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Abstract
Practical applications of Bayesian nonparamet-
ric (BNP) models have been limited, due to their
high computational complexity and poor scal-
ing on large data. In this paper, we consider
dependent nonparametric trees (DNTs), a pow-
erful infinite model that captures time-evolving
hierarchies, and develop a large-scale distribut-
ed training system. Our major contributions in-
clude: (1) an effective memoized variational in-
ference for DNTs, with a novel birth-merge s-
trategy for exploring the unbounded tree space;
(2) a model-parallel scheme for concurrent tree
growing/pruning and efficient model alignmen-
t, through conflict-free model partitioning and
lightweight synchronization; (3) a data-parallel
scheme for variational parameter updates that al-
lows distributed processing of massive data. Us-
ing 64 cores in 36 hours, our system learns a
10K-node DNT topic model on 8M documents
that captures both high-frequency and long-tail
topics. Our data and model scales are orders-of-
magnitude larger than recent results on the hier-
archical Dirichlet process, and the near-linear s-
calability indicates great potential for even bigger
problem sizes.

1. Introduction
Bayesian nonparametric (BNP) methods provide a pow-

erful framework for learning the internal structure of da-
ta. For example, Dirichlet processes can be used to clus-
ter with an unbounded number of centers; its derivatives
are used in applications such as storyline tracking (Ahmed
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et al., 2011), taxonomy induction (Ho et al., 2012), and
image segmentation (Sudderth & Jordan, 2009), to name a
few. Recently, a flexible dependent nonparametric trees (D-
NTs) model (Dubey et al., 2014) was developed to induce
hierarchical structures with unbounded width and depth,
which in turn supports cluster creation, evolution, and ex-
tinction over time.

Despite their flexibility and expressiveness, practical ap-
plications of BNP models have unfortunately been limited
due to their high computational complexity and poor scal-
ing on large data. While there has been recent work on
efficient parallel inference algorithms for BNPs, the prob-
lem scales were limited to 100s to 1000s of samples, and
at most 100s of components with a few million parameters
(Table 1). This stands in stark contrast to recent industrial-
scale algorithms for parametric models (e.g. the LDA top-
ic model (Blei et al., 2003)), which typically handle bil-
lions of samples, millions of components, and trillions of
parameters (Yuan et al., 2015). Such big parametric mod-
els have been shown to capture long-tail semantics (Wang
et al., 2014) that improve the performance of industrial ap-
plications, yet this long-tail capability is, arguably, better
realized using BNP models, with their unlimited and self-
adjusting model capacity. Hence, we believe there is an
urgent need to develop highly-scalable solutions for BNPs,
in order to boost their utility on real-world problems.

A second issue is that most existing parallel BNP research
is focused on the (hierarchical) Dirichlet process, and it
is unclear how those techniques might be applied to oth-
er BNP models, including the tree-structured models con-
sidered in this paper (which are desirable for organizing
information into easily-navigated hierarchies (Ghahramani
et al., 2010; Blei et al., 2010)). The main issue is that tree
models contain additional complex dependencies which
render the inference hard to parallelize, while the chang-
ing tree structures can impose costly alignment overheads
between parallel workers (Pan et al., 2013).
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To address these challenges, we present a distributed large-
scale training system for the DNTs model. On the algorith-
m side, we develop an efficient memoized variational in-
ference (VI) algorithm (Hughes & Sudderth, 2013; Neal &
Hinton, 1998) for DNTs, which incrementally tracks com-
pact summary statistics of the full dataset through simple
accumulation operations, and uses them to update tree n-
ode model parameters in a manner that is learning-rate-free
and insensitive to batch size (which are advantages over
stochastic VI (Hoffman et al., 2013)). To ensure unbound-
ed tree width and depth (needed to fully explain large data),
we devise a novel birth-merge strategy (Bryant & Sudderth,
2012; Jain & Neal, 2004) to allow adaptive creation and
pruning of tree nodes.

This tree-structured inference algorithm is executed over
a distributed cluster through a combination of data- and
model-parallelism, interleaved in a manner that maximizes
concurrency among workers. Specifically, our system al-
ternates between two algorithm phases: the first phase is
data-parallel parameter learning, where the tree layout is
held fixed, and workers independently process data batches
in order to update each tree node’s parameters via a param-
eter server1. In the second phase, model-parallel structure
updating (in which we update the tree layout), we logically
partition the whole tree across workers, and workers con-
currently apply birth-merge operations on their model part-
s. Here, we design a communication-efficient strategy for
synchronizing tree structures across workers, where only
lightweight operation records are exchanged over the net-
work.

Our VI algorithm and distributed parameter server imple-
mentation is able to train large-scale DNTs models: Using
64 cores in 36 hours, our system can process over 8M doc-
uments to learn a truncation-free topic tree with 10K top-
ics, in order to capture long-tail semantics. As shown in
Table 1, in terms of data and parameter size, our result is
orders-of-magnitude larger even when compared to recen-
t results on the inferentially simpler hierarchical Dirichlet
process (HDP). To the best of our knowledge, the scales
achieved by our system constitute a new record for tree-
structured BNP learning. We believe our distributed train-
ing strategies, including the conflict-free model alignment
scheme and lightweight record communication, as well as
the combined data- and model-parallelism, could be useful
for scaling up other BNPs.

2. Dependent Nonparametric Trees
Real-world data usually contains rich hierarchical struc-

tures (Ghahramani et al., 2010) and exhibits vibrant vari-
ation (Ahmed et al., 2011). E.g., some news articles may

1We use the Petuum parameter server (Ho et al., 2013; Dai
et al., 2015) from petuum.org.

System
Smyth
et al.
2009

Willia-
mson
et al.
2013

Chang
& Fish-

er III
2014

Bryant
& Sud-
derth
2012

Ours

Model HDP HDP HDP HDP DNTs
Infer alg MCMC MCMC MCMC VI VI
Single-
machine
parallel

√ √ √
.

√

Multi-
machine
parallel

√
. . .

√

Data size
#doc

#token

1.5K
2M

2.5K
3M

0.3M
100M

1.8M
120M

8.4M
720M

Model size
#topic
#param

800
5.6M

80
1.2M

200
20M

600
4.8M

10K
700M

Train time – 7.5hr 28hr 40hr 36hr

Table 1. Comparison of recent BNP training frameworks. Results
are quoted from the respective papers.

be related to a general topic “sports” while some others are
about a more specific topic “football”. Additionally, along
the time topics evolve and new topics merge.

To model the time-evolving hierarchically structured data,
Dubey et al. 2014 proposed the dependent nonparametric
trees (DNTs), a dependent nonparametric process with tree
marginals known as the tree-structured stick breaking pro-
cess (TSSBP) (Ghahramani et al., 2010). TSSBP is an in-
finite tree, where each node ε is associated with a mass πε
such that

∑
ε πε = 1. Each data point is assigned to any of

the infinitely many internal nodes in the tree, according to
p(zn = ε) = πε. The TSSBP can be represented using two
interleaving stick-breaking processes – one (parameterized
by α) that determines the size of a node and the other (pa-
rameterized by γ) that determines the branching probabili-
ties. Index the root node as node ∅, its (infinite) child nodes
as node 1, node 2, . . . , and the child nodes of node 1 as n-
ode 1 · 1, node 1 · 2, . . . , etc. Then the infinite-dimensional
tree is sampled as follows:

νε ∼ Beta(1, α), ψε ∼ Beta(1, γ), π∅ = ν∅, φ∅ = 1,

φε·i = ψε·i
∏i−1

j=1
(1− ψε·j), πε = νεφε

∏
ε′≺ε

(1− νε′)φε′ ,

where ε′ ≺ ε indicates that ε′ is an ancestor of ε.

