj j fi) denotes the conditional probability of a cluster given
a matching family, p(cj) denotes the marginal probability of a

cluster given no matching, and p(fi) denotes the marginal probabil-

ity of an FGS of family i. Assuming different families and different

sample clusters are genetically independent given their matching

configurations, the conditional probability of all FGSs {fj} and

clusters of SFSs {cj}, given the matching matrix z, is:

pðfcjg‚ff ig j zÞ ¼
Y
j

pðcj j ff ig‚zÞ
Y
i

pðf iÞ

¼
Y
ij

pðcj j f iÞzij
Y
j

pðcjÞ1�Sizij
Y
i

pðf iÞ

¼
Y
ij

pðcj j f iÞzij
Y
i

pðf iÞ:

Note that according to the constraints of one-to-one matching

in Eq. (2), we have 1 � Sizij ¼ 0.

The likelihood ratio of an overall matching specification z versus

a null hypothesis (that all families and samples are unrelated) is:

LRðzÞ ¼ pðfcjg‚ff ig j zÞ
pðfcjgÞpðff igÞ

¼
Q

j

Q
i pðcj j f iÞ

zijQ
j pðcjÞ

¼
Y
ij

pðcj j f iÞ
pðcjÞ

� �zij
:

ð3Þ

Let Lij � p(cj j fi)/p(cj), and take the logarithm of LR, we have

log LRðzÞ ¼
XJ
j¼1

XN
i¼1

zij logLij: ð4Þ

We postulate that an optimal body identification corresponds to a

z that maximizes the likelihood ratio of matching family-clusters

versus randomly generated {cj} and {fi}. In the sequel we describe

algorithms for identifying the sample clusters from the SGSs of

samples, and for solving the optimal matching.

3.2 Sample clustering

The first problem in body identification is to determine the total

number of victims in the case, and group body remains for each

victim. We determine whether two samples, si and sj, are from the

same victim or not based on the ratio of their joint probabilities

under the two circumstances:

LRðsi‚sjÞ ¼
pðsi‚sjÞ
pðsiÞpðsjÞ

¼ pðsi j sjÞ
pðsiÞ

¼
YK
k¼1

pðsik j sjkÞ
pðsikÞ

The conditional probability p(sik j sjk) of genotypes will be

referred to as an error model, which will be specified in §3.2.2.

3.2.1 The union-find clustering algorithm Let each sample in

the case be represented by a node, we can define an undirected

graph over all samples of interest. Two nodes are connected if

LR(si, sj) > �c, where �c is a user-specifiable threshold. As a common

practice in mass disaster forensic identification, any two samples

with more than two genotypes differences are immediately consid-

ered disconnected. Sample clustering is done by partition this graph

into connected subgraph, which can be implemented efficiently

using a union-find algorithm. We defines three operations:

make-set—creates a set, union—merges two sets, and find—

returns the host set of a node. The algorithm proceeds as follows:

(1) make-set creates a set for each node

(2) For two nodes of each edge, iterate the following

� find the corresponding sets,

� union the two sets (if they are connected by cross-set edges).

This process will converge to a clustering of samples, without a

prior specification the number of clusters, but a threshold control-

ling the tightness of the clusters. This is a desirable feature in

forensic inference because usually the legal agents would need

to leverage their forensic experience and determine tolerable risk

of legal decisions circumstantially. Once the clustering is complete,

we extract a consensus SGS ĉcj for each cluster cj based on a

maximum likelihood principle. That is, given the consensus ĉcj
that corresponds to the true genetic state (TGS) of a victim, the

conditional probability of all SGSs of this cluster (i.e., this victim) is

maximized:

ĉcj ¼ arg max
t

pðtÞ
Y
l2ci

pðsl j tÞ

¼ arg max
t

YK
k¼1

�
pðtkÞ

Y
l2cj

pðslk j tkÞ
�
‚

where the marker-specific conditional probability p(slk j tk) is given
by the error model described bellow.

