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ABSTRACT
Motivation: Estimating gene regulatory networks over biological
lineages is central to a deeper understanding of how cells evolve
during development and differentiation. However, one challenge in
estimating such evolving networks is that their host cells not only
contiguously evolve, but also branch over time. For example, a stem
cell evolves into two more specialized daughter cells at each division,
forming a tree of networks. Another example is in a laboratory setting:
a biologist may apply several different drugs individually to malignant
cancer cells to analyze the effects of each drug on the cells; the cells
treated by one drug may not be intrinsically similar to those treated
by another, but rather to the malignant cancer cells they were derived
from.
Results: We propose a novel algorithm, Treegl, an `1 plus total
variation penalized linear regression method, to effectively estimate
multiple gene networks corresponding to cell types related by a tree-
genealogy, based on only a few samples from each cell type. Treegl
takes advantage of the similarity between related networks along the
biological lineage, while at the same time exposing sharp differences
between the networks. We demonstrate that our algorithm performs
significantly better than existing methods via simulation. Furthermore
we explore an application to a breast cancer dataset, and show that
our algorithm is able to produce biologically valid results that provide
insight into the progression and reversion of breast cancer cells.
Availability: Software will be available at http://www.sailing.cs.cmu.edu/
Contact: epxing@cs.cmu.edu

1 INTRODUCTION
A major challenge in systems biology is to quantitatively understand
and model the topological and functional properties of cellular
networks, such as the transcriptional regulatory circuitries and
signal transduction pathways that control cell behavior in complex
biological processes. In complex organisms, biological processes
such as differentiation and development are often controlled by a
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large number of molecules that exchange information in a spatial-
temporally specific and context-dependent manner. These cellular
networks are inevitably changing to take on different functions
and reacting to changing environments. This necessitates studying
different networks for each condition, such as each different
developmental stage, tissue subtype, and cell lineage.

Most existing techniques for reconstructing molecular networks
based on high-throughput data ignore the intricate dependencies
between networks of closely related biological subjects.

For example, when studying cancer development, it is common to
infer gene networks based on microarray data from different cancer
specimens or cell lines separately and independently, despite that
these biomaterials are usually collected over a contiguous disease
progression course. As we discuss in detail, such an “isolationist”
strategy can compromise both the statistical power and biological
insight of the inferred networks. In this paper, we present a
new methodology called Treegl, which adopts a statistically more
powerful and biologically more natural “connectionist” principle.
Treegl reconstructs gene networks in related biological subjects via
an inter-dependent approach such that the inferred networks directly
embody and exploit the relationships of the biological subjects
they represent. As a result, this reveals deeper insight on how the
structure, function, and behavior of such networks evolve during
evolution, differentiation, and environmental perturbation.

To better understand our rationale, take the analysis of stem cell
differentiation as an example. It is well known that all organ- and
tissue-specific cells in a multicellular organism are differentiated
from a stem cell, following a well-known genealogy (Figure 1).
To date, gene networks from many of these organs and tissues
have been derived using a variety of computational or experimental
technologies (Basso et al., 2005; Li, 2004; Hyatt et al., 2006).
However, knowledge about the cell lineage has rarely been utilized
in constructing these networks. For example, according to the
genealogy in Figure 1, the platelets are more closely related to
the red blood cells than to the lymphoblasts. The gene networks
present in the platelets and red blood cells are thus expected to be
more similar; microarray data from red blood cells should reflect
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Fig. 1. A tree-evolving network in the blood stem cell genealogy
(http://www.siteman.wustl.edu/CancerDetails.aspx?id=661&xml=CDR257990.xml).
At the root is the blood stem cell. Over time it differentiates into more
specialized cells along the genealogy, eventually becoming red blood cells,
platelets, or white blood cells. Cell types closer together in the genealogy
(e.g., lymphoblasts and white blood cells), are expected to have more similar
gene regulatory networks than those far apart in the genealogy (e.g., red
blood cells and white blood cells).

the topology of a platelet’s network to a greater extent than that of a
lymphoblast network.

Is it therefore legitimate and possible to use the red blood cell’s
microarray in addition to the platelet’s microarray to infer the
platelet’s network? And, if yes, how? Essentially, what one needs to
handle is a network of networks. In this paper, we focus on the class
of tree-shaped biological genealogies. This class of genealogies can
be naturally found in crop and animal breeding, species evolution,
cell-line lineage construction, and carcinogenesis.

1.1 Related work
There has been a lot of previous work on reverse engineering
gene networks. However, most of this work revolves around
estimating a static network, losing the dynamic information that
we seek to explore and exploit. For example, Friedman et al.
2000 proposed using Bayesian networks to reverse engineer gene
networks. However, their method assumed all the measurements
of gene expression from the network in question were independent
and identically distributed (i.i.d.) from the same distribution, and
introduced extra variables to try to capture certain stationary (rather
than time-evolving) time dependence. Furthermore, their algorithm
was not scalable to the high dimensional problems that we are
considering. Margolin et al. 2006 proposed an information theoretic
approach that has good statistical properties, but limits the network
structure to having neglible loops. Yeung et al. 2002 proposed using
a singular value decomposition. Like Friedman et al. (2000), these
methods also assumed the data were i.i.d. from an invariant network.