The temporal variation of the clustering includes two as-
pects: the sizes of the clusters vary over time, and the lo-
cations of clusters in parameter space vary over time. For
the former, the latent variables νε, ψε and πε are replaced
with sequences ν(t)

ε , ψ
(t)
ε and π(t)

ε indexed by discrete time
t ∈ T . Let N (t) be the number of observations at time
t; z(t)

n be the node assignment of the nth observation at t;
X

(t)
ε =

∑N(t)

n=1 I(z(t)
n = ε) be the number of observation-

s assigned to node ε at t; and Y (t)
ε =

∑N(t)

n=1 I(ε ≺ z
(t)
n )

be the number of observations assigned to the descendants

petuum.org
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of ε. Then the prior predictive distribution over the tree at
time t is defined as:

ν(t)ε ∼ Beta(1 +
∑

t′
X(t′)
ε , α+

∑
t′
Y (t′)
ε ),

ψ
(t)
ε·i ∼ Beta(1 +

∑
t′
X

(t′)
ε·i + Y

(t′)
ε·i , γ +

∑
j>i,t′

X
(t′)
ε·j + Y

(t′)
ε·j ),

where t′ ∈ N ranges from t − h to t − 1, with h ∈ N be-
ing a “window” parameter. Refer to the sequence of trees
as (Π(t) = ((π

(t)
ε ), (φ

(t)
ε·i )), t ∈ T ). It is provable that the

marginal posterior distribution of the above dynamic TSS-
BP at time t follows a TSSBP, which implies the above
equation defines a dependent TSSBP.

Each node is associated with a parameter value θ(t)
ε to mod-

el the observed data. Intuitively, within a tree Π(t), n-
odes have similar values to their parents; and between trees
Π(t−1) and Π(t), corresponding parameters θ(t−1)

ε and θ(t)
ε

have similar values. If the data is document, the DNTs can
be used to model evolving hierarchical topics.

Time-varying hierarchical topic models Given a vocab-
ulary of V words, a document can be represented as a V -
dimensional term frequency vector, that corresponds to a
location on the surface of the (V − 1)-dimensional unit
sphere. The von Mises-Fisher (vMF) distribution of order
V provides a probability density on this space:

f(x;µ, κ) = CV (κ) exp(κµ>x);CV (κ) =
κ.5V−1

(2π).5V I.5V−1(κ)
.

where parameterµ defines the mean direction; κ is the con-
centration parameter; and Iv(a) is the modified bessel func-
tion of first kind. A mixture of vMF distributions can there-
fore be used to cluster documents, and the mean direction
µk of the kth cluster can be interpreted as the kth topic.

The mean parameter θ(t)
ε·i of each node ε · i is assigned as:

θ
(t)
ε·i |θ

(t)
ε , θ

(t−1)
ε·i ∼ vMF(τ

(t)
ε·i , ρ

(t)
ε·i), (1)

where, ρ
(t)
ε·i = κ0‖κ1θ

(t)
ε + κ2θ

(t−1)
ε·i ‖, τ

(t)
ε·i =

κ0κ1θ
(t)
ε +κ0κ2θ

(t−1)
ε·i

ρ
(t)
ε·i

. The root node ∅(t) is assumed to have

a pseudo-parent node with mean parameter θ(t)
−1 set to the

centroid of the data. Each document x(t)
n is sampled ac-

cording to z(t)
n ∼ Discrete(Π(t)) and x(t)

n ∼ vMF(θ
(t)
zn , β).

Parallel MCMC for online inference At each time t the
parameters of tree Π(t) is inferred from data samples of this
epoch, conditioned on the previous trees which are not re-
learned by backwards passes. Dubey et al. 2014 developed
a parallel Gibbs sampler for tree parameters (Π(t)) and top-
ic indicators (z(t)

n ), and a MAP estimator for the location
parameters (θ(t)

ε ). The parallelization is due to the fact that
the tree parameters Π(t) are conditionally independent giv-
en {z(t)

n } (and historical {z(t′)
n }), and vice versa.

However, despite the parallelizability of the sampling pro-
cedures, it can be very costly to align the tree structures
across processors. To avoid this cost, in practice, the par-
allel MCMC algorithm maintains a single copy of the tree
model, on which all processors perform the sampling con-
currently. This scheme in turn leads to heavy lock con-
tentions between processors, as the shared model keep-
s creating and deleting nodes throughout sampling. This
can severely deteriorates the scalability of the inference, as
shown in our experiments.

3. Truncation-free Memoized VI for DNTs
Distributed learning for BNPs can be difficult: on the algo-
rithmic side, correct parallelization of learning algorithm-
s requires appropriate independence structure among vari-
ables. On the implementation side, efficient model state
synchronization is necessary due to slow network commu-
nication. These issues are made even more challenging in
the context of tree-structured DNTs, which present more
complex inter-variable dependencies; consequently, model
alignment between machines is very communication- and
computation-expensive.

Variational techniques are an appealing starting point for
parallelization, because they introduce model independen-
cies that form natural boundaries for model-parallelism. In
this section, we shall develop a highly-parallelizable vari-
ational inference (VI) algorithm for DNTs, and introduce
an accompanying data- and model-parallelization strategy
in the next section. Our key technical contributions are:
(a) we develop a memoized VI technique for DNTs that are
suitable for the distributed setting; (b) we design a nov-
el birth-merge strategy to adaptively update tree structures
and enable unbounded width and depth.

3.1. Parameter Learning
Memoized VI has been shown to be effective on Dirich-
let process mixtures. It maintains a compact summary s-
tatistics of full dataset, and updates model parameters by
replacing old statistics with new one when visiting a data
batch. The additivity of the summaries allows the varia-
tional updates from multiple machines to be efficiently ac-
cumulated. Hence the best of the two previous VI algo-
rithms are combined: the efficiency of the stochastic VI
by interleaving global and local updates frequently, and the
robustness of full-data VI by avoiding learning rates.

We first describe the variational updates for the vMF-based
DNTs (details are given in the supplements), then present
how the memoized inference proceeds. Here we focus on
a specific time t and infer the parameters of Π(t) from the
data samples of this epoch. We omit the label t in the fol-
lowing when there is no confusion.

Consider a family of factorized variational distributions:

q(ν,ψ,θ,z) =
∏

ε
q(νε|δε)q(ψε|σε)q(θε|µε, ηε)

∏
n
q(zn|λn),
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and assume the factors have the parametric forms:

q(νε|δε) = Beta(νε|δε), q(ψε|σε) = Beta(ψε|σε),
q(θε|µε, ηε) = vMF(θε|µε, ηε), q(zn|λn) = Multi(zn|λn).