3.2.2 The error model The error model defines the probability

distribution of a marker-specific sample genotype given the true

genotype, p(sk j tk). For two alleles a 6¼ b of any markers (i.e., locus),

we define five error types:

(1) Measurement error: Allele a is misread as a ± 0.1 by the

technician

(2) Calibration error: True genotype is (a, b) but calibration ladder
is off byone, so instruments shows (a+1,b+1)or (a�1,b�1)

(3) PCR Shutter error: True genotype is (a, a) but instruments

shows (a, a ± 1)

(4) Threshold error: True genotype is (a, b) but the b signal falls

below threshold, so instruments shows (a, a)

(5) Mutation error: Allele a mutates to allele b

T.Lin et al.
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The probability of measurement, calibration, shutter, and thresh-

old error are constants, denoted as em, ec, es, et respectively. Based

on the stepwise mutational model (Valdes et al., 1993) for micro-

satellite, the probability of a mutation from a to b is p(b j a) ¼
0.5m(1 � a)ajb�aj�1, where m is the mutation rate (probability

of any mutation) and a is the factor by which mutation decreases

as distance increases. Although this mutation distribution is not

stationary (i.e. it does not ensure allele frequencies to be constant

over the generations), it is simple and commonly used in forensic

inference. Shutter, threshold, and calibration errors are defined on

genotypes, but measurement and mutation errors are defined on

alleles and have to consider two combinations, pðs0k j t0kÞpðs1k j t1kÞ
and pðs0k j t1kÞpðs1k j t0kÞ. To summarize, for sk 6¼ tk, we have:

pðsk j tkÞ ¼

ec if s0k � t0k ¼ s1k � t1k ¼ ±1

es if s0k ¼ s1k ¼ t0k‚ j s1k � t1k j ¼ 1

et if s0k ¼ t0k ¼ t1k
maxðqðs0k ; t0kÞqðs1k ; t1kÞ‚qðs0k ; t1kÞqðs1k ; t0kÞÞ

otherwise

‚

8>>>><
>>>>:

where the allele error function q(b; a) is defined as

qðb; aÞ ¼
1 if b ¼ a
em if j b � a j ¼ 0:1
0:5mð1 � aÞa j b�a j �1 otherwise

:

8<
:

The p(sk j tk) is a conditional probability that must sum to one.

Thus, we define the "consistence" probability p(sk ¼ tk j tk) as one
minus all error probabilities, which is large comparing to the overall

error probability (since the probabilities of each error type are

always set to be very small):

pðsk ¼ tk j tkÞ ¼ 1 �
X
sk 6¼tk

pðsk j tkÞ:

3.3 Pedigree inference

The conditional probability of a TGS given the FGS of a matching

family, p(ĉcj j fi), can be derived by pedigree inference. As discussed
in Lauritzen and Sheehan (2003), the joint distribution of {ĉcj, fi}

defined by an arbitrary pedigree can be specified by a probabilistic
graphical model (Pearl, 1988; Cowell et al., 1999), or more spe-

cifically, a Bayesian network (Pearl, 1986).

Recall that an FGS fi is a two-tuple of donor genotypes

fd1‚ . . . ‚dnig and a familial pedigree Ti. Based on Ti, we can con-

struct a particular Bayesian network, known as allele network, or
gene pedigree (Lauritzen and Sheehan, 2003), for all the alleles

from all members (donor and non-donor) of the family and from the

purported victim. Assuming that markers are independent and fol-

lowing the same pedigree, we construct an allele network for a

single marker, say microsatellite k, as follows. For each individual,

we introduce two allelic nodes, u0k and u1k (which are unobserved),

denoting the maternal and paternal allele of this individual, respec-

tively; and a genotype node ugk , which are observed for the donors

and hidden for the non-donors in the family. Since the genotype is

determined jointly by the two alleles, we have arcs pointing from

each allelic node to its corresponding genotype node (Fig. 1 and

Fig. 2). Due to Mendelian inheritance, the marker alleles in a dece-

dent is dependent on that in his/her direct parents, thus we also have

arcs pointing from the allelic nodes of a parent to the allelic nodes of

the children. Note that the allelic nodes of individuals that are

founder of the pedigree do not have any arcs pointing to them.

For those individuals who are donors in a family (i.e., their genotype

states are available from their DNA samples), we denote their

corresponding genotype nodes as observed variables, shown as

shaded circles. The genotype of the purported victim is also

observed via sample clustering, but need to be matched correctly.

