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Eric P. XingComputer Science DivisionUniversity of CaliforniaBerkeley, CA 94720 Michael I. JordanComputer Science and StatisticsUniversity of CaliforniaBerkeley, CA 94720 Stuart RussellComputer Science DivisionUniversity of CaliforniaBerkeley, CA 94720AbstractWe present a class of generalized mean �eld(GMF) algorithms for approximate inferencein exponential family graphical models whichis analogous to the generalized belief prop-agation (GBP) or cluster variational meth-ods. While those methods are based on over-lapping clusters, our approach is based onnonoverlapping clusters. Unlike the clustervariational methods, the approach is provedto converge to a globally consistent set ofmarginals and a lower bound on the likeli-hood, while providing much of the 
exibilityassociated with cluster variational methods.We present experiments that analyze the ef-fect of di�erent choices of clustering on infer-ence quality, and compare GMF with beliefpropagation on several canonical models.1 IntroductionThe variational approach to probabilistic inference in-volves converting the inference problem into an opti-mization problem, by approximating the feasible setor the function to be optimized (or both), and solv-ing the relaxed optimization problem. Thus, given aprobability distribution p(xj�) which factors accordingto a graph, the variational methods yield approxima-tions to marginal probabilities via the solution to anoptimization problem that generally exploits some ofthe graphical structure. The earliest variational in-ference methods were based on the use of a family oftractable distributions q(xj
), where 
 are a set of free\variational parameters." In this case a simple appealto Jensen's inequality produces a relaxed optimizationproblem that determines how to set the variational pa-rameters (Jordan et al., 1999). We will refer to suchmethods as \mean �eld methods," a terminology thatre
ects the classical setting in which q(xj
) is taken tobe a completely factorized distribution. In general, the

derivation via Jensen's inequality shows that this classof algorithms yields a lower bound on the likelihood.More recently, Yedidia et al. (2001) realized thatPearl's belief propagation (BP) algorithm|when ap-plied to general loopy graphs|is also a variationalalgorithm. The inference problem is transformed toan optimization functional|the \Bethe free energy"|that imposes local consistency on the approximatemarginals. The resulting marginals do not, however,need to be globally consistent, so that the Jensen in-equality argument no longer applies (and thus the ap-proximation does not yield a lower bound to the like-lihood and may not converge). An advantage of thisapproach is the simplicity of the algorithm. Moreover,Yedidia et al. showed how to derive generalized be-lief propagation (GBP) algorithms, in which the vari-ational relaxation is based on overlapping clusters ofvariables. The 
exibility provided by the ability tochoose clusters of varying sizes is a signi�cant impor-tant step forward.Mean �eld methods can also provide 
exibility viathe choice of approximating distribution q(xj
), andso-called \structured mean �eld methods" have beenbased on choosing q(xj
) to be a tree or some othersparse subgraph of the original graph to which an ex-act inference algorithm such as the junction tree algo-rithm can be feasibly applied (Saul and Jordan, 1996).Recently, Wiegerinck presented a general frameworkfor structured mean �eld methods involving arbitraryclusterings (Wiegerinck, 2000). In particular, his ap-proach allows the use of overlapping clusters, whichleads to a set of mean �eld equations reminiscent ofa junction tree algorithm. Although there continue tobe developments in this area (e.g., El-Hay. and Fried-man, 2001, Bishop et al., 2002), it is fair to say that inpractice the use of mean-�eld-based variational meth-ods requires substantial mathematical skill and thata systematic approach with the generality, 
exibilityand ease of implementation of GBP has yet to emerge.In this paper we describe a Generalized Mean Field



