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Abstract. Inference of gene interaction networks from expression data
usually focuses on either supervised or unsupervised edge prediction from
a single data source. However, in many real world applications, multi-
ple data sources, such as microarray and ISH measurements of mRNA
abundances, are available to offer multi-view information about the same
set of genes. We propose NP-MuScL (nonparanormal multi-source learn-
ing) to estimate a gene interaction network that is consistent with such
multiple data sources, which are expected to reflect the same underlying
relationships between the genes. NP-MuScL casts the network estima-
tion problem as estimating the structure of a sparse undirected graphical
model. We use the semiparametric Gaussian copula to model the distri-
bution of the different data sources, with the different copulas sharing
the same precision (i.e., inverse covariance) matrix, and we present an
efficient algorithm to estimate such a model in the high dimensional
scenario. Results are reported on synthetic data, where NP-MuScL out-
performs baseline algorithms significantly, even in the presence of noisy
data sources. Experiments are also run on two real-world scenarios: two
yeast microarray data sets, and three Drosophila embryonic gene expres-
sion data sets, where NP-MuScL predicts a higher number of known gene
interactions than existing techniques.

Keywords: interaction networks, gene expression, multi-source learn-
ing, sparsity, Gaussian graphical models, nonparanormal, copula

1 Introduction

With the prevalence of high throughput technologies such as microarray and
RNA-seq for measuring gene expressions, computational inference of gene reg-
ulatory or interaction networks from large-scale gene expression datasets has
emerged as a popular technique to improve our understanding of cellular systems
[1,2,3]. In numerous studies, gene interactions reverse engineered from analysis
of such high-throughput data have been experimentally validated [4,5], demon-
strating the credibility of such data-driven algorithmic approaches.

There have been two popular approaches to reverse engineering gene net-
works. The first approach is to build a generative model of the data, and learn a
graphical model that captures the conditional independencies in the data. Learn-
ing the structure of a graphical model under a multivariate Gaussian assumption
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of the data has received wide attention in recent years [6,7,8]; various algorithms
have been proposed [6,7,8], many with theoretical analysis offering asymptotic
guarantee of consistent estimation of the interactions between genes in the net-
work. Empirically, these algorithms are computationally efficient and the results
obtained have been encouraging.

However, a limitation of this class of network inference approach is that, it
assumes data are identically and independently distributed (i.e., iid), which im-
plicitly means that they are from a single experimental source. In reality, many
real world biological problems sit on multiple sources of information that can be
used to predict interactions between genes. For example, there can be multiple
microarray data sets from different laboratories available for the same organism,
sometimes measured at the same conditions where the main differences lie in
the data sampling strategy or measurement technologies. Biologically, it is often
plausible to assume that multiple experimental means resulting in the different
datasets may have captured the same information from different viewpoints, e.g.,
both microarray and in-situ hybridization can capture gene expression informa-
tion, even though the technology used to measure mRNA abundances is different.
It remains unclear how to integrate such multiple sources of data in a statisti-
cally valid and computational efficient way to infer the underlying network. One
may imagine inferring independently a network from each data source, and then
averaging across multiple resultant networks, but such an ad hoc method is not
only un-robust (e.g., each view may have only a small amount of samples), but
also lacks statistically justification and consistence guarantee (e.g., on the “av-
erage” operator). In this paper, we address the question of inferring a network
by analyzing multiple sources of information simultaneously.

An alternative approach to tackle this problem is via supervised learning
methods, where a classifier (e.g., SVM) is trained by using examples of known
gene interactions (edges in the network) as training data to learn the importance
of each data source in predicting unknown interactions between other gene-
pairs [9]. This approach suffers from some intrinsic limitations which prevent
it from being widely applicable. First, while such an approach works well for
problems where there are sufficient examples of known edges in the network,
e.g., in the form of a reference network or reference interactions obtained from
reliable sources, it fails for problems where few or no examples of known edges
are available. Gene networks for humans or yeast may be learned by supervised
methods where reference interactions are available from extensive prior studies;
but for organisms where prior research is limited, this approach cannot be used.
Furthermore, one can argue that predicting gene networks is of high importance
for such organisms with few known edges, to help biologists who are starting
research for regulatory mechanisms of these organisms.