To tractably handle the infinite set of components, we em-
ploy a nested truncation: suppose we have a truncated tree
T (with finite number of nodes), then q(zn = ε) = 0 for
ε /∈ T . This forces all data to be explained by only the
nodes in T , while other nodes can be ignored. The trunca-
tion is nested such that if a truncated tree T ′ is a subtree of
T then variational distributions over T ′ are a special case of
those over T . Growing T therefore always gives potentially
better solutions.

Variational algorithms aim to minimize KL divergence
from q to the true posterior, which is equivalent to tight-
ening the evidence lower bound (ELBO):

L(q) =
∑

ε∈T
E
[

log
p(νε)p(ψε)p(θε)

q(νε)q(ψε)q(θε)

]
+
∑N

n=1
E
[

log
p(xn|θzn)p(zn|ν,ψ)

q(zn)

]
.

We optimize L(q) via coordinate ascent, iteratively updat-
ing the local parameters (data assignments {λn}) and glob-
al parameters (stick-breaking parameters {δε, σε} and data
generating parameters {(µε, ηε)}).

For observation xn, the optimal solution of λn is given by:

λ∗nε ∝ exp {E[log p(zn = ε|ν,ψ)] + E[log p(xn|θε)]} . (2)

To optimize global parameters of each component ε, we
store its expected mass Mε and sufficient statistics sε:

Mε , E
[∑

n
znε
]

=
∑

n
λnε,

sε , E
[∑

n
znεxn

]
=
∑

n
λnεxn.

(3)

The global parameters (at time t) can be updated based on
only these (and historical) summaries. In particular, for the
stick-breaking parameters:

δ
(t)∗
ε,1 = 1 +

t∑
t′=t−h

M (t′)
ε , δ

(t)∗
ε,2 = α+

t∑
t′=t−h

∑
ε≺ε′

M
(t′)
ε′ ,

σ
(t)∗
ε·i,1 = 1 +

t∑
t′=t−h

∑
ε�ε′

M
(t′)
ε′ , σ

(t)∗
ε·i,2 = γ +

t∑
t′=t−h

∑
j>i

M
(t′)
ε·j .

(4)

Next, optimizing L(q) w.r.t q(θ(t)
ε ), we have:

log q∗(θ(t)
ε ) = E[ρ(t)

ε τ (t)>
ε θ(t)

ε ]

+
∑

ε≺ε·i
E[log CV (ρ

(t)
ε·i ) + ρ

(t)
ε·iτ

(t)>
ε·i θ

(t)
ε·i ]

+
∑

n
λnεE[βθ(t)>

ε xn] + const,

where ρ(t)
ε·i and τ (t)

ε·i are defined in Eq.1 which encode the
time- and hierarchical-dependency of the nodes in the de-
pendent trees. With the complex dependency, the normaliz-
er term E[log CV (ρ

(t)
ε·i )] becomes intractable, we therefore

turn to a Taylor approximation, which leads to the updates:

µ(t)∗
ε ≈

κ0(κ1µ
(t)

ε′ + κ2µ
(t−1)
ε +

∑
i κ1µ

(t)
εi + aµ

(t−1)
εi ) + βsε

η
(t)∗
ε

η(t)∗ε ≈ ‖κ0(κ1µ
(t)

ε′ + κ2µ
(t−1)
ε +

∑
i

κ1µ
(t)
εi + aµ

(t−1)
εi ) + βsε‖,

(5)

where a = 3(.5V−1)κ0κ1κ2

ρ̄
(t)
εi

, and ρ̄(t)
ε·i is the same with ρ(t)

ε·i

except that θ(t)
ε is replaced with the mean of the variational

distribution over θ(t)
ε from the previous iteration.

Memoized inference Assume the data is divided into B
fixed batches {Bb}, the memoized VI tracks the statistics
for each batch Sbε = (M b

ε , s
b
ε), as well as the full-dataset

statistics Sε = (Mε, sε). Note that the additivity of the
sufficient statistics implies that the full-data statistics can
be obtained exactly as the addition of summaries of dis-
tinct batches. Hence the memoized inference proceeds by
visiting each batch Bb, updating local parameters for that
batch via Eq.2, and then updating the full-data summaries
for each component by replacing the old statistics of Bb
with new one:

Sε −= Sbε , Sbε ←

∑
n∈Bb

λnε,
∑
n∈Bb

λnεxn

 , Sε += Sbε .

(6)

Given the new full-data statistics, the global parameters can
then be updated via Eqs.4-5.

Though the summary statistics require additional memory,
they are compact (at the level of batch, rather than sample)
and highly memory-efficient. Moreover, our algorithm on-
ly requires sequential access, as apposed to random access,
to data batches, indicating the data batches (and batch s-
tatistics) can be stored in disks. This is also necessary for
handling large data that cannot fit in the memory.

3.2. Tree Structure Updating

We next develop a data-driven birth-merge strategy to dy-
namically expand and contract the model size. The birth
and merge moves are interleaved with the above variation-
al updates, and are highly parallelizable as each move only
involves a local region of the tree. The nested variational
distributions ensure the stability of the inference.

3.2.1. BIRTH MOVE TO CREATE NEW NODES

Analog to the stick-breaking process, a birth move creates
a new child for an existing node and appends it to the child
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list. The move proceeds as follows: (1) select a target n-
ode ε; (2) collect a set of data samples Xε mainly explained
by ε; (3) assuming node ε has k − 1 children, create a new
child ε · k, and estimate ε · k’s variational posteriors by a
restricted iteration on Xε; (4) adopt the new node.

Target selection Intuitively, a cluster associated with larger
mass is more likely to contain sub-clusters. We therefore
sample a target node ε according to the mass Mε.

Data collection We collect a subset of data samples where
each sample n has λnε > 1/

√
K. Here K is the number of

existing components. The collected subset is highly relat-
ed to the target node, and helps to better estimate the new
child’s parameter. Note that the collecting is done when
passing through the data in parameter learning phase, and
introduces little computational overhead.

Child creation In a hierarchical clustering, a high-quality
child cluster is expected to be closely related to its paren-
t, while differing from its siblings. We therefore initial-
ize the variational mean of the vMF emission as µε·k =

µε −
∑
j µε·j , where a represents the L2-normalization of

a. (If ε has no existing child, then µε·k is initialized by the
sample in Xε which allocates smallest mass on ε.) We then
update the variational posteriors of node ε and ε·k through a
restricted VI on data Xε (Eqs.2-5) until convergence, while
parameters of other nodes are held constant.

Child adoption We always accept the new child without
assessing the change of ELBO produced by the insertion,
and rely on subsequent merge moves to remove redundant
nodes. Since the summary statistics Sε and Sε·k were up-
dated based on the target data collection Xε, data samples
in Xε are now counted twice in the global summary. We
subtract away Xε’s statistics after the new-born node ε · k
has been better adapted to the data through the normal vari-
ational updates.

A birth operation only requires write access to a node (and
read access to its children). Thus it is straightforward to do
birth moves concurrently on different parts of the tree.