method that aims to �ll this gap. The approach yieldsa simple general methodology that applies to a widerange of models. To obtain the desired simplicity ourapproach makes use of nonoverlapping clusters, spe-cializing Wiegerinck's general approach, and yieldinga method that is somewhat reminiscent of block meth-ods in MCMC such as Swendsen-Wang (Swendsen andWang, 1987).Note that the choice of clusters is generally done man-ually both within the GBP tradition and the mean-�eld tradition. Another reason for our interest innonoverlapping clusters is that it suggests algorithmsfor automatically choosing clusters based on spectralgraph partitioning ideas. Although not the focus ofthe current paper, we discuss some of the possibilitiesin Sec. 6.Given an arbitrary decomposition of the original modelinto disjoint clusters, the algorithm that we presentcomputes the posterior marginal for each cluster givenits own evidence and the expected suÆcient statistics,obtained from its neighboring clusters, of the variablesin the cluster's Markov blanket. The algorithm oper-ates in an iterative, message-passing style until a �xedpoint is reached. We show that under very general con-ditions on the nature of the inter-cluster dependencies,the cluster marginals retain exactly the intra-clusterdependencies of the original model, which means thatthe inference problem within each cluster can be solvedindependently of the other clusters (given the Markovblanket messages) by any inference method.One way to understand the algorithm is to considera situation in which all the Markov blanket variablesof each cluster are observed. In that case, the jointposterior decomposes:p(xC1 ; : : : ;xCn jxE) =Yi p(xCi jMB(xCi));where MB(xCi ) denotes the Markov blanket of clus-ter Ci. GMF approximates this situation, using theexpected Markov blanket (obtained from neighboringclusters) instead of an observed Markov blanket anditerating this process to obtain the best possible \self-consistent" approximation.In its use of expectations in messages between clusters,GMF resembles the expectation propagation (EP) al-gorithm (Minka, 2001), but in the basic algorithm EP'smessages convey the in
uence of only a single vari-able. In providing a generic variational algorithm thatcan be applied to a broad range of models with con-vergence guarantees, GMF resembles VIBES (Bishopet al., 2002), but VIBES is based on a decompositioninto individual variables whereas GMF allows arbi-trary disjoint sets. Thus GMF is a generic algorithmsuitable for approximate inference in large, complexprobability models.

2 Notation and backgroundWe consider a graph (directed or undirected) G =(V; L), where V denotes the set of nodes (vertices) andL the set of edges (links) of the graph. Let Xn denotethe random variable associated with node n, for n 2 V ,let XC denote the subset of variables associated with asubset of nodes C, for C � V , and let X = XV denotethe collection of all variables associated let with thegraph. We refer to a graph H = (V; L0), where L0 � L,as a subgraph of G. We use C = fC1; C2; : : : ; CIg to de-note a disjoint partition (or, a clustering) of all nodesin graph G, where Ci refers to the set of indices ofnodes in cluster i; likewise, D = fD1; D2; : : : ; DKg de-notes a set of cliques of G. For a given clustering,we de�ne the border clique set Bi as the set of cliquesthat intersect with but are not contained in cluster i;and the neighbor cluster set Ni as the set of clustersthat contain nodes connected to nodes in cluster i. Forundirected graphs, the Markov blanket of a cluster i(MBi) is the set of all nodes outside Ci that connect tosome node in Ci, and, for directed graphs, the Markovblanket is the set of all nodes that are parents, chil-dren, or co-parents of some node in Ci (Fig. 1). Clus-ters that intersect with MBi are called the Markovblanket clusters (MBCi) of Ci.
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C1Figure 1: The Markov blanket MB1 (blue-shaded nodes)of cluster 1 in a directed graph. Shaded blobs constituteMBC1.2.1 Exponential representationsFor undirected graphical models, the family of jointprobability distributions associated with a given graphcan be parameterized in terms of a set of potentialfunctions associated with a set of cliques in the graph.For a set of cliques D associated with an undirectedgraph, let � = f��j� 2 Dg denote the set of potentialfunctions de�ned on the cliques, and � = f��j� 2 Dgthe set of parameters associated with these potentialfunctions (for simplicity, we label � and � with thecorresponding clique index, e.g., �, rather than withthe clique D� itself). The family of joint distributionsdetermined by � can be expressed as follows:p(xj�) = expfX� ����(xD�)�A(�)g (1)



where A(�) is the log partition function. We also de�nethe energy, E(x) = �P� ����(xD�), for state x.For directed graphical models, in which the joint prob-ability is de�ned as p(x) =Qi p(xijx�i), we transformthe underlying directed graph into a moral graph, andset the potential functions equal to the negative log-arithm of the local conditional probabilities p(xijx�i).In the sequel, we will focus on models based on con-ditional exponential families. That is, the conditionaldistributions p(xijx�i) can be expressed as:p(xijx�i) = u(xi) expf�Ti �i(xi;x�i)�A(�i)g; (2)where �i(xi;x�i) is a vector of potentials associatedwith variable set fxi;x�ig.2.2 Cluster-factorizable potentialsGiven a clustering C, some cliques in D may intersectwith multiple clusters (Fig. 2). Cluster-factorizable po-tentials are potential functions which take the form��(xD� ) = F�(��i(xD�\Ci); : : : ; ��j (xD�\Cj )), whereF (�) is a (multiplicatively, or additively) factorizablefunction over its arguments; i.e., in the case of twoclusters, F (a; b) = a � b or a + b. Factorizable po-tentials are common in many model classes. Forexample, the classical Ising model is based on sin-gleton and pairwise potentials of the following fac-torizable form: �(xi) = �ixi, �(xi; xj) = �ijxixj ;higher-order Ising models and general discrete mod-els also admit factorizable potentials; conjugate expo-nential pairs, such as the Dirichlet-multinomial, linear-Gaussian, etc., are also factorizable; �nally, for logisticfunctions and other generalized linear models (GLIMs)that are not directly factorizable, it is often possibleto obtain a factorizable variational transformation inthe exponential family that lower bounds the origi-nal function (Jaakkola and Jordan, 2000); otherwise(e.g., tabular potentials over a clustering of variables),we may overcome this problem by avoiding picking aclustering in which these potentials are on the clus-ter boundaries. We will see that cluster-factorizablepotentials allow the decoupling of the computation ofexpected potentials.
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DβFigure 2: A clique D� intersecting with three clustersfCi; Cj ; Ckg in an undirected graph.