Secondly, using a classifier to predict edges implicitly utilizes the notion of
marginal independence between nodes. To classify an edge as “positive”, i.e.,
to predict an edge between a given pair of nodes, the correlation between the
data for these nodes must be high. Gene networks usually have pathways in
which genes interact with each other in a sequential order, which results in high
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marginal correlation between all pairs of genes in the same pathway. Predicting
each edge locally and independently of all other edges will often result in an
non-stringent prediction of a clique for all genes in the same pathway, leading to
high false positive rates. To reduce such false positives and increase accuracy, we
wish to analyze conditional independence between the genes instead, which must
be done by building a global graphical model that captures simultaneously all
the conditional independencies among genes. Each edge resultant from such an
estimator enjoys global statistical interpretability and consistency guarantee, and
such an estimator does not require supervised training, although prior knowledge
of interactions on the “reference gene pairs” can still be utilized via introducing a
prior over the model, if desired. Thus, it is desirable to develop an unsupervised
and global inference method which can incorporate multiple data sources to
predict a consensus graphical model that explains all the data sources, without
using any examples of known edges for training the model.

This paper proposes NP-MuScL (NonParanormal Multi-Source Learning), a
machine learning technique for estimating the structure of a sparse undirected
graphical model that is consistent with multiple sources of data. The multiple
data sources are all defined over the same feature space, and it is assumed that
they share the same underlying relationships between the genes (nodes). We
use the semiparametric Gaussian copula to model the distribution of the differ-
ent data sources, where the copula for each data source has its own mean and
transformation functions, but all data sources share the same precision matrix
(i.e., the inverse covariance matrix, which captures the topological structure of
the network). We propose an efficient algorithm to estimate such a model in
the high dimensional scenario. The likelihood-related objective function used in
NP-MuScL is convex, and results in a globally optimal estimator. Furthermore,
the implementation of our algorithm is simple and efficient, computing a net-
work over 2000 nodes using 3 data sources in a matter of minutes. Results are
reported on synthetic data, where NP-MuScL outperforms baseline algorithms
significantly, even in the presence of noisy data sources. We also use NP-MuScL
to estimate a gene network for yeast using two microarray data sets: one over
time series expression, and the other over knockout mutants. Finally, we run NP-
MuScL on three data sets of Drosophila embryonic gene expression using ISH
images and microarray. In both yeast and Drosophila, we find that NP-MuScL
predicts a higher number of gene interactions that are known to interact in the
literature, than existing techniques.

1.1 Related Work

Previous work on analyzing multiple data sources for network prediction has
either specifically taken time into account[10,11], or has different source and
target organisms via transfer learning [12]. Katenka et. al.[13] propose a strategy
to learn a network from multi-attribute data, where aligned vector observations
are made for each node. The NP-MuScL algorithm on the other hand works for
data sources which are not aligned, hence each data source may have a different
number of observations. Honorio et. al. [14] proposed techniques for multi-task
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structure learning of Gaussian Graphical Models, to share knowledge across
multiple problems, using multi-task learning. However, their method estimates a
separate graphical model for each data source, unlike our problem which requires
a consensus network common to all data sources. To the best of our knowedge,
the NP-MuScL algorithm is the first work that builds a consensus graphical
model to explain the relationship between genes by combining information from
multiple data sources without explicitly constraining the data to be time-series,
or about different organisms.