In Fig. 1 and Fig. 2 we use circles with thick border to denote the

genotype of a candidate victim. Because markers are independent in

our case, each marker has a separate allele network with the same

structure but different donor evidence (i.e., marker-specific geno-

types). The joint probability of multiple markers is the product of all

locus-specific marker probabilities defined by the allele network.

Specifically, we use the following conditional distributions in our

allele network model:

(1) Founder distribution: pðuekÞ ¼ pk‚ue
k
, where e 2 {0, 1} repre-

sents the parental index of the allele, pk,a is the population

frequency of allele a.

(2) Meiosis distribution: For an allele tek inherited from a parent

with genotype sk ¼ fu0k‚u1kg, we have

pðtek j u0k‚u1kÞ ¼
0:5 if tek ¼ u0k or tek ¼ u1k‚ and u0k 6¼ u1k‚
1 if tek ¼ u0k‚ and u0k ¼ u1k‚
0 otherwise:

8<
:

(3) Genotype distribution: pðugk j u0k‚u1kÞ, which is specified by the
error model defined in §3.2.2.

Given the allele network, and the above conditional distributions

of a node in the network given its graph parents (not to be confused

with biological parents), one can write down the joint distribution

of all nodes, i.e. the victim and the FGS, as a product of all node-

specific conditionals following a natural node ordering (e.g., from

founder to decedents) (Pearl, 1988). From this joint probability

we can derive conditional probability p(xF j xE) of a set of variables
F ( V conditioned on a set of observed variables E ( V. F is called

Fig. 1. A simple pedigree and its allele network, shaded nodes as donors and

bold nodes as victim.

Fig. 2. A pedigree of three generations and its allele network.
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query nodes, E is called evidence nodes and V is the totality of all

nodes. The junction tree algorithm (Lauritzen and Spiegelhalter,

1988) can perform exact inference efficiently on a network of

reasonable size, which is sufficient for our purpose.

3.4 Viterbi match: optimal body identification via

linear programming

Given the conditional probabilities of TGSs of sample clusters and

the FGSs of their matching families, p(ĉcj j fi), now we are ready to

tackle the optimal matching between sample clusters and families.

Let us view the match matrix z as a representation of the edge

configuration of a bipartite graph in which the clusters {ĉcj} corre-

spond to nodes in one partite, and the families {ĉcj} correspond to the

nodes in the other partite. Associating each edge between {ĉcj} and fi
with a weight equal to log p(ĉcj j fi)/p(ĉcj), then the total cost of the

matching, LR(z), corresponds to the sum of weights of edges in the

bipartite graph. Finding an optimal matching is equivalent to the

classical maximum weight bipartite matching problem. We can

solve this bipartite matching problem by mixed integer linear

programming (LP):

max
XJ
j¼1

XN
i¼1

zij log Lij

zij 2 f0‚1g‚
XN
i¼1

zij ¼ 1 8j‚
XJ
j¼1

zij ¼ 1 8i:
ð5Þ

There are many efficient algorithms and implementation for

solving the above LP, and we use the open source Gnu Linear

Programming Kit (GLPK) (Makhorin, 2001). Note that this

approach gives a globally optimal mapping assignment between

(equal number of) clusters and samples, analogous to finding the

Viterbi path in hidden Markov model (but in this case an optimal

matrix). Thus, we call the resulting body identification results a

Viterbi match.

4 POSTERIOR MATCH AND MATCHING
DISAMBIGUATION

The one-to-one constrain assumed so far in our algorithm is not

always valid. In fact, since we cluster samples based on a tightness

threshold rather than a given fixed number of clusters, we can not

easily enforce N ¼ J. In practice, a cluster may be unmatched, i.e.

not assigned to any reporting family (e.g., due to poor sample

quality, or nonexistence of the true claiming family); conversely,

a family may also be unmatched (e.g., because no remain of the

victim is found).