3 Mean Field ApproximationRecall that the mean �eld approximation refers to aclass of variational approximation methods that ap-proximate the true distribution p(xj�) on a graph Gwith a simpler distribution, q(xj
), for which it is fea-sible to do exact inference. We call the families ofsuch distributions tractable families. A tractable fam-ily usually corresponds to a subgraph H of G.3.1 Naive mean �eld approximationThe naive mean �eld approximation makes use of asubgraph that is completely disconnected. Thus, theapproximating distribution is fully factorized:q(x) = Yi2V qi(xi): (3)For example, to use this family of distributions to ap-proximate the joint probability of the Boltzmann ma-chine: p(x) = 1Z expfPi<j �ijxixj+Pi �i0xig, one de-�nes qi(xi) = �xii (1��i)1�xi , where the �i are the vari-ational parameters). Minimizing the Kullback-Leibler(KL) divergence between q and p one obtains the clas-sical \mean �eld equations":�i = �� Xj2Ni �ij�j + �i0�; (4)where �(z) = 1=(1 + e�z) is the logistic function, andNi is the set of nodes neighboring i.3.2 Generalized mean �eld theoryGiven a (disjoint) clustering C, we de�ne a cluster-factorized distribution as q(x) =QCi2C qi(xCi), whereqi(xCi) = expf�E0i(xCi )g;8Ci 2 C, are free distribu-tions to be optimized. As discussed in the appendix,this optimization problem can be cast as that of max-imizing a lower bound of the likelihood with respectto all valid cluster marginals respecting a given clus-tering C. The solution to this problem leads to thegeneralized mean �eld theorem that we present in thissection.To make the exposition of the theorem and the result-ing algorithm simple, we introduce some de�nitions.De�nition 1. (Mean �eld factor): For a factoriz-able potential ��(xD� ), let I� denote the set of in-dices of those clusters that have nonempty intersectionwith D�. Thus, ��(xD� ) has as factors the potentials��i(xCi\D� );8i 2 I� . Then, the mean �eld factor fi�is de�ned as:fi� , fi�(xCi\D� ) , h��i(xCi\D� )iqi ; for i 2 I� (5)where h�iqi denotes the expectation with respect to qi.



De�nition 2. (Generalized mean �elds): For anycluster Cj in a given variable partition, the set of mean�eld factors associated with the nodes in its Markovblanket is referred as the generalized mean �elds ofcluster Cj :Fj , ffi� : D� 2 Bj ; i 2 I� ; i 6= jg: (6)Now we are ready to state the following GMF theorem,the proof of which is provided in the Appendix.Theorem 3. For a general undirected probabilitymodel p(xH ;xE) where xH denotes hidden nodes andxE denotes evidence nodes, and a clustering C :fxH;Ci ;xE;CigIi=1 of both hidden and evidence nodes,if all the potential functions that cross cluster bordersare cluster-factorizable, then the generalized mean �eldapproximation to the joint posterior p(xH jxE) with re-spect to clustering C is a product of cluster marginalsqGMF (xH) = QCi2C qGMFi (xH;Ci ) satisfying the follow-ing generalized mean �eld equations:qGMFi (xH;Ci ) = p(xH;Ci jxE;Ci ;Fi); 8i: (7)Remark 1. Note that each variational clustermarginal is isomorphic to the isolated model fragmentcorresponding to original cluster posterior given theintra-cluster evidence and the generalized mean �eldsfrom outside the cluster. Thus, each variational clus-ter marginal inherits all local dependency structuresinside the cluster from the original model.The mean �eld equations in Theorem 3 are analogousto naive mean �eld approximation. The generalizedmean �elds appearing in Eq. (7) play a role that issimilar to the conventional mean �eld, now applyingto the entire cluster rather than a single node, andconducting probabilistic in
uence from the remainingpart of the model to the cluster. It is easy to verifythat when the clusters reduce to singletons, Eq. (7) isequivalent to the classical mean �eld equation Eq. (4).From a conditional independence point of view, thegeneralized mean �elds can be also understood as anexpected Markov blanket of the corresponding cluster,rendering its interior nodes conditionally independentof the remainder of the model and hence localizingthe inference within each cluster given its generalizedmean �elds.Mean �eld approximation for directed models is alsocovered by Theorem 3. This is true because any di-rected network can be converted into an undirectednetwork via moralization, and designation of the po-tentials as local conditional probabilities. The follow-ing corollary make this generalization explicit:Corollary 4. For a directed probability modelp(xH ;xE) =Qi p(xijx�i) and a given disjoint variablepartition, if all the local conditional models p(xijx�i)