3.2.2. MERGE MOVE TO REMOVE REDUNDANT NODES

Merge moves delete unneeded nodes and keep the model
compact and efficient. A merge procedure consists of two
steps: (1) select a pair of candidate nodes; (2) if the merge
improves the ELBO, accept the merge.

Candidate selection In the tree-structured clustering, re-
dundancy usually exists between two sibling clusters, or a
child with its parent. We first randomly choose a node εa,
then, from its siblings and parent, randomly select the oth-
er node εb by the cosine similarity between their variational
means of vMF emissions: sim(εa, εb) := µ>εaµεb . Note that
the selection does not rely on node mass, since small-mass
component may account for long-tail data.

Merge adoption The additivity (Eq.3) allows the merged
global statistics to be constructed directly. The difference
in the full-data ELBO by the merge can be approximately
computed in constant time using only the node pair’s global
statistics (see the supplements for details). If the merge is
accepted, the child nodes of εa are transferred to node εb.

A sibling-sibling merge only modifies two nodes of the
same depth, while a parent-child merge will involve two
nodes of different depths. In the next, we design special-
ized tree partition methods to parallelize the merge moves.

4. Distributed System Implementation
We now present a distributed framework that supports
large-scale training for the DNTs model. Earlier, we de-
scribed a VI algorithm for DNTs, which consists of two
phases. In the parameter learning phase, the additivity of
the summary statistics (Eq.3) suggests that, parameter up-
dates from distinct workers for the same nodes can be con-
veniently accumulated, which accelerates convergence if
workers process different data batches concurrently. More-
over, since the tree structure is fixed, the expensive tree
alignment is avoided even if different workers hold their
own model copies. This naturally leads to data parallelism
for this phase.

On the other hand, the structure updating phase changes the
tree structure by adding/removing nodes. By noting that
both birth and merge moves only access to local regions of
the whole tree, we can safely partition the tree into multiple
parts and perform birth-merge moves on each part indepen-
dently. This leads to model parallelism for this phase.

The two parallel schemes are interleaved, where workers
are independent with each other in each phase. This en-
sures high degree of parallelism and scalability.

We build our system on top of an open-source distributed
parameter server Petuum (petuum.org). Essentially, a
parameter server (PS) presents a distributed shared mem-
ory interface, where worker machines can read/write any
parameter, agnostic to the physical location of the param-
eter. Petuum provides bounded-asynchronous consisten-
cy, which reduces inter-iteration parameter synchronization
times through a staleness parameter s.

Algorithm 1 summarizes the distributed training algorithm
for DNTs. Next we describe the parallel schemes in detail.

4.1. Data Parallelism for Parameter Learning

Figure 1(a) shows the data parallel scheme. We use the PS
to store the full-data statistics {Sε = (Mε, sε)}, because of
its additivity and easy restoration of other model parameter-
s based on them (Eqs.4-5). The whole dataset is partitioned
and distributed across all workers. Each worker only ever
processes its assigned data shard.

petuum.org
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Data 
Partitions

Data-parallel 
Workers

Shared Model 
Parameters

Model-parallel 
Workers

Tree Structure 
Change Records

∆S S ∆SS

new-born node

Birth record: 
(2, 2·1, S)

(a) Data parallelism.

Data 
Partitions

Data-parallel 
Workers

Shared Model 
Parameters

Model-parallel 
Workers

Tree Structure 
Change Records

∆S S ∆SS

new-born node

Birth record: 
(2, 2·1, S)

(b) Model parallelism.
Figure 1. Architecture: data parallelism in parameter learning
phase and model parallelism in structure updating phase.

Each worker holds a local copy of the full-data statistics,
based on which the variational updates of Eqs.2-5 are con-
ducted. After processing a data batch Bb, the worker sends
the difference of the batch statistics {(Sb,newε − Sb,oldε )} to
the PS, where the global statistics are updated by simple ac-
cumulation. This completes an update of the memoized VI
(Eq.6). The worker then fetches the latest global statistics
from the PS to replace its local copy, whereby the updates
from other workers are synchronized. The communication
overhead of global updates is linear to the model size.

depth

1

2

3

even-partitionodd-partition

Figure 2. Odd- and even-partition for distributed merge moves. In
both cases, siblings are guaranteed to be in the same parts.

4.2. Model Parallelism for Structure Updating
Figure 1(b) shows the model parallel scheme. The whole
tree is partitioned into multiple parts, and each worker takes
charge of several pieces to perform birth/merge operations.
In practice, there are two key features to be carefully de-
signed: (1) how to partition the tree to minimize dependen-
cy between different workers; (2) how to broadcast the lo-
cal structure modification across all workers for alignment.

Conflict-free model partition Note that each worker phys-
ically holds a whole model copy (for data parallelism), so
we only need to partition the tree logically, without actual
transmission of model parts. Since different structure op-
erations have different locality, we design distinct partition
strategies for each of them. For birth moves, the partition
simply guarantees each node is assigned to only one work-
er (e.g., Figure 1(b)). To avoid duplicated merge (i.e., one
node being merged with multiple others by different work-
ers), we divide merge into two modes: the odd-mode only
allows merging between odd-depth nodes and their parents,
and between siblings. The tree is accordingly partitioned
such that every odd-depth node is assigned to the same
workers with their parents, and all siblings are assigned to

the same workers (Figure 2). In contrast, even-mode allows
merging between even-depth child nodes and their parents,
and between siblings. The tree is partitioned accordingly.
birth and odd-/even-mode merge are three types of struc-
ture updating phases, and are interleaved with the parame-
ter learning phase throughout training (Algorithm 1).

Lightweight structure synchronization To synchronize
the tree structures, one straightforward method is that each
worker broadcasts its assigned tree parts, to replace the cor-
responding parts of all local model copies in other workers.
This, however, can cause costly communication overhead.
We adopt an alternative strategy that workers exchange the
operation records, based on which all workers can update
their local model and produce new trees with exactly the
same structure. For birth move, a record is (ε, ε·k, Sε, Sε·k),
where ε is the parent node index, ε · k is the new-born child
node, and Sε and Sε·k are the summary statistics after re-
stricted updates; for merge move, a record is (εa, εb), indi-
cating node εa is merged into εb. The records are therefore
lightweight and can be shared across workers via PS effi-
ciently. Also note that though every worker has to perform
all structure updates, the operations are efficient as no re-
stricted iterations (for birth), or objective evaluation (for
merge) are needed.