We assume each sample either comes from one family, or it is a

random sample from the population. However, samples from one

victim may be clustered into multiple clusters due to heterogeneity

of the physical and measurement quality of different samples. To

accommodate these flexibilities, we relax the normality constraints

onthecolumnsandrowsofmatchingmatrixz, so thatmultipleclusters

can be matched to one family, or no clusters or family get matched:

XN
i¼1

zij 2 f0‚1g 8j: ð6Þ

Furthermore, instead of seeking an overall estimate of z, we

would like to have a confidence measure of each of the judgments

(i.e., match or not-match) specified by z. From a forensic per-

spective, only matches with small enough probability should be

considered (forensically) impossible, and excluded from legal con-

sideration. In the sequel, we show how to calculate the posterior

probability of a matching given cluster and family data; and then we

show that, with this probability, how to screen out unambiguous

matching outcomes and extract the truly ambiguous cases that merit

costly personalized forensic investigation.

4.1 Posterior probability of a many-to-one matching

Now we derive the posterior probability of a matching given cluster

TGSs and family FGSs, p(z j {cj}, {fi}). According to the Bayes’

theorem, we have:

pðz j fcjg‚ff igÞ ¼
pðzÞpðfcjg‚ff ig j zÞ

pðfcjg‚ff igÞ
: ð7Þ

Since we do not know the matching a priori, p(z) can be taken as

uniform. Following the notations in §3.1, let p(fi) and p(ĉcj) denote

the marginal probabilities of a given family, and a cluster TGS,

respectively; and let p(ĉcj j fi) denote the conditional probability a

cluster TGS ĉcj given its matching FGS fi (i.e., zij¼ 1). Following the

new constrain given by Eq. (6), and since the cluster TGSs are

independent of each other given a matching z, the conditional

probability of each cluster TGS given a matching is:

pðĉcj j ff ig‚zÞ ¼
�
pðĉcj j f iÞ if 9i : zij ¼ 1

pðĉcjÞ if
P

lzlj ¼ 0
‚ ð8Þ

Therefore the joint conditional probability of the TGSs and FGSs

given z is

pðfĉcjg‚ff ig j zÞ
¼ pðfĉcjg j ff ig‚zÞpðff ig j zÞ
¼

Y
j

pðĉcj j ff ig‚zÞ
Y
i

pðf iÞ

¼
Y
ij

pðĉcj j f iÞzij
Y
j

pðĉcjÞ1�Slzlj
Y
i

pðf iÞ

¼
Y
ij

½pðĉcj j f iÞ
pðĉcjÞ

�zij
Y
j

pðĉcjÞ
Y
i

pðf iÞ

¼
Y
ij

Lzij
ij

Y
j

pðĉcjÞ
Y
i

pðf iÞ:

Thus, Eq. (7) reduces to:

pðz j fcjg‚ff igÞ ¼
1

A

Y
ij

Lzij
ij ‚ ð9Þ

where A is a normalizing constant summing over all z. Using the

fact that we are summing over all possible z under limitation (6),

we can derive normalizing constant in closed form:

A ¼
X
z

Y
j

Y
i

Lzij
ij ¼

Y
j

ð1þ
X
i

LijÞ: ð10Þ

According to Eqs. (10) and (9), now we have a close-form

expression for the posterior probability of a matching given the

clusters and families data:

pðz j fcjg‚ff igÞ ¼
Q

ij L
zij
ijQ

j ð1þ
P

i LijÞ
: ð11Þ
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4.2 Individual posterior match and matching

disambiguation

To qualify a candidate match, cj versus fi, we compute the posterior

probability of a match as follows. Let Zij denote the set of all matrix

z in which zij ¼ 1, i.e. all possible matching that assigns cj to fi:

Zij ¼ fz : zij ¼ 1g‚ ð12Þ

Similarly, let Zc
ij denote the complement of this set. Now the

posterior probability of an individual posterior match (IPM)

given TFSs of all samples clusters and FGSs of all reporting families

can be computed as:

pðzij ¼ 1 j fcmg‚ff lgÞ ¼
X
z2Zij

pðz j fcmg‚ff lgÞ ð13Þ

To disqualify a candidate pair, cj and fi, on the basis that they are

extremely unlikely to be a true match, we define our decoupling
confidence (DC) of this pair to be the posterior probability mass of

the set Zc
ij, which can be computed as follows:

pðz 2 Zc
ij j fcmg‚ff lgÞ

¼ 1 � pðz 2 Zij j fcmg‚ff lgÞ
¼ 1 �

X
z2Zij

pðz j fcmg‚ff lgÞ

¼ 1 �
X
z2Zij

1
A

Y
m

Y
l

Lzlm
lm

¼ 1 � 1
ALij

Y
m 6¼j

�
1þ

X
l

Llm

�

¼ 1 �
Lij

Q
m 6¼j

�
1þ

X
l
Llm

�
Q

m

�
1þ

X
l
Llm

�
¼ 1 � Lij

1þ
X

l
Llm

:

Given the posterior probabilities of all IPMs, and the values of

all DCs, now we can not only extract maximum a posterior (MAP)

matches as in § 3, but also perform a matching disambiguation for

the given {cm} and {fl}. Essentially, for the later task we exclude a

candidate match with DC higher than a specifiable threshold 1� �m.
Different values can be assigned to �m based on the situation of the

disaster, and �m ¼ 10�6 is commonly used in mass disaster scenes,

meaning that by excluding the chosen pair of cluster TGS and

family FGS, in less than one out of a million cases we missed

a true match. If the DCs of all family-cluster pairs are higher

than 1 � �m, then we are confident the cluster is unmatched, i.e.

no family claims this victim.

After the aforementioned impossible-match exclusion, if there

is zero or only one possible family for a cluster, this cluster is

unambiguous and is considered determined. Otherwise, if a remain-

ing cluster-family pair passes an IPM threshold, it is still considered

a valid match. Finally, the clusters that still have ambiguity, i.e.,

with two or more possible families of IPM lower than the threshold,

will be reported to human expert for further forensic investigate.

5 EXPERIMENTS

Due to high confidentiality of forensic DNA fingerprint data, a

common practice in forensic science is to validate the models

and algorithms via computer simulation experiments, for which

the true matchings are known. Following convention, thirteen

FBI CODIS markers are used. In each experiment we simulate

N core families from a single population, by generating two random

parents based on population allele frequencies, and generating one

child from the parents. The victim is the child in three simulations,

and in two other simulations the victim is one of the parents. Allele

frequencies pk,a are assumed to be known and correct. Then we

generate several TGSs for each victim, using the error model with

different values of the parameters (to simulate different level of

noise). The number of SGSs generated from a victim is distributed

uniformly in an interval, [M(0), M(1)]. Throughout the experiments,

the parameters used for sample generation are intentionally set to

be different from the ones used in our later inference, so that our test

is unbiased and objective. For each marker, there is a probability of

eu that the genotype is missing. The simulating parameter eu is set

to be high, to represent that some samples are heavily degraded.

However we require that the total number of available markers to

be greater than 4 to make our cases forensically realistic—for situ-

ations where the recovered markers are less than or equal to 4, DNA

evidence are usually dismissed due to lack of reliability. We per-

formed five experiments with different simulating parameters, as

described below:

(1) N ¼ 100, [M(0), M(1)] ¼ [3,7], so on average 500 samples.

Victim is the child, and donors are the two parents. Simulation

parameters are eu ¼ 1/10, em ¼ ec ¼0.001, es ¼ et ¼ 0.004.

(2) A noisier setting, N¼ 100, [M(0),M(1)]¼ [3, 7], so on average

500 samples. Victim is one of the parents, and donors are the

child and the other parent. Simulation parameters are eu¼ 1/4,

em ¼ ec ¼ 0.001, es ¼ et ¼ 0.004.

(3) Similar to simulation 2 but with even more noise: N ¼ 100,

[M(0), M(1)] ¼ [1, 9], so on average still 500 samples, but the

cluster sizes vary more. The values of the simulation para-

meters are now higher, eu ¼ 1/3, em ¼ ec ¼ 0.002, es ¼
et ¼ 0.008.

(4) Similar to simulation 1 but contains 500 families and on

average 2500 samples (1,250,000 potential matches).

(5) Similar to simulation 1 but contains 1000 families and on

average 5000 samples (5,000,000 potential matches).

The parameters used during computational inference in all four

experiments are the same: em ¼ 0.00025, ec ¼ 0.00025, es ¼ 0.001,

et ¼ 0.001, which may be different from the parameters for sample

simulation. The clustering LR threshold is �c ¼ 500. All experi-

ments are repeated 9 times and their results are averaged.