across the cluster borders admit cluster-factorizablepotentials, then the generalized mean �eld approxima-tion to the original distribution has the following form:qGMF (xH) =QCi2C qGMFi (xH;Ci ), andqGMFi (xH;Ci ) = p(xH;Ci jxE;Ci ;Fi); 8i; (8)where Fi refers to the generalized mean �elds of the ex-terior parents, children and co-parents of the variablesin cluster i.These theorems make it straightforward to obtain gen-eralized mean �eld equations. All that is needed is todecide on a subgraph and a variable clustering, to iden-tify the Markov blanket of each cluster, and to plugin the mean �elds of the Markov blanket variables ac-cording to Eqs. (7) or (8). We illustrate the applicationof the generalized mean �eld theorem to several typ-ical cases|undirected models, directed models, andmodels that combine continuous and discrete randomvariables.Example 1. (2-d nearest-neighbor Ising model): Fora 2-d nearest neighbor Ising model, we can pick asubgraph whose connected components are squareblocks of nodes in the original graph (Fig. 3). Thecluster marginal of a square block Gk is simplyq(xGk) = expfP(ij)2L(Gk ) �ijxixj + Pi2V (Gk) �i0xi +P(ij)2L(G);j2MB(Gk ) �ijhxjixig, an Ising model of smallersize, with singleton potentials for the peripheral nodesadjusted by the mean �elds of the adjacent nodes out-side the block (which are the MB of xGk ). �Example 2. (factorial hidden Markov models):For the fHMM, whose underlying graph consists ofmultiple chains of discrete hidden Markov variablescoupled by a sequence of output nodes, taken to belinear-Gaussian for concreteness, a possible subgraphthat de�nes a tractable family is shown in Figure 5,in which we retain only the edges within each chainof the original graph. Given a clustering C, in whicheach cluster k contains a subset of HMM chainsck (the dashed boxes in Fig. 5), the MB of eachcluster consists of all nodes outside the cluster.Hence the cluster marginal of ck is: q(fx(mi)gi2ck) /Qi2ck p(x(mi))p(yjfx(mi)gi2ck ; ff(x(mj ))gj2cl;l6=k),where x(mi) denotes variables of chain mi, p(x(mi))is the usual HMM of a single chain, and p(yj�) islinear-Gaussian. When each ck contains only a singlechain, we recover the structured variational inferenceequations in Ghahramani and Jordan (1997). �Example 3. (Variational Bayesian learning): Fol-lowing the standard setup in Ghahramani and Beal(2000), we have a complete data likelihood P (x;yj�),where x is hidden, and a prior p(�j�; �), where �; �are hyperparameters. Partitioning all domain variables