Algorithm 1 Distributed training for DNTs
1: % line 7,17: Data-parallel VI
2: % line 8-13: Model-parallel (odd/even) merge
3: % line 16,18-21: Model-parallel birth
4: Train:
5: Initialize {Π, µ} randomly
6: repeat
7: Memoized VI
8: Sample (odd/even) merge pairs P ∈ assigned model part
9: for all (εa, εb) ∈ P do

10: if Lmerge > L then
11: Send merge record to PS
12: end if
13: end for
14: Read all merge records from PS
15: Update local model structure
16: Sample birth nodesQ ∈ assigned model part
17: Memoized VI and collect target data
18: for all ε ∈ Q do
19: Restricted update ε and ε · k
20: Send birth record to PS
21: end for
22: Read all birth records from PS
23: Update local model structure
24: until convergence
25:
26: Data-parallel memoized VI:
27: for all batch B ∈ assigned data partition do
28: Update λn for n ∈ B, using Eq.2
29: Compute new batch statistics {Sb,newε }
30: Send updates {Sb,newε − Sb,oldε } to PS
31: Read global statistics from PS
32: Update global parameters, using Eqs.4-5
33: end for



Large-scale Distributed Dependent Nonparametric Trees

0 5 10 15 20 25 30 35
Hours

2.5

3.0

3.5

4.0

4.5

5.0

A
v
e
ra

g
e
 L

o
g
-l
ik

e
lih

o
o
d
 (
£1
0
3
)

16 cores

32 cores

48 cores

64 cores

Figure 3. Converg on PubMed

16 32 48 64
Number of cores

1

2

3

4

S
p
e
e
d
u
p

Perfect

Our System

Figure 4. Speedup on PubMed

1 4 8
Number of cores

1

4

8

S
p
e
e
d
u
p

Perfect

MCMC

Our System

Figure 5. Speedup on PNAS

0 10 20 30 40
Hours

3K

5K

7K

9K

11K

N
u
m

b
e
r 

o
f 

T
o
p
ic

s

Figure 6. Growth of the tree

5. Experimental Results
Our experiments show that (1) our distributed framework
achieves near-linear (i.e. near-optimal) scalability with in-
creasing number of cores/machines; (2) the DNTs system
enables big tree models (10K nodes) on large data, and well
captures long-tail topics. (3) the proposed VI algorithm
achieves competitive heldout likelihood with MCMC, and
discovers meaningful topic evolution.

5.1. Setup

Datasets We use three public corpora for the evaluation:
• PubMed: 8,400,000 PubMed abstracts. The vocabu-

lary is pruned to 70,000 words. Since no time stamp is
associated, we treat the whole dataset as from 1 epoch.

• PNAS: 79,800 paper titles from the Proceedings of
the National Academy of Sciences 1915-2005. The
vocabulary size is 36,901. We grouped the titles into
10 ten-year epoches.

• NIPS: 1,740 documents from the Proceedings of the
NIPS 1988-1999. The vocabulary size is 13,649. We
grouped the documents into 12 one-year epoches.

Parameter setting For all the experiments, we set κ0 =
100, κ1 = κ2 = 1, and used stick breaking parameters
α = γ = 0.5. We estimate each node’s vMF concen-
tration parameter β from the data according to (Banerjee
et al., 2005). The staleness s for bounded-asynchronous
data parallelism is set to 0, which means workers always
get up-to-date global parameters from the PS.

Compute cluster All experiments were run on a compute
cluster where each machine has 16 cores and 128GB RAM,
connected via 1Gbps ethernet.

5.2. Scalability

We evaluate the scalability of our distributed system w.r.t
the number of cores. Figure 3 shows the convergence
curves on the PubMed dataset. The y-axis represents the
per-document heldout likelihood (on 10% heldout test set).
With increasing number of cores/machines, the model con-
sistently converges faster (and achieves better results, pos-
sibly because the noisy parallel updates help to find a better
local optimum).

To measure the speedup gain by distributed training, we
record the running time for each machine setting that the
heldout likelihood achieves L1, where L1 is the conver-
gence likelihood of single machine (16 cores). The speedup
factor is then computed as the ratio of running time for
1 machine compared to n machines. As shown in Fig-
ure 4, our distributed framework demonstrates near-linear
speedup. Specifically, the speedup of using 4 machines
over 1 machine achieves 3.85x.

Near-linear scalability is necessary for industrial scale ap-
plications where hundreds or thousands of machines are
used to process billions of samples. Our carefully-designed
data- and model-parallel schemes enable our DNTs frame-
work to be highly scalable: the data-parallel parameter
learning aggregates variational updates from different pro-
cessors without need of costly tree alignment; while the
model-parallel structure updating explores the tree space by
highly-concurrent birth-merge operations, and aligns mod-
el structures via a communication-efficient synchronization
protocol. By interleaving the two modes and keeping pro-
cessors independent with each other in each mode, high
degree of parallelism and scalability is achieved.

Comparison with parallel MCMC Since the parallel M-
CMC algorithm (Dubey et al., 2014) (§2) is too slow to
converge on the PubMed dataset, we compare the speedup
on the smaller PNAS data. As shown in Figure 5. Our
system is significantly more scalable than MCMC which
brings only 1.37x speedup on 8 cores. The reason is that,
the parallel samplers maintain a shared tree model in order
to avoid costly inter-processor tree alignment. This in turn
leads to heavy lock contention during sampling, as the tree
nodes keep being deleted and created.

Our system maintains a model copy on each processor to
maximize parallelization for parameter updates, but still
keeps the state alignment efficient by exchanging among
processors conflict-free lightweight operation records. We
compare the running time in the supplements.

5.3. Big Model for Long-tail Semantics

In the parametric literature, big models with millions of
components and trillions of parameters have been shown to
capture long-tail semantics from web-scale corpora, which
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mass (πε) top-6 words topic label

27.9 at2r, at1r, receptor, type_2,
angiotensin_ii, ang_ii

Angiotensin II
Type-2 Receptor

5.9 fusion, thoracoscopic, spinal,
treatment, level, surgery

Thoracoscopic
Spinal Fusion

4.1
azt, nucleosides,

pharmacokinetic, monkey,
subcutaneous, methyl

Pharmacokinetics
with AZT in

Monkeys

Table 2. Long-tail topics from PubMed data. The topic labels are
obtained by looking into the documents associated with the topics.

can improve the performance of industrial application-
s (Yuan et al., 2015; Wang et al., 2014). Nonparamet-
ric models, with their unbounded parameter space, provide
an attractive and automatic way to capture such long tails
without knowing their true size in advance, and our sys-
tem facilitates the learning of truncation-free big models
on large data.

As an example, Figure 6 shows that the nonparametric tree
on the PubMed dataset (using 4 machines) converges to
over 10K nodes organized into 8 layers. We now look at the
long tail: Table 2 shows three topics with small mass, that
form coherent themes corresponding to small-but-specific
sets of documents. Such ability to target fine-grained top-
ics is valuable to industrial search engines and online ad
systems (Wang et al., 2014).

5.4. Quality of Learned Topics

We also evaluate the quality of the learned topics by held-
out average log-likelihood. Table 3 compares with the M-
CMC. Our algorithm gives competitive heldout likelihood,
validating that the proposed VI is a viable alternative to M-
CMC for discovering high-quality topics.

Method MCMC
(Dubey et al., 2014) Our algorithm

PNAS 4562±116 4479±103
NIPS 9811±232 9712±143

Table 3. Heldout average log-likelihood on two datasets.

Our approach also discovers meaningful topic hierarchies
and variation. Figure 7 shows part of the results obtained
from the NIPS dataset. We can observe two major fields in
the early stage of NIPS, namely, the “cell synapse”-related
research and “neural network”-related research; and both
the popularity and research focuses were changing along
the time.