5.1 Results on optimal body identification

Since our clustering is stringent, the number of resulting clusters is

always greater or equal to the number of families (N � J), and the

assumption of one-to-one mapping behind the Viterbi matching via

LP no longer holds. We can still apply LP by enforcing the same

optimization and constraint terms in Eq. (5), which means we still

require one matching family for each cluster and one matching

cluster for each family, but some clusters may be unmatched.

We perform optimal body identification using Viterbi matching

via LP and MAP matching. We measure the performance by aver-

age false-negative rate (FN) and false-positive rate (FP), where FN

is the ratio of undiscovered true matches to all true matches, and FP
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is the ratio of incorrect predictions to all predictions. The results are

shown in Table 1.

Overall, LP has low FP, but the FN is very high, mainly due to

incorrectness of the one-to-one assumption in the model. MAP has

slightly higher FP, but the FN is much lower. In simulation 1, MAP

has zero FN and FP. Overall, both algorithms have good perfor-

mance, even in the presence of noise and incomplete information.

We are not aware of existence of any algorithm or software for this

kind of forensic task in earlier and current literature.

5.2 Results on matching disambiguation

In a matching disambiguation task, our goal is to reduce as much as

possible the amount of human effort in forensic inference by remove

impossible cluster-family matches and high-confidence matches

from a given mass disaster case. In this section, we compare the

disambiguation results using the individual posterior match method

with the ones using a conventional approach that excludes a can-

didate match by thresholding the likelihood ratio, e.g., a candidate

match from cj to fi is excluded (i.e., deemed impossible) if Lij <
�m ¼ 10�6. Such threshold means that the relative probability of a

cluster-family match is only 10�6 compared to an alliterative

hypothesis that they are unrelated.

We found that the accuracy of disambiguation via the posterior

methods is significantly better than that of the conventional LR

thresholding approach, as shown in Table 2. The threshold �m is

set to be 10�6 in both algorithms. In our experiments, the accuracies

are measured by: (1) the average percentage of remaining ambigu-

ous clusters; (2) the average percentage of remaining ambiguous

matching families for each cluster; and (3) the ratio of ambiguous

family-cluster matches over all candidate matches. After applying

the posterior match disambiguation algorithm, the remaining

ambiguous clusters are almost always single samples. On average,

the 500 samples were reduced to only 1, 5, and 13 ambiguous

samples, in simulation 1, 2, and 3, respectively; and each ambiguous

cluster has 6, 8, and 10 ambiguous candidate matching families,

respectively. In simulation 4, 2500 samples and 500 families were

reduced to 5 samples, each having 21 candidate families. In simu-

lation 5, 5000 samples and 1000 families were reduced to 6 samples,

each having 33 candidate families. Under the same noise level,

larger sample size results in better reduction rate. The results of

LR thresholding is generally much worse, about 3 to 12 fold

increase in cluster ambiguity, and 3 to 5 fold increase in overall

ambiguity.

A close examination of our results showed that these ambiguities

all occurred in samples with severely degraded markers, typically

with only 5 of the 13 marker readable. Under these circumstances,

a family becomes a candidate match to a sample even when only

3 of the markers are compatible with that of the samples within an

error range. In practice, such genetic samples would automatically

be ruled legally insubstantiative even before computational forensic

inference is conducted, and would require additional forensic evi-

dence. Thus, our disambiguation results presented above is in fact a

worst-case result, and the actual rate of disambiguation in real life

can be much better if we are willing to insist on more stringent

requirement for the quality of the DNA samples (e.g., by requiring

more than half of the markers can be clearly typed). It is noteworthy

that a domain expert does not need to examine the ambiguous

families of each cluster one by one. An expert can determine the

true family from evidences other than DNA, or determine the

sample as unidentifiable, or repeat the DNA sampling.