2 Nonparanormal Multi-Source Learning (NP-MuScL)

Let the k input data sources be defined as X(1) ∈ Rn1×d, X(2) ∈ Rn2×d, . . . , X(k) ∈
Rnk×d with total number of data samples n =

∑k
i=1 ni. Each data source i may

have a different number of measurements or samples ni, but they all measure
information about the same feature space of d genes. The goal of NP-MuScL is
to learn the structure of a graphical model over the feature space, such that the
graphical model will encapsulate global conditional independencies between the
genes.

2.1 Glasso

Given a single source of data X ∈ Rn×d drawn from a Gaussian distribution
N (0,Σ), a Gaussian graphical model (GGM) may be estimated by computing
the inverse covariance matrix Σ−1 of the Gaussian. Zeros in the inverse covari-
ance matrix imply conditional independence between the features, and thus the
absence of an edge between them in the corresponding GGM. Given the em-
pirical covariance matrix S of the data, the inverse covariance matrix may be
computed by maximizing the log likelihood of the data, with an L1 regularizer
to encourage sparsity.

Σ̂−1 = arg max
Θ�0

{log det Θ− tr(SΘ)− λ||Θ||1} (1)

where λ is a tuning parameter that controls the sparsity of the solution;
as λ increases, fewer edges are predicted in the GGM. Rothman et. al. [15]
showed the consistence of such estimators in Frobenius and Operator norms in
high dimensions when d >> n; Friedman et. al.[8] proposed a block coordinate
descent algorithm for this objective - they named their technique glasso. The
glasso algorithm uses a series of L1 penalized regressions, called Lasso regressions
[16], that can be solved in time O(d3).

2.2 Joint estimation of the GGM

Given k data sources X(1),X(2), · · ·X(k) with corresponding sample covariances
S(1),S(2), · · · ,S(k), a joint estimator of the underlying GGM may be computed
as
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Σ̂−1 = arg max
Θ�0

k∑
i=1

wi

{
log det Θ− tr(S(i)Θ)

}
− λ||Θ||1 (2)

where wi defines the relative importance of each data source, and must be
defined by the user such that

∑k
i=1 wi = 1. Assuming the data in each data

source is drawn i.i.d., an appropriate choice for the weights may be wi = ni

n . It
can be seen that if each data source is assumed to have mean 0, then for this
choice of wi

Σ̂−1 = arg max
Θ�0

log det Θ−
k∑
i=1

ni
n

tr
(
S(i)Θ

)
− λ||Θ||1

= arg max
Θ�0

log det Θ− tr

(
1

n

k∑
i=1

ni∑
l=1

X(i)(l, ·)TX(i)(l, ·) Θ

)
− λ||Θ||1 (3)

Thus, our objective function is equivalent to calling glasso with covariance
matrix 1

n

∑k
i=1

∑ni

l=1 X(i)(l, ·)TX(i)(l, ·). We call this method “glasso-bag of data”.
With an appropriate choice of weights, this model concatenates the data from
all data sources into a single matrix, and uses the second moment of the data to
estimate the inverse covariance matrix.

Such a procedure highlights the underlying assumption of Gaussianity of the
data. If we assume that all data is being drawn from the same Gaussian distri-
bution, then it is reasonable to construct a single sample covariance matrix from
the data to estimate the network. However, real data is not always Gaussian;
and such an assumption can be limiting, especially when analyzing multiple data
sources simultaneously, since non-Gaussianity in a single data source will result
in the non-Gaussianity of the combined data. A lot of previous work has been
done to drop the Gaussianity assumption in the solution to classic problems like
sparse regression [17], estimating GGMs [18], sparse CCA [19] etc., and propose
non-parametric solutions to the same. We will also drop the assumption that the
data is drawn from the same Gaussian distribution in the next section.