6. Related Work
There has been growing interest in scalable inference for
BNPs, where much previous work has relied on data-
parallelism (Smyth et al., 2009; Doshi-Velez et al., 2009).
One challenge is that maintaining model parameters re-
quires local statistics to be combined, which becomes d-
ifficult whenever local model states become misaligned
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Figure 7. Variation of topic hierarchies on the NIPS data. Top-5
words of each topic are shown. The thickness of the circles repre-
sents the topic popularity. Nodes with small mass are omitted.

(e.g. different number of clusters on each worker) (Pan
et al., 2013). Thus, one must either resort to costly inter-
worker model alignment, or approximation strategies that
can cause slow convergence and inaccurate results (Willia-
mson et al., 2013). We tackle this via an efficient align-
ment strategy based on conflict-free model partitioning and
lightweight record transmission.

A few recent MCMC algorithms are both data- and model-
parallel (Chang & Fisher III, 2014; Willia-mson et al.,
2013), but their reported scales were limited to smal-
l datasets with 100s of components, and it is unclear how
these methods can be efficiently applied in the distributed
setting (Gal & Ghahramani, 2014). Our problem scales are
orders of magnitude larger, which is necessary to handle
real-world large data and capture long-tail semantics.

An alternative to MCMC for BNP inference is the varia-
tional method (Blei et al., 2006), where Bryant & Sudderth
2012 incorporated split-merge moves (Jain & Neal, 2004)
to enable unbounded number of components. Our DNTs
inference algorithm extends memoized VI (Hughes & Sud-
derth, 2013; Neal & Hinton, 1998), by applying Taylor ap-
proximation (Ahmed & Xing, 2007) to tackle intractabili-
ty, and coupling it with a highly-parallelizable birth-merge
scheme.

7. Conclusion
We presented a large-scale distributed system for learn-
ing dependent nonparametric trees (DNTs), which uses a
novel, distributed truncation-free memoized VI algorith-
m that exploits both data- and model-parallelism for fast
inference. Efficiency and scalability are achieved via:
(a) conflict-free partitioning and birth-merge operations on
each model partition; (b) synchronization of local model s-
tates via lightweight operation records. Consequently, our
distributed system handles much larger problem sizes than
recent BNP training frameworks. We believe that these s-
trategies, particularly the model alignment scheme and the
combined data- and model-parallelism, could be useful for
scaling up other BNP models.

Acknowledgements: This research is supported by NSF
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Large-scale Distributed Dependent Nonparametric Trees

References
Ahmed, Amr and Xing, Eric P. On tight approximate in-

ference of the logistic-normal topic admixture model. In
Proc. of AISTATS, pp. 19–26, 2007.

Ahmed, Amr, Ho, Qirong, Teo, Choon H, Eisenstein, Ja-
cob, Xing, Eric P, and Smola, Alex J. Online infer-
ence for the infinite topic-cluster model: Storylines from
streaming text. In Proc. of AISTATS, pp. 101–109, 2011.

Banerjee, Arindam, Dhillon, Inderjit S, Ghosh, Joydeep,
and Sra, Suvrit. Clustering on the unit hypersphere us-
ing von Mises-Fisher distributions. In JMLR, pp. 1345–
1382, 2005.

Blei, David M, Ng, Andrew Y, and Jordan, Michael I. La-
tent Dirichlet Allocation. JMLR, 3:993–1022, 2003.

Blei, David M, Jordan, Michael I, et al. Variational infer-
ence for Dirichlet process mixtures. Bayesian analysis,
1(1):121–143, 2006.

Blei, David M, Griffiths, Thomas L, and Jordan, Michael I.
The nested chinese restaurant process and bayesian non-
parametric inference of topic hierarchies. JACM, 57(2):
7, 2010.

Bryant, Michael and Sudderth, Erik B. Truly nonparamet-
ric online variational inference for hierarchical Dirichlet
processes. In Proc. of NIPS, pp. 2699–2707, 2012.

Chang, Jason and Fisher III, John W. Parallel sampling
of HDPs using sub-cluster splits. In Proc. of NIPS, pp.
235–243, 2014.

Dai, Wei, Kumar, Abhimanu, Wei, Jinliang, Ho, Qirong,
Gibson, Garth, and Xing, Eric P. High-performance dis-
tributed ml at scale through parameter server consistency
models. In AAAI. 2015.

Doshi-Velez, Finale, Mohamed, Shakir, Ghahramani,
Zoubin, and Knowles, David A. Large scale nonpara-
metric bayesian inference: Data parallelisation in the in-
dian buffet process. In Proc. of NIPS, pp. 1294–1302,
2009.

Dubey, Kumar, Ho, Qirong, Williamson, Sinead A, and X-
ing, Eric P. Dependent nonparametric trees for dynamic
hierarchical clustering. In Proc. of NIPS, pp. 1152–1160,
2014.

Gal, Yarin and Ghahramani, Zoubin. Pitfalls in the use of
parallel inference for the Dirichlet process. In Proc. of
ICML, pp. 208–216, 2014.

Ghahramani, Zoubin, Jordan, Michael I, and Adams,
Ryan P. Tree-structured stick breaking for hierarchical
data. In Proc. of NIPS, pp. 19–27, 2010.

Ho, Qirong, Eisenstein, Jacob, and Xing, Eric P. Document
hierarchies from text and links. In Proc. of WWW, pp.
739–748. ACM, 2012.

Ho, Qirong, Cipar, James, Cui, Henggang, Lee, Seung-
hak, Kim, Jin Kyu, Gibbons, Phillip B, Gibson, Garth A,
Ganger, Greg, and Xing, Eric P. More effective distribut-
ed ML via a stale synchronous parallel parameter server.
In Proc. of NIPS, pp. 1223–1231, 2013.

Hoffman, Matthew D, Blei, David M, Wang, Chong, and
Paisley, John. Stochastic variational inference. JMLR,
14(1):1303–1347, 2013.

Hughes, Michael C and Sudderth, Erik. Memoized online
variational inference for Dirichlet process mixture mod-
els. In Proc. of NIPS, pp. 1133–1141, 2013.

Jain, Sonia and Neal, Radford M. A split-merge Markov
chain Monte Carlo procedure for the Dirichlet process
mixture model. Journal of Computational and Graphi-
cal Statistics, 13(1), 2004.

Neal, Radford M and Hinton, Geoffrey E. A view of the
EM algorithm that justifies incremental, sparse, and oth-
er variants. In Learning in graphical models, pp. 355–
368. Springer, 1998.

Pan, Xinghao, Gonzalez, Joseph E, Jegelka, Stefanie,
Broderick, Tamara, and Jordan, Michael I. Optimistic
concurrency control for distributed unsupervised learn-
ing. In Proc. of NIPS, pp. 1403–1411, 2013.

Smyth, Padhraic, Welling, Max, and Asuncion, Arthur U.
Asynchronous distributed learning of topic models. In
Proc. of NIPS, pp. 81–88, 2009.

Sudderth, Erik B and Jordan, Michael I. Shared segmenta-
tion of natural scenes using dependent Pitman-Yor pro-
cesses. In Proc. of NIPS, pp. 1585–1592, 2009.