5.3 Analysis of disambiguation threshold

The major difference between the posterior disambiguation and

the LR-based method is that posterior disambiguation relates the

LRs of all possible families versus a candidate cluster when infer-

ring about each single matching. That is, for one cluster, if several

likely matching families already exist, other families with lower

LRs will be considered less likely, whereas in the conventional

LR-based disambiguation, each candidate matching is assessed

independent of other candidates. We illustrate this difference in

disambiguation criteria in Figure 3. The histogram of all the log

LR of simulation 1 and 2 is shown in Figure 3A and 3C. For the log

LR of all possible families corresponding to a well-typed (i.e., with

most markers measurable) cluster, as shown in Figure 3B and

3E, usually there are only a few (in this case, only one) candidate

matches having LR above 10�6, so the two methods make little

(or no) difference because of nearly inexistence of between-match

influences. However, for a degraded cluster illustrated in Figure 3C

and 3F, there are many candidate matches with large LRs and

they influence each other. Consequently the disambiguation via

posterior inference tends to assess other candidates to be less

likely than would have been suggested by the LRs alone. This

effectively results in a criterion more stringent than 10�6. The

LR thresholding approach, on the other hand, still use the same

threshold on LR. As shown in Figure 3C and 3F, the posterior match

Table 1. Optimal body identification performance of LP and MAP

LP MAP

Sim FN FP FN FP

1 0.0109 0.0 0.0 0.0

2 0.0130 0.0 0.0043 0.0043

3 0.0567 0.0112 0.0225 0.0225

4 0.0099 0.0004 0.0020 0.0020

5 0.0073 0.0002 0.0021 0.0021

Comparison of average false-negative (FN) and false-positive (FP) rate of LP and MAP

algorithm.LPdenotes theViterbimatch viaLPbasedonone-to-onemapping assumption

in § 3.4, and MAP denotes the MAP match based on many-to-one mapping in § 4.2.

Table 2. Comparison of disambiguation by posterior threshold and by

LR threshold

Posterior LR thresholding

Sim Clusters Families Matches Clusters Families Matches

1 0.01 0.06 0.0007 0.03 0.07 0.0019

2 0.04 0.08 0.0034 0.48 0.04 0.0190

3 0.12 0.10 0.0119 0.53 0.07 0.0371

4 0.01 0.04 0.0004 0.08 0.02 0.0013

5 0.01 0.03 0.0002 0.14 0.01 0.0010

Results of disambiguation by posterior and LR threshold. ‘‘Clusters’’ denote the average

percentage of remaining ambiguous clusters. ‘‘Families’’ denote the percentage of

ambiguous candidate matching families for each of these clusters. ‘‘Matches’’ denotes

the ratio of ambiguous family-cluster matches over all possible matches. Parameter

settings of the three simulations are described in 5.
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method can reduces the ambiguity by a half or even more for

degraded clusters.

In traditional forensic identification cases, which do not deal

with DNA sample clustering but consider mostly high-quality

anonymous samples, the LR of the correct identification tends to

be very high, and there is usually no ambiguity. To see the differ-

ence in a mass disaster case, it is instructive to take a close look

at the dataset and the ambiguous clusters and families reported by

our algorithm. When there are fewer than 7 markers in a sample,

typically there are indeed many ambiguous family pedigrees that

cannot be excluded from a forensic perspective. For example, con-

sider the highly degraded samples, of which an example is shown

in Table 3. Typically such samples can have multiples plausible

matching families, and the matches listed in Table 3 are only a

few of all the likely matches. The ambiguity problem become very

serious when the quality of the samples gets really poor, e.g., with

fewer than 5 usable markers available. Essentially, the evidence

become not enough for body identification—given only three

or four markers, there could be too many perfect matches. In

this case, the power of any computational and/or manual forensic

inference diminishes, and we must seek additional evidence. We

discuss some of the options in the next section.

6 DISCUSSION

Extending our probabilistic forensic inference methods to include

other evidence is straightforward. For example, sometimes, in the

forensic samples there also exist sequence data from the two seg-

ments of the hyper-variable control regions (e.g., regions 16,024 to

16,365 and 73 to 340) of the 16,569bp human mitochondria DNA

(mtDNA). Because mtDNA has far more copies than the genome,

they are often sequenceable when the genome is degraded and not

sequenceable. Inheritance of mtDNA is maternal only, so there is

much less uncertainty. But the mtDNA is less variable compared to

microsatellites in genomic DNA. For example, while there are in

principle 10 or more possible SNP differences in the mtDNA

between any two individuals, a match is not conclusive due to

high degeneracy of these polymorphism in human population.