However, if the data is not drawn from the same Gaussian distribution, then
how can we characterize the underlying network that generated the data? We
propose a generative model where we assume that each data source is drawn
from a semi-parametric Gaussian copula, where the copulas for the different
data sources share the same covariance matrix, but have different functional
transformations. To justify this model, we assume that for each data source, the
data is sampled from a multi-variate Gaussian, but this sample is not directly
observed. Instead, due to non-linearities introduced during data measurement,
a transformed version of the data is measured. Each data source will have its
own transformation, hence, the observed distribution of each data source will be
different. The key idea of NP-MuScL is then to estimate the non-linear trans-
formation, so that all data can be assumed Gaussian, and the network can be
estimated using Equation 2.
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Algorithm 1 Data generation model
for NP-MuScL

Input: True covariance matrix Σ with
σjj = 1 ∀ j ∈ {1, · · · , d}
Input: Transformation function gij ,
mean µij and variance ρij for each fea-
ture j for each data source i.
for i = 1 to k do

for l = 1 to ni do
y ∼ N(0,Σ)
for j = 1 to d do

X(i)(l, j) = µij + ρijgij(y(j))
end for

end for
end for
return Observed data X(i) from k data
sources.

Estimate f2 

Estimate Σ-1 

Estimate fk Estimate f1 
… 

Data set 1 Data set 2 Data set k 

Fig. 1. The overall algorithm for NP-
MuScL. Each data source is transformed
into a Gaussian, using a nonparanormal,
and the Gaussian data is then used to
jointly estimate a inverse covariance ma-
trix, giving the structure of the Gaussian
Graphical Model, underlying the data.

2.3 Dropping the Gaussianity assumption

We model that each data source is drawn from an underlying Gaussian distribu-
tion with mean 0, and covariance matrix Σ, where the variance of each feature
σjj = 1, ∀ j ∈ {1, · · · , d}. However, the observed data may be some unknown
transformation of the Gaussian data; thus, if y ∼ N (0,Σ), then the observed
data is X(i)(j) = µij + ρijgij(y(j)) where µij and ρij is the mean and standard
deviation respectively of feature j in data source i.

The function gij is some (unknown) transformation that depends on the

data source, our task is to estimate fij = g−1
ij from the data, so that fij(X

(i)
j )

is Gaussian. The data generation process is then described in Algorithm 1.

2.4 NP-MuScL algorithm

A random vector X has a nonparanormal distribution NPN(µ,Σ, f) if there
exists a function f(X) = (f1(X1), f2(X2), · · · , fd(Xd)) such that f(X) has a
multi-variate Gaussian distribution N (µ,Σ) [18]. To preserve identifiability, we
constrain each fj to have mean 0 and standard deviation 1. The nonparanormal
distribution is a Gaussian copula when the fs are monotone and differentiable.
For our model, we assume that each data source X(i) ∼ NPN(0,Σ, fi), that is,
while each data source has its own functional transformation, they all share the
same underlying relationship between the nodes, represented by Σ. The mean
of each copula is zero, since we constrain the estimated functions fj to have
zero means. Then, for nonparanormal data, it can be shown that conditional
independence in the corresponding graph is equivalent to zeros in the inverse
covariance matrix Σ−1 [18].
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This suggests the following two step algorithm. For each data source i and
each feature j, we first estimate the sample mean µij and sample variance ρij .

µ̂ij =
1

ni

ni∑
l=1

X(i)(l, j); ρ̂2
ij =

1

ni

ni∑
l=1

(
X(i)(l, j)− µ̂ij

)2

(4)

The data in each data source is normalized by the appropriate µ and ρ to have
mean 0 and standard deviation 1. Non-parametric functions fij are estimated for
each data source i and feature j, so that fij ∼ N (0, 1). The details of estimating
f are discussed in Sec. 2.6.