into two clusters, fx;yg and f�g, if the potential func-tion at the cluster border, �(x; �) is factorizable (whichis equivalent to the condition of conjugate exponential-ity in Ghahramani and Beal), we obtain the followingcluster marginals using Corollary 4:q(�) = p(�j�; �; f(x);y) / p(f(x);yj�)p(�j�; �)q(x) = p(xjy; f(�)):These coupled updates are identical to the variationalBayesian learning updates of Ghahramani and Beal.�4 A generalized mean �eld algorithmEqs. (7) and (8) are a coupled set of nonlinear equa-tions, which are solved numerically via asynchronousiteration until a �xed point is reached. This iterationconstitutes a simple, message-passing style, General-ized Mean Field algorithm.GMF ( model: p(xH;xE), partition: fxH;Ci ;xE;CigIi=1)Initialization{ Randomly initialize the hidden nodes at the borderof cluster i, 8i.{ Initialize f 0i� by evaluating the potentials using thecurrent values of the associated nodes.{ Initialize F 0i with the current f 0i� .While not convergedFor i = 1 : I{ Update qt+1i (xH;Ci) = p(xH;Ci jxE;Ci ;F ti ).{ Compute the mean �eld factors f t+1i� of all poten-tial factors at the border of Ci via local inferenceusing qt+1i as in Eq. (5).{ Send the f t+1i� messages to all Markov blanket clus-ters of i by updating the appropriate elements intheir GMFs: Ftj ! Ft+1j ; 8j 2MBCi.EndReturn q(xH) =Qi qi(xH;Ci), the GMF approximationRemark 2. Note that the r.h.s. of Eqs. (7) and (8)do not depend on qi, thus the update is a form ofcoordinate ascent in the factored model space (i.e., we�x all qj(xH;Cj ); j 6= i and maximize with respect toqi(xH;Ci) at each step). Indeed, we have the followingconvergence theorem.Theorem 5. The GMF algorithm is guaranteed toconverge to a local minimum, which is a lower boundfor the likelihood of the model.Theorem 5 is an important consequence of the useof a disjoint variable partition underlying the varia-tional approximate distribution. It distinguishes GMFfrom other variational methods such as GBP (Yedidiaet al., 2001), or the general case in Wiegerinck's frame-work (Wiegerinck, 2000), in which overlapping variablepartitions are used, and which optimize an approxi-mate free energy function with respect to marginalswhich must satisfy local constraints.

The complexity of each iteration of GMF is exponen-tial in the tree-width of the local networks of each clus-ter of variables, since inference is reduced to local op-erations within each cluster.Since GMF is guaranteed to converge to a local opti-mum, in practice it can be performed in a stochasticmultiple-initialization setting similar to the usual prac-tice in EM, to increase the chance of �nding a betterlocal optimum.5 Experimental resultsAlthough GMF supports several types of applica-tions, such as �nding bounds on the likelihood orlog-partition function, computation of approximatemarginal probabilities, and parameter estimation, inthis paper we focus solely on the quality of approxi-mate marginals. We have performed experiments onthree canonical models: a nearest neighbor Ising model(IM), a sigmoid network (SN), and a factorial HMM(fHMM); and we have compared performance of GMFusing di�erent tractable families (speci�cally, usingvariable clusterings of di�erent granularity) with re-gard to the accuracy on single-node marginals. Toassess the error, we use an L1-based measure1PNi=1Mi NXi=1 MiXk=1 jp(xi = k)� q(xi = k)j;where N is the total number of variables, and Mi isthe number of (discrete) states of the variable xi. Theexact marginals are obtained via the junction tree al-gorithm. We also compare the performance with thebelief propagation (BP) algorithm, especially in caseswhere BP is expensive, and examine whether GMFprovides a reasonably eÆcient alternative.We use randomly generated problems for IM and SNand real data for fHMM. For the �rst two cases, inany given trial we specify the distribution p(xj�) by arandom choice of the model parameter � from a uni-form distribution. For models with observable output(i.e., evidence), observations were sampled from therandom model. Details of the sampling are speci�edin the tables presenting the results. For each problem,50 trials were performed. The fHMM experiment wasperformed on models learned from a training data set.
Figure 3: Ising model and GMF approximations.Ising models: We used an 8 � 8 grid with binary