For example, about 7% of all Caucasian males have the same

mtDNA sequence. Nevertheless, mtDNA can still be used to elimi-

nate impossible matches, i.e., we can remove cluster-family

matches with inconsistent mtDNA, and further reduce ambiguity.

Occasionally, there will also be alleged direct sample evidence

for a victim from a personal effect, such as a comb or tooth brush, in

which case the genotype is available for the victim in the relevant

family pedigree. Similarly, other factors like gender and blood type

can be easily included using probabilistic rules.

In mass disaster scenes it is important to validate pedigree struc-

ture and donor evidence. For example, there may be an error in some

donor’s genotype, making it inconsistent with other donors’ geno-

type. There is also the rather delicate issue that sometimes

paternity or other blood relationships are not true. This kind of

error can be detected by calculating the marginal probability of

the evidence based on the allele network model. Families with

probabilities under a threshold can be picked out and given to

experts for examination. A family may have several victims in a

mass disaster site. In this case one can introduce duplicated pedi-

grees one for each alleged victims. Each pedigree has the same

structure and donor genotypes, but has different victim node.

One must be careful about now the incorrectness of independence

assumption for all pedigrees and for all the victim samples. For

example, if a father and his son are both victims, their genotypes are

not independent. This could slightly complicate the probabilistic

inference computation for LR-based Viterbi match and posterior

match.

Finally, it is noteworthy that, although in current forensic

applications, genetic markers are usually chosen as independent
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Fig. 3. The histogram of log likelihood ratio of simulation 1 and 2. A–C is

based on simulation 1 and D–F is based on simulation 2. The x-axis is

common logarithm of likelihood ratio, and the y-axis is number of families

ormatches.Vertical blue solid line denotes 10�6 threshold, and red dotted line

denotes the effective threshold of disambiguation corresponding to the poster-

iormatch criteria. Specifically, we have:A. Distribution of all sample clusters

of simulation 1. B. LR distribution of a well-typed cluster of simulation 1.

C. LR distribution of a degraded cluster of simulation 1. D–F. The LR

distributions of all sample clusters, a normal cluster, and a degraded cluster,

respectively, in simulation 2.

Table 3. Case study of a highly degraded sample

Errors Log LR Description THO1 D7S820 VWA

Sample (7,8) (8,11) (14,15)

0 1.70 True mate (6,9) (10,11) (13,15)

True child (8,9) (8,10) (13,15)

0 1.00 Mate (6,7) (10,11) (15,17)

Child (7,8) (11,11) (15,17)

1 �1.66 Mate (7,9) (9,10) (18,18)

Child (6m,9) (10,11) (15,18)

2 �4.12 Mate (9,9.3) (8,11) (17,18)

Child (7,9) (8,9s) (18,18t)

A highly degraded sample of which three typedmarkers are shown. THO1, D7S820, and

VWA are three markers in the CODIS system. The symbols as, at, amn denotes shutter,

threshold, mutation error respectively. All the pedigrees have one of the parents as the

victim and the other parent and a child as the donors. Among candidate familieswith high

LR, four representative matches are listed here. Note that many different combinations

are qualified for a match.
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(e.g. the thirteen CODIS markers reside on different chromosomes),

our probabilistic framework presented in this paper does not rely

on the assumption that markers are independent. In extremely

degraded disaster scenes, using single nucleotide polymorphism

(SNP) for identification may be helpful (Cash et al., 2003); and
for SNPs with high linkage disequilibrium, the markers are no

longer independent. In such cases we can create an allele network

with linkage probability, by adding a meiosis variable which cou-

ples different markers (Lauritzen and Sheehan, 2003). Under such

circumstances, the allele network will become more complex and

approximate inference or sampling may be necessary (Jordan et al.,
1999; Xing et al., 2003).
In conclusion, we have presented a probabilistic modeling

and inference framework for mass disaster victim identification.

We expect that this framework can be easily generalized to handle

more complicated forensic inference problems, and leverage richer

forensic evidence or expert knowledge. It offers a promising

platform to develop automatic expert system for a wide-range of

forensic and genetic inference applications.
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