In the second step, the inverse covariance matrix is estimated jointly from
the transformed fis. We can define Y(i) ∈ Rni×d as

Y(i)(·, j) = f̂ij

(
X(i)(·, j)

)
∀j ∈ {1, 2, · · · d} (5)

The distribution of Y(i) is then Gaussian with covariance matrix Σ. The
graphical model corresponding to all data sources can be jointly estimated as

Σ̂−1 = arg max
Θ�0

k∑
i=1

wi

{
log det Θ− tr(Θ Ŝf

(i)
)
}
− λ||Θ||1 (6)

where

Ŝf
(i)

=
1

ni

ni∑
l=1

Y(i)(l, ·)TY(i)(l, ·) (7)

Setting the weights wi = ni

n is equivalent to the data in each data source
being drawn i.i.d. from the corresponding Gaussian copula; while setting different
weights suggests that the effective sample size of a data source is not the observed
sample size.

2.5 Optimization

The objective function in Equation 6 can be rewritten as

Σ̂−1 = arg max
Θ�0

log det Θ− tr(Θ
k∑
i=1

wiŜf
(i)

)− λ||Θ||1 (8)

Thus, by using
∑k
i=1 wiŜf

(i)
as the covariance matrix, we can optimize the

above objective by using efficient, known algorithms like glasso. The overall NP-
MuScL algorithm is summarized in Figure 1.

2.6 Estimating f̂

For each feature j in data source i, we can compute the empirical distribution
function as (where I is the indicator function)

F̂ij(t) =
1

ni

ni∑
l=1

I(X(i)(l, j) ≤ t) (9)
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The variance of such an estimate may be very large, when computed in the
high dimensional scenario d >> n. Liu et. al.[18] propose using a Windsorized
estimator, for the same, where very small and large values of F̂ij(t) are bounded
away from 0 and 1 respectively. Thus,

F̃ij(t) =


δn F̂ij(t) < δn
F̂ij(t) δn ≤ F̂ij(t) ≤ 1− δn
1− δn F̂ij(t) ≥ 1− δn

(10)

where δn is a truncation parameter. A value of δn chosen to be δn = 1
4n1/4

√
π logni

is found to give good convergence properties for estimating the network for a
single data source [18]; and we use the same estimate for NP-MuScL.

Now, for any continuous pdf f , the distribution of the cdf F (x) = P (X ≤ x)
is uniform. Then, the distribution of Φ−1(F (x)) is Gaussian with mean zero,
and standard deviation one, as required (where Φ is the cdf of the standard
Gaussian). Thus, we can estimate the required function by using the marginal

empirical distribution function defined above: f̂ij(x) = Φ−1(F̃ij(x)).

3 Results

We first demonstrate that when multiple data sources have different distribu-
tions, NP-MuScL can extract the underlying network more accurately than other
methods. Next, we show that NP-MuScL can identify the correct network, even
when one of the data sources is noise. To analyze NP-MuScL on real data, we
run NP-MuScL on two microarray yeast data sets, and find that the network ob-
tained by NP-MuScL predicts more known edges of the yeast interaction network
than other methods. Finally, we analyze NP-MuScL on Drosophila embryonic
gene expression data from 3 data sets of ISH images and microarray.

3.1 Multiple data sources with different distributions

Data generation The details of generating the data for different experiments
is described in detail in the supplementary material. In brief, we construct an
inverse covariance matrix with an equivalent random sparse Gaussian graphical
model. Data is sampled from the Gaussian, and then transformed into non-
Gaussian distribution using different transformations. For d = 50 with k = 2
data sources, we use the Gaussian cdf (µ0 = 0.05, σ0 = 0.4) and power transform
(α = 3) for the two data sources respectively (see supp. material for details). The
task then is to jointly use the data from the two sources to extract the network.
For k = 3 data sources, we use the identity transform for the third data source,
so that the data sampled from the third source is truly Gaussian. For k = 4 data
sources, the fourth data source is Gaussian noise, to test the performance of the
algorithms in the presence of noise. We generate the same amount of data in
each source (n), and run the experiment as n varies. Each result is reported as
the average of 10 randomized runs of the experiment.
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Fig. 2. F1 score for predicting edges in simulated data, as n is varied, for (a) k = 2,
(b) k = 3, and (c) k = 4 data sources. The standard deviation in the results is small
and almost constant across the different experiments; it ranges from (0.01-0.03), and
is hence not displayed on the plot.