nodes. Two di�erent tractable models were used forthe GMF approximation, one based on a clustering of2 � 2 blocks, the other 4 � 4 blocks (Fig. 3). The re-sults on strongly attractive and repulsive Ising models(which are known to be diÆcult for naive MF) are re-ported in Table 1. The rightmost column also showsthe mean CPU time (in seconds).Table 1: L1 errors on nearest neighbor Ising models.Upper panel: attractive IM (�i0 2 (�0:25; 0:25); �ij 2 (0; 2));Lower panel: repulsive IM (�i0 2 (�0:25; 0:25); �ij 2 (�2; 0)).Algorithm Mean � std Median Range time2� 2 GMF 0.366�0.054 0.382 [0.276,0.463] 2.04� 4 GMF 0.193�0.103 0.226 [0.004,0.400] 29.4BP 0.618�0.304 0.663 [0.054,0.995] 17.9GBP 0.003�0.002 0.002 [0.000,0.005] 166.32� 2 GMF 0.367�0.052 0.383 [0.279,0.449] 1.24� 4 GMF 0.185�0.102 0.161 [0.009,0.418] 22.1BP 0.351�0.286 0.258 [0.009,0.954] 14.3GBP 0.003�0.003 0.003 [0.000,0.014] 117.5As expected, GMF using a clustering with fewer nodesdecoupled yields more accurate estimates than a clus-tering in which more nodes are decoupled, albeit withincreased computational complexity. Overall, the per-formance of GMF is better than that of BP, especiallyfor the attractive Ising model. For this particular prob-lem, we also compared to the GBP algorithm, whichalso de�nes beliefs on larger subsets of nodes, witha more elaborate message-passing scheme. We foundthat for Ising models, GBP performs signi�cantly bet-ter than the other methods, but at a cost of signi�-cantly longer time to convergence.
Figure 4: Sigmoid network and GMF approximations.Sigmoid belief networks: The two sigmoid net-works we studied are comprised of three hidden layers(18 nodes), with or without a fourth observed layer (10nodes), respectively. We used a row clustering and ablock clustering of nodes as depicted in Figure 4 forGMF. Table 2 summarizes the results.Table 2: L1 errors on sigmoid networks (�ij 2 (0; 1)).Upper: hidden layers only; Lower: with observation layer..Algorithm Mean � std Median Range timeblock GMF 0.013�0.004 0.013 [0.006,0.032] 6.8row GMF 0.172�0.036 0.175 [0.100,0.244] 0.5BP 0.273�0.025 0.271 [0.227,0.346] 9.2block GMF 0.018�0.009 0.014 [0.009,0.038] 8.4row GMF 0.061�0.021 0.059 [0.023,0.145] 0.7BP 0.187�0.044 0.189 [0.096,0.312] 139.2For the network without observations, the block GMF,which retains a signi�cant number of edges from theoriginal graph, is more accurate by an order of mag-nitude than the row GMF, which decouples the origi-nal network completely. Interestingly, when a bottomlayer of observed nodes is included in the network, a

signi�cant improvement of approximation accuracy isseen for the row GMF, but it still does not surpassthe block GMF. The performance of BP is poor onboth problems, and the time complexity scales up sig-ni�cantly for the network with the observation layer,because of the large fan-in associated with the nodesin the bottom layer.
... ...Figure 5: An fHMM and a GMF approximation (illus-trative graph; the actual model contains 6 chains and 40steps).Factorial HMM: We studied a 6-chain fHMM, with(6-dimensional) linear-Gaussian emissions, ternaryhidden state and 40 time steps. The model was trainedusing the EM algorithm (with exact inference) on 40Bach Chorales from the UCI Repository. Inference wasperformed with the trained model on another 18 testChorales. GMF approximations were based on clus-terings in which each cluster contains either singletons(i.e., naive mean �eld), one hidden Markov chain, twochains, or three chains, respectively. The statistics ofthe L1 errors are presented in Table 3.Table 3: L1 errors on factorial HMMAlgorithm Mean � std Median Range timenaive MF 0.254�0.095 0.269 [0.083,0.397] 9.81-chain GMF 0.237�0.107 0.233 [0.029,0.392] 14.32-chain GMF 0.092�0.081 0.064 [0.019,0.314] 5.63-chain GMF 0.118�0.092 0.089 [0.035,0.357] 15.6BP 0 0 - 106.2Since the moral graph of a fHMM is a clique tree, BPis exact in this case, but the computational complex-ity grows exponentially with the number of chains andthe cardinality of the variables, hence BP cannot scaleto large models. Using GMF, we obtain reasonable ac-curacy, which in general increases with the granularityof the variable clustering. The 2-chain GMF appearsto be a particularly good granularity of clustering inthis case, leading to both better estimation and fasterconvergence.In summary, GMF shows reasonable performance in allthree of the canonical models we tested, and providesa 
exible way to trade o� accuracy for computationtime. It is guaranteed to converge, and the compu-tational complexity is determined by the treewidth ofthe subgraph. BP, on the other hand, may fail to con-verge. Furthermore, the complexity of computing themessage is exponential in the size of the maximal cliquein the moralized graph, which makes it very expensivein directed models with dense local dependencies.