Wang, Yi, Zhao, Xuemin, Sun, Zhenlong, Yan, Hao, Wang,
Lifeng, Jin, Zhihui, Wang, Liubin, Gao, Yang, Law,
Ching, and Zeng, Jia. Peacock: Learning long-tail topic
features for industrial applications. arXiv preprint arX-
iv:1405.4402, 2014.

Willia-mson, Sinead, Dubey, Avinava, and Xing, Eric. Par-
allel Markov chain Monte Carlo for nonparametric mix-
ture models. In Proc. of ICML, pp. 98–106, 2013.

Yuan, Jinhui, Gao, Fei, Ho, Qirong, Dai, Wei, Wei, Jin-
liang, Zheng, Xun, Xing, Eric P, Liu, Tie-Yan, and Ma,
Wei-Ying. Lightlda: Big topic models on modest com-
pute clusters. Proc. of WWW, 2015.



000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Large-scale Distributed Dependent Nonparametric
Trees: Supplementary Material

1 Variational Inference for Dependent Nonparametric Trees

Since the parameters are estimated in an online fashion, we focus on a specific time t and infer the
parameters for Π(t). And we omit the label t in the following when there is no confusion.

The DNTs assumes the following generative model (in some time t):

νε ∼ Beta(1, α)

ψε ∼ Beta(1, γ)

φε·i = ψε·i

i−1∏
j=1

(1− ψε·j), φ∅ = 1

πε = νεφε
∏
ε′≺ε

(1− νε′)φε′ , π∅ = ν∅

θε·i ∼ p(θε·i|θε)
zn ∼ Multi(π)

xn ∼ p(xn|θzn),

where ∅ represents the root node; ε′ ≺ ε indicates that ε′ is an ancestor of ε. Assume a family of
factorized variational distributions:

q(ν,ψ,θ, z) =
∏
ε∈T

q(νε|δε)q(ψε|σε)q(θε|µε, ηε)
N∏
n=1

q(zn|λn),

where T is a truncated tree (note that we propose a birth-merge strategy in the paper to dynamically
vary the truncation level). Further assume the factors have the parametric forms:

q(νε|δε) = Beta(νε|δε), q(ψε|σε) = Beta(ψε|σε),
q(θε|µε, ηε) = vMF(θε|µε, ηε), q(zn|λn) = Multi(zn|λn).

The variational lower bound is:
log p(x) ≥ Eq[log p(ν,ψ,θ, z,x)]− Eq[log q(ν,ψ,θ, z)]

=
∑
ε∈T

E
[

log
p(νε)p(ψε)p(θε)

q(νε)q(ψε)q(θε)

]
+

N∑
n=1

E
[

log
p(xn|θzn)p(zn|ν,ψ)

q(zn)

]
, L(q).

We optimize L(q) using coordinate ascent.

1.1 Optimize the data assignment parameters q(zn)

First isolate the terms that only contains q(zn):

L(q(zn)) = E[log p(zn|ν,ψ)p(xn|θzn)]− E[log q(zn)].

1
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The optimal solution for q(zn) is then:

q(zn = z) ∝ exp{E[log p(zn = z|ν,ψ)] + E[log p(xn|θz)]}.
Here

E[log p(zn = z|ν,ψ)] = E[log νzφz
∏
z′≺z

(1− νz′)φz′ ]

= E[log νz] +
∑
z′≺z

E[log (1− νz′)] +
∑
z′�z

E[log φz′ ],

where
E[log νε] = Ψ(δε,1)−Ψ(δε,1 + δε,2)

E[log (1− νε)] = Ψ(δε,2)−Ψ(δε,1 + δε,2)

E[log φε·i] = E[log ψε·i] +

i−1∑
j=1

E[log (1− ψε·j)]

= Ψ(σε·i,1)−Ψ(σε·i,1 + σε·i,2) +

i−1∑
j=1

Ψ(σε·j,2)−Ψ(σε·j,1 + σε·j,2);

and

E[log p(xn|θz)] = βE[θz]
>xn = βµ>z xn.

Here Ψ(·) is the digamma function.

1.2 Optimize the stick breaking parameters q(νε|δε) and q(ψε|σε)

L(q(νε)) = E[log p(νε)− log q(νε)] +

N∑
n=1

E[log p(zn|ν,ψ)].

We rewrite the second term with indicator random variables:
E[log p(zn|ν,ψ)]

= E
[

log(
∏
ε∈T

ν1[zn=ε]
ε (1− νε)1[ε≺zn]φ1[ε�zn]

ε )
]

=
∑
ε∈T

{
q(zn = ε)E[log νε] + q(ε ≺ zn)E[log (1− νε)] + q(ε � zn)E[log φε]

}
,

where

E[log φε·i] = E[log ψε·i] +
i−1∑
j=1

E[log (1− ψε·j)].

The updates for δε are:

δε,1 = 1 +

N∑
n=1

q(zn = ε)

δε,2 = α+

N∑
n=1

q(ε ≺ zn).

Similarly, the updates for σε are:

σε·i,1 = 1 +

N∑
n=1

q(ε · i � zn)

σε·i,2 = γ +

N∑
n=1

∑
j=i+1

q(ε · j � zn).

2
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Incorporating the time dependency and using similar derivations, we have:

δ
(t)
ε,1 = 1 +

t∑
t′=t−h

Nt′∑
n=1

q(t′)(zn = ε)

δ
(t)
ε,2 = α+

t∑
t′=t−h

Nt′∑
n=1

q(t′)(ε ≺ zn)

σ
(t)
ε·i,1 = 1 +

t∑
t′=t−h

Nt′∑
n=1

q(t′)(ε · i � zn)

σ
(t)
ε·i,2 = γ +

t∑
t′=t−h

Nt′∑
n=1

∑
j=i+1

q(t′)(ε · j � zn).

1.3 Optimize the data emission parameters q(θ(t)
ε |µ(t)

ε , η
(t)
ε )

L(q(θ(t)
ε )) = E[log p(θ(t)

ε |θ
(t)
ε′ )− log q(θ(t)

ε )] +
∑
ε≺ε·i

E[log p(θ
(t)
ε·i |θ

(t)
ε )] +

N∑
n=1

E[log p(xn|θ, zn)].

Optimizing w.r.t q(θ(t)
ε ), we obtain:

log q∗(θ(t)
ε ) = E[log p(θ(t)

ε |θ
(t)
ε′ )] +

∑
ε≺ε·i

E[log p(θ
(t)
ε·i |θ

(t)
ε )] +

N∑
n=1

E[log p(xn|θ(t), zn)] + const

= E[ρ(t)
ε τ (t)>

ε θ(t)
ε ]

+
∑
ε≺ε·i

E[log CV (ρ
(t)
ε·i ) + ρ

(t)
ε·iτ

(t)>
ε·i θ

(t)
ε·i ]

+
∑
n

q(zn = ε)E[βθ(t)>
ε xn] + const.

(1)

Note the time- and hierarchical-dependency:

ρ
(t)
ε·i = κ0‖κ1θ

(t)
ε + κ2θ

(t−1)
ε·i ‖

τ
(t)
ε·i =

κ0κ1θ
(t)
ε + κ0κ2θ

(t−1)
ε·i

ρ
(t)
ε·i

.