Metrics We report the F1 measure, which is the harmonic mean of precision
and recall, as a measure of the accuracy of predicting the edges in the network.

Baselines We report three baselines. The first baseline is to report the best
accuracy found by a single data source (Best Single Network). We assume that
an oracle tells us which data source is most predictive. In our data experiments,
we found that it was not possible to predict the most informative data source
without using an oracle. Even when k = 3, the identity transformed source was
not always the most informative. The second baseline is the glasso-bag of data,
described in Section 2.2. The third baseline is to compute a separate network
for each data source using glasso, and combine the networks to predict a single
network (glasso-combine networks). An edge in the final network is present if it
is present in m out of the k networks from the k data sources. We assume an
oracle defines the best value of m for a given data set, the best value of m varied
with different data sets.

As can be seen in Figure 2, NP-MuScL outperforms all three baselines sig-
nificantly in all three scenarios. Interestingly, using the best single source out-
performs estimating separate networks, and combining them in a second step.
Note that an oracle is used for identifying the best source, as well as the optimal
m used to combine networks. Hence, in a real world scenario, we may expect
combining different data sources to perform as well as using only the best single
data source for network prediction. When k = 4 (Figure 2(c)), one of the data
sources is Gaussian noise, however, the use of the oracle in the “Glasso-combine
networks” and the “single best source” baselines allows these baselines to ignore
the noise source completely. However, NP-MuScL is still able to identify more
correct edges in the network. Using a paired t-test, we found that the difference
in F1 scores between NP-MuScL and “glasso-bag of data” is significant in all
conditions, with P-value p = 10−4.

3.2 Yeast data

In this experiment, we look at two different yeast microarray data sets, and make
joint predictions via NP-MuScL. Data source 1 is a set of 18 expression profiles
from Cho et. al. [20], where each expression corresponds to a different stage in the
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Fig. 3. Performance of different methods
on predicting edges in the yeast network.
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Fig. 4. Effect of varying tuning parameter
on different methods. For a fixed number
of predicted edges, the NP-MuScL method
predicts more known edges than the other
methods.

cell cycle of the the yeast. Data source 2 is a set of 300 expression profiles from
Hughes et. al.[21], where each expression corresponds to a different knockout
mutant of the yeast. Both data sets are processed using standard microarray
processing algorithms [22].

We use a list of known interactions from BioGrid [23] to test how well do the
different algorithms predict the known edges. Note that since the known gene
interactions is an incomplete set, predicted gene interactions may be interactions
that have not been observed yet, and thus, have not been added to the BioGrid
data base. Hence, measuring recall is no longer appropriate, and we report the
improvement in accuracy over random prediction of edges, as suggested by Liben-
Nowell & Kleinberg [24].

The total data is over 6120 genes, we sample 1000 genes at a time, and run
the algorithms for them. Results are reported for 10 random sub-samples of
the genes. Figure 3 shows the improvement over random prediction for edges
predicted by each method. Due to the amount of data available, the knockout
mutant expression profiles capture more information (and hence more known
edges) than the time series expression. Surprisingly, both methods of combining
information without taking non-Gaussianity into account, perform worse than
using only data source 2. NP-MuScL is the only method where using both data
sets into account increases the number of correctly predicted edges. The same
results were found to hold true when the network is predicted over the entire set
of 6120 genes - NP-MuScL did significantly better than all other methods, and
both glasso bag-of-data and glasso-OR did worse than using only data set 2.

To test the effect of varying tuning parameter λ, Figure 4 plots the number
of known edges predicted by each method, versus the total number of edges
predicted, as λ is varied. For very large values of λ when few edges are pre-
dicted, NP-MuScL and “glasso-Bag of data” perform equally well, however, as
the amount of predictions increase, NP-MuScL outperforms other methods sig-
nificantly.