6 Choice of clustersOne reason for our focus on disjoint partitions has beenthe simplicity and ease-of-implementation of the re-sulting algorithm. But it is also the case that the useof disjoint partitions opens up an interesting new set ofresearch problems involving the choice of clusters. In-tuition suggests that one possible de�nition of a goodpartitions is one in which many edges are cut, withrelatively small parameter values across the cut. Inthis setting we would expect to have concentration ofthe expectations of the potentials|the \mean �elds"would be well determined.In Xing and Jordan (2003) we explore this idea bycombining the GMF algorithm with combinatorial op-timization methods for graph partition. We havefound that, depending on the connectivity and cou-pling strength of the graphical model, various auto-matic graph partition schemes can yield e�ective clus-terings. For example, for densely connected graphwith weak coupling, a max-cut indeed leads to im-proved approximation of marginal probabilities whencompared to naive mean �eld and other simple �xedpartition schemes. On the other hand, for a graphwith relatively sparse connectivity, and strong cou-pling, a min-cut of the graph leads to better estima-tion of marginals, possibly due to an improved abil-ity to capture the dependency structure within eachcluster, in a manner analogous to the cut-set con-ditioning methods used for exact inference. Thesepromising results open up the possibility for a fully au-tonomous variational inference algorithm for complexmodels based on automatic node partition of a graphi-cal model and GMF approximation as illustrated inthe following 
owchart in Figure 6. A prototypeimplementation of such an algorithm is available at:http://www.cs.berkeley.edu/�epxing/GMF.zip.
GP GMF

q(x  )posterior:
approximate jointgraphical model: node clustering

p(x  , x  )H p(x  , x  )H E
E HFigure 6: Flowchart of a autonomous variational inferencealgorithm.7 DiscussionWe have presented a generalized mean �eld approachto probabilistic inference in graphical models, in whicha complex probability distribution is approximated viaa distribution that factorizes over a disjoint partitionof the graph. Locally optimal variational approxima-tions are obtained via an algorithm that performs co-ordinate ascent in a lower bound of the log-likelihood,with guaranteed convergence. For a broad family ofmodels in practical use, we showed that the GMF ap-proximations of the cluster marginals are isomorphic

to the original model in the sense that they inheritall of its intra-cluster dependencies. Moreover, thesemarginals are independent of the rest of the modelgiven the expected potential factors (mean �elds) ofthe Markov blanket of the cluster. The explicit andgeneric formulation of the \mean �elds" in terms ofthe Markov blanket of variable clusters also leads toa simple, generic, message-passing algorithm for com-plex models.Disjoint clusterings have also been used in sampling al-gorithms to improve mixing rates for large problems.For example, the Swendsen-Wang algorithm (Swend-sen and Wang, 1987) samples Ising (or Potts) model atcritical temperatures by grouping neighboring nodeswith the same spin value, thereby forming randomclusters (of coupled spins) that are e�ectively inde-pendent of each other, allowing an MCMC processto collectively sample the spin of each cluster inde-pendently and at random. This method often dra-matically speeds up the mixing of the MCMC chain.Gilks et al. (1996) also noted that when variablesare highly correlated in the stationary distribution,blocking highly correlated components into higher-dimensional components may improve mixing. How-ever, in the sampling framework, clustering are usuallyobtained dynamically, based on the coupling strength,rather than the topology of the network.There are a number of possible extensions of the re-search reported here. First, it is of interest to developautomatic methods for choosing clusters in variationalapproximations. As we have already discussed, spec-tral graph partitioning can be adapted for this purposein the case of GMF methods. It is also possible tomake use of the framework of probabilistic relationalmodels and motivate partitions of the random vari-ables using modularities deriving from the model se-mantics (e.g., class membership). Preliminary resultsin applying this to a large-scale bioinformatics prob-lem showed that it leads to signi�cant improvementsin performance.Another possible extension involves the use of higher-order expansions in the basic variational bounds.Leisink and Kappen (2000) have shown how to up-grade �rst-order variational bounds such as that shownin Eq. (10) to yield higher-order bounds. In particular,the following third-order lower bound can be obtainedfor the likelihood:p(xE) � Z dx exp��E0(xH)	h1��+ 12 exp(�)�2i;where � = 13 h�3i=h�2i, � = E(xH ;xE) � E0(xH), andh�i denotes expectation over the approximate distribu-tion q(xH) = expf�E0(xH)g. The optimizer of thislower bound cannot be found analytically. However,we can compute the gradient of the lower bound with
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A Proof of the GMF theoremTo cast GMF approximation as an optimization prob-lem, we begin with the follow lemma.Lemma 6. For an arbitrary marginal distributionq(xH) = expf�E0(xH)g, we have the following lowerbound:p(xE) � Z dxH exp��E0(xH)	�1�A(xE)� �E(xH ;xE)�E0(xH)��; (9)where xE denotes observed variables (evidence) 1.Proof. Using conjugate duality, we have:exp(x) � exp(�)(1 + x� �); 8x; �: (10)For a joint distribution p(xH ;xE) =expf�E(xH ;xE) � A(xE)g (where A(xE) is theoriginal log-partition function plus the constantevidence potentials), we replace x in Eq. (10) with�(E(xH ;xE) + A(xE)) and lower bound the jointdistribution p(xH ;xE) as follows:p(xH;xE) � q(xH)�1�A(xE)� (E(xH;xE)�E0(xH))�;where E0(xH) de�nes a variational marginal distribu-tion. Integrating over xH on both sides, we obtain the�rst-order lower bound in Eq. (9).Given this lower bound, the optimal approximating(GMF) distribution is speci�ed as the solution of thefollowing constrained optimization problem:fE0GMFi (xCi)gCi2C = arg maxE0i2E(xCi )Z dx exp��XCi2CE0i(xCi)	�1� �E(x)�XCi2CE0i(xCi)��;(11)where E(xCi) denotes the set of all valid energy func-tions of variable set xCi . (Because evidence variablesare �xed constants in inference, for simplicity, we omitexplicit mention of the evidence xE , and the subscriptH in the energy term E(�) above and in other relevantterms in the following derivation. In should be clearthat, in situations where such subscripts are omitted,x and related symbols denote only the hidden vari-ables.) The solution to this problem leads to Theo-rem 3, which we restate here (with evidence symboland hidden variable subscripts omitted).Theorem (GMF): For a general undirected prob-ability model p(x) and a clustering C : fxCigIi=1,if all the potential functions that cross cluster bor-ders are cluster-factorizable, then the generalized mean1Note that (9) is very similar to the Jensen bound onlog likelihood: ln p(xE) � R dxHq(xH) ln q(xH )p(xH ;xE) , and hasthe same maximizer, but it is more general in that it canbe further upgraded to higher order bounds as discussedin the discussion session.