Hence we have:

E[log CV (ρ
(t)
ε·i )] = E[(

V

2
− 1) log ρ

(t)
ε·i ]− E[log IV

2 −1(ρ
(t)
ε·i )]−

V

2
log (2π),

where the term involving the modified Bessel function of the first kind Iv(·) is intractable. We
approximate it by Taylor approximation. According to [?] we have:

log IV
2 −1(ρ

(t)
ε·i ) ≤ log IV

2 −1(ρ̄
(t)
ε·i ) +

(
∂

∂θε
log IV

2 −1(ρ̄
(t)
ε·i )

)
(θ(t)
ε − θ̄(t)

ε ),

where we denote ρ̄(t)
ε·i = κ0‖κ1θ̄

(t)
ε +κ2θ

(t−1)
ε·i ‖; and θ̄(t)

ε is some θ value. Since I ′v(x) = Iv+1(x) +
v
xIv(x), we have:

∂

∂θ
(t)
ε

log IV
2 −1(ρ̄

(t)
ε·i ) =

1

IV
2 −1(ρ̄

(t)
ε·i )
· ∂

∂ρ
(t)
ε·i

IV
2 −1(ρ̄

(t)
ε·i ) ·

∂

∂θ
(t)
ε

ρ̄
(t)
ε·i

=
1

IV
2 −1(ρ̄

(t)
ε·i )
·

(
IV

2
(ρ̄

(t)
ε·i ) +

V
2 − 1

ρ̄
(t)
ε·i

IV
2 −1(ρ̄

(t)
ε·i )

)
· κ

2
0κ1κ2θ

(t−1)
ε·i

ρ̄
(t)
ε·i

=

 IV
2

(ρ̄
(t)
ε·i )

IV
2 −1(ρ̄

(t)
ε·i )

+
V
2 − 1

ρ̄
(t)
ε·i

 · κ2
0κ1κ2θ

(t−1)
ε·i

ρ̄
(t)
ε·i

.
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Following [?], we set θ̄(t)
ε as the mean of the variational distribution over θ(t)

ε from the previous
iteration. To further simplify the expression, we note that (assume v ∈ N):

Iv(z) = (
1

2
z)v

∞∑
k=0

( 1
4z

2)k

k!Γ(v + k + 1)

0 <
Iv(z)

Iv−1(z)
< (

1

2
z)

1

v − 1
.

Hence when v � z (e.g. v is the vocabulary size as in our case), we can safely approximate
Iv(z)
Iv−1(z) ≈ 0.

Next, we further approximate E[(V2 − 1) log ρ
(t)
ε·i ] using Taylor expansion:

log ρ
(t)
ε·i = log κ0

√
κ2

1 + κ2
2 + 2κ1κ2(θ

(t)>
ε θ

(t−1)
ε·i )

=
1

2
log (κ2

1 + κ2
2 + 2κ1κ2(θ(t)>

ε θ
(t−1)
ε·i )) + const

≈ 1

2
log (κ2

1 + κ2
2 + 2κ1κ2(θ̄(t)>

ε θ
(t−1)
ε·i ))

+ θ(t)>
ε

2κ1κ2θ
(t−1)
ε·i

κ2
1 + κ2

2 + 2κ1κ2(θ̄
(t)>
ε θ

(t−1)
ε·i )

+ const

= θ(t)>
ε

2κ2
0κ1κ2θ

(t−1)
ε·i

ρ̄
(t)
ε·i

+ const.

In summary we have:

log q∗(θ(t)
ε ) ≈ θ(t)>

ε

{
κ0κ1E[θ

(t)
ε′ ] + κ0κ2E[θ(t−1)

ε ]

+
∑
ε≺ε·i

{
κ0κ1E[θ

(t)
ε·i ] + (

V

2
− 1) · 2κ2

0κ1κ2E[θ
(t−1)
ε·i ]

ρ̄
(t)
ε·i

+
V
2 − 1

ρ̄
(t)
ε·i

· κ
2
0κ1κ2E[θ

(t−1)
ε·i ]

ρ̄
(t)
ε·i

}

+ β
∑
n

q(zn = ε)xn

}
.

So the updates for µ(t)
ε and η(t)

ε are:

µ(t)∗
ε ≈

κ0

(
κ1µ

(t)

ε′ + κ2µ
(t−1)
ε +

∑
i κ1µ

(t)
εi + aµ

(t−1)
εi

)
+ βsε

η
(t)∗
ε

η(t)∗ε ≈ ‖κ0

(
κ1µ

(t)

ε′ + κ2µ
(t−1)
ε +

∑
i
κ1µ

(t)
εi + aµ

(t−1)
εi

)
+ βsε‖,

where a = 3(.5V−1)κ0κ1κ2

ρ̄
(t)
εi

.
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2 Merge move acceptance assessment

The variational lower bound of DNTs at time t is:

L(q) =

N∑
n=1

E
[
log

p(xn|θzn)p(zn|ν,ψ)

q(zn)

]
+
∑
ε∈T

E
[
log

p(νε)p(ψε)p(θε)

q(νε)q(ψε)q(θε)

]
= β

∑
n

∑
ε

q(zn = ε)µ>ε xn +N logCV (β)

+
∑
n

∑
ε

q(zn = ε)E[log p(ε|ν, ψ)]

−
∑
n

∑
ε

q(zn = ε) log q(zn = ε)

+ E
[
log

p(νε)p(ψε)

q(νε)q(ψε)

]
+
∑
ε·i

E[logCV (ρ
(t)
ε·i )] + E[(ρ

(t)
ε·iτ

(t)
ε·i − ηε·iµε·i)

>θ
(t)
ε·i ]− log CV (η

(t)
ε·i )

(2)

Assume the candidate merge pair is (a, b). Denote the merged node as m, the model state be-
fore merge as q, and the model state after merge as qmerge. Then variational lower bound after
merge is L(qmerge). It is straightforward to see from Eq.2 that all the terms except the entropy∑
n

∑
ε q(zn = m) log q(zn = m) can be directly computed given the summary statistics of a and

b. We denote L′(q) as L(q) excluding the entropy term:

L′(q) = L(q) +
∑
n

∑
ε

q(zn = ε) log q(zn = ε). (3)

Next we show that L′(qmerge) − L′(q) ≥ 0 implies L(qmerge) − L(q) ≥ 0, so we just need to
evaluate L′(qmerge)− L′(q) and accept the merge move if it is positive. Note that this is a slightly
more strict condition for merge, compared to directly evaluating on exact ELBO, but it is more
efficient that can be computed in constant time. And in practice we found it works well.

Denote λnε = q(zn = ε). We only need to show∑
n

λnm log λnm

≤
∑
n

λna log λna +
∑
n

λnb log λnb,
(4)

where λnm = λna + λnb. By noting that the function f(x) = x log x is convex, we have:∑
n

λna log λna +
∑
n

λnb log λnb

≥ 2
∑
n

λna + λnb
2

log

(
λna + λnb

2

)
=
∑
n

λnm(log λnm − log 2)

=
∑
n

λnm log λnm −Nm log 2

>
∑
n

λnm log λnm. �

(5)
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