Figure 5 shows the transformations learned for the two data sets by NP-
MuScL for 4 random genes. A straight line corresponds to Gaussian data, non-
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Fig. 5. Examples of the transformations made for
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ferent features.
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Fig. 6. Difference between the NP-MuScL net-
work and (a) the 13-16 ISH network alone and (b)
microarray network alone. Green edges are only
predicted in the NP-MuScL network. Blue edges
are only present in the (a) 13-16 ISH network and
(b) microarray network.

NP-MuScL Glasso Bag-of-data Glasso OR ISH 13-16 ISH 9-10 Microarray

7.29 4.88 4.06 5.98 2.35 3.66

Table 1. Improvement in prediction over random guessing for predicting gene inter-
actions using Drosophila embryonic data.

linearities are clearly detected by the NP-MuScL algorithm. The transformations
also seem to be damping extremely large values observed in the features.

3.3 Drosophila embryonic data

We study three data sets of Drosophila embryonic gene expression for 146 genes
[25]. The first data set measures spatial gene expression in embryonic stage 9-
10 of Drosophila development via in-situ hybridization (ISH) images (4.3 to 5.3
hours after fertilization), when germ band elongation of the embryo is observed.
The second data set also studies ISH images measuring spatial gene expression
in the 13-16 stage of embryonic development (9.3 to 15 hours after fertilization),
when segmentation has already been established. The last data set is of microar-
ray expression at 12 time points spaced evenly in embryonic development.

The ISH images were processed to extract 311 data points for each data set,
as described in Puniyani & Xing [26]. The microarray data was processed using
standard microarray processing algorithms. Since the number of data points ex-
tracted from the ISH data is dependent on the image processing algorithm used,
using weights proportional to the number of data points is no longer suitable.
We expect the microarray data to be as informative as the ISH data, hence we
use wi = 0.25 for each of the two ISH data sources, and wi = 0.5 for the mi-
croarray data. The results in Table 1 show that NP-MuScL outperforms using
the data separately, and glasso bag-of-data and glasso-combine networks (m=1,
called glasso-OR).

We visualized the differences in edge prediction between the NP-MuScL net-
work and the networks predicted by analyzing only one single data source at a
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time. The orange ellipse in Figure 6(a) highlights gene interactions predicted by
NP-MuScL by analyzing all 3 data sources, which were not predicted by any sin-
gle data source. Figure 6(b) highlights interactions predicted by the microarray
data that were not predicted either by the ISH data or the NP-MuScL network.
The 9-10 ISH network is similar to the 13-16 ISH network, and hence, is not
shown. A detailed analysis of the specific differences in the gene interactions
predicted by the different methods is ongoing.

4 Conclusions

We proposed NP-MuScL, an algorithm that predicts gene interaction networks
in a global, unsupervised fashion by jointly analyzing multiple data sources to
capture the conditional independencies observed in the data. NP-MuScL models
each data source as a non-parametric Gaussian copula, with all data sources
having different mean and transformation functions, but sharing the covariance
matrix across the underlying copulas. The network can then be efficiently esti-
mated in a two step process, of transforming each data source into Gaussian,
and then estimating the inverse covariance matrix of the Gaussian using all
data sources jointly. We found that NP-MuScL significantly outperforms base-
line methods in both synthetic data, and two experiments predicting a gene
interaction network from two yeast microarray data sets, and three Drosophila
ISH images and microarray data sets.

One limitation of NP-MuScL is that the weights giving the importance of
each data source must be assigned by the user. While a good estimate of the
weights may be obtained if all data sources are truly drawn i.i.d. from their
nonparanormal distributions, and have similar noise levels; in practice, some
data sources may be known to be noisier than others, or known to not be i.i.d.
(eg. microarray experiments over time are not truly independent draws from
the distribution). The question of automatically learning the weights from data
remains an open challenge.
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