�eld approximation to p(x) with respect to cluster-ing C is a product of cluster marginals qGMF (x) =QCi2C qGMFi (xCi ) satisfying the following generalizedmean �eld equations:qGMFi (xCi) = p(xCi jFi); 8i:To prove Theorem 3 we need to use the calculus of vari-ations to solve the optimization de�ned by Eq. (11).For convenience, we distinguish two subsets of nodesin a cluster i, the interior nodes and the border nodes,i.e., letting zCi denote the (hidden) nodes in clusterCi, we have zCi = fxCi ;yCig where xCi 6� xBi andyCi � xBi .Proof. From Eq. (11), to �nd the optimizer of:Z dxdy exp�� XCi2CE0i(xCi ;yCi)	�1���;where � � E �PCi2C E0i + A(�), subject to the con-straints that each E0i de�nes a valid marginal dis-tribution qi(xCi ;yCi) of all hidden variables in clus-ter i, we solve the Euler equations for a variationalextremum, de�ned over Lagrangians f(E0i; zCi) =R dz[�ni]� expf�PiE0ig(1 � �) � Pi �i expf�E0ig�(where z[�ni] refers to all hidden variables excludingthose from cluster i):@f@E0i � ddzCi � @f@ _E0i � = 0 8i: (12)Since f does not depend on _E0i (= dE0idzCi ), we have:Z dz[�ni]Yj 6=i expf�E0jg(E �Xi E0i)� �i = 0)E0i = Z dz[�ni]Yj 6=i expf�E0jg(E �Xj 6=i E0j)� �i= C � XD��Ci����(xD�)� XD�2Bi��
��(yCi\D� ; fyCj\D�gCj2Ni� )�qNi� ;where qj = expf�E0j(xCj ;yCj )g is the local marginal ofcluster j; qNi� =Qj2Ni� qj is the marginal over clusterset Ni�, which are all the clusters neighboring clusteri that intersect with clique �.When the potential functions at the cluster boundariesfactorize with respect to the clustering, we have:E0i = C � XD��Ci ����(xD�)� XD�2Bi ��F�(��i(yCi\D� ); fh��j (fyCj\D�g)iqj gCj2Ni� )So, qi(xi;yi) = expf�E0ig= p(xCi ;yCi jfh��j (yCj\D� )iqjgCj2Ni�;D�2Bi)= p(zCi jFi); 8i: (13)

The explicit presence of evidence xE = fxE;CigIi=1merely changes Eq. (13) to qi(zCi) / p(zCi ;xE;Ci jFi).After normalization, it leads toqi(zCi) = p(zCi jxE;Ci ;Fi):