Recently, researchers have begun tackling the time-varying case,
building off sparse regression techniques, like the lasso (Tibshirani,
1996). Lozano et al. proposed an approach that uses the group lasso
and the notion of Granger causality to estimate causality among
variables instead of estimating the entire sequence of networks
(Lozano et al., 2009). Bonneau et al.2006 propose using the kinetic
equation in conjunction with the lasso to account for time series data

(but also learn only one network). Ahmed and Xing created TESLA
(Ahmed and Xing, 2009), and Song, Kolar and Xing proposed
KELLER (Song et al., 2009a), to estimate a chain of evolving
networks over time. Song et al. also proposed time varying dynamic
Bayesian networks (Song et al., 2009b).

However, all these methods estimate networks that evolve as a
chain of graphs over time, not a genealogy, which hinders them
from being naturally applied to many of the common biological
applications mentioned earlier.

1.2 Our contribution
In this work, we move beyond the static and time-varying
assumptions, and focus on the more general case of tree-evolving
genealogies that we believe are more natural for the biological
phenomena that we seek to explore. We propose an algorithm called
Tree-smoothed graphical lasso (Treegl), that can effectively and
jointly recover evolving regulatory networks present in multiple
cell-types related by a tree genealogy.

Our approach takes advantages of the similarities of networks
nearby in the genealogy, but can also reveal sharp differences.
Moreover, by building on the method of neighborhood selection via
the lasso (Meinshausen and Bühlmann, 2006), our approach works
well even when the number of genes is much larger than the number
of samples.

We were motivated by the many applications discussed above
in the development of Treegl. However, in this paper, we focus
on applying Treegl to study the progression and reversion of
breast cancer cells in 3-dimensional organotypic cultures (Weaver
et al., 1997; Liu et al., 2004; Itoh et al., 2007). The cell-line in
question begins as nonmalignant, organized, and nontumorigenic
cells that progress to apolar, disorganized, and tumorigenic cancer
cells. Several different drugs are applied and the genealogy
then branches to different reverted cells with partially polarized
structures. Although our dataset is small, we are able to show
that we obtain biologically valid and intriguing results through our
method.

2 METHODS
2.1 Probabilistic Representation of Gene Networks
Consider the problem of modelingN different, but independent (we
will consider dependency in the next subsection), gene regulatory
networks, each corresponding to a unique cell type (say, type n)
from a cell bank B where |B| = N , with Sn i.i.d. microarray
measurements of all genes in cell type n, and consisting of the same
set of p genes across all cell types. Without loss of generality, a
gene network can be represented by a probabilistic graphical model,
such as a Markov random field (MRF) if the gene states are taken
as discrete (Segal et al., 2003), or a Gaussian graphical model
(GGM) if the gene states are set to the continuous measurements
of the microarray signal (Dobra et al., 2004), or a Bayesian
network (Friedman et al., 2000). In this paper, we use cell-type
specific undirected Gaussian graphical models to model the gene
networks, but the general principle of our method can be extended
to discrete Markov random fields as well.

Let G(n) = (V(n), E(n)) represent a network in cell type n,
of which V(n) denotes the set of genes, and E(n) denotes the set
of edges over vertices. An edge (u, v) ∈ E(n) can represent a
relationship (e.g., influence or interaction) between genes u and
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v. Let X(n,s) = (X
(n,s)
1 , . . . , X

(n,s)
p )′, where n ∈ N , s ∈

{1, . . . , Sn}, and p = |V|, be a random vector of nodal states
that are real valued and standardized, such that each dimension has
mean 0 and variance 1. We assume that X(n) follows a multivariate
Gaussian distribution with mean 0 and covariance matrix Σ(n), so
that the conditional independence relationships among the genes can
be encoded as a Gaussian graphical model. It is a well known fact
that for GGMs, edges in the graph correspond to non-zero elements
in the inverse covariance matrix (known as the precision matrix),
which we denote by Ω(n) := (ω

(n)
uv )u,v∈[p]. Thus, estimating the

graph structure is equivalent to selecting the non-zero elements of
the precision matrix.

As commonly done, instead of directly estimating the precision
matrix elements ω

(n)
uv , we estimate the partial correlation

coefficients ρ(n), where ρ(n)uv is the correlation between gene u
and gene v conditioned on the values of all the other genes. Partial
correlation coefficients are related to the precision matrix elements
by Eq. 1.

ρ(n)uv = − ω
(n)
uv√

ω
(n)
uu ω

(n)
vv

. (1)

As shown in Eq. 1, ρ(n)uv is zero if and only if ω(n)
uv is zero.

Therefore, in terms of network structure estimation, the network
resultant from the non-zero ρ

(n)
uv is equivalent to that from the

nonzero ω(n)
uv . Furthermore, the partial correlation is quite intuitive

in the sense that a high positive value of ρ(n)uv indicates that the
genes u and v are strongly positively correlated (conditioned on the
other genes), a low negative value indicates the genes are strongly
negatively correlated (conditioned on the other genes), and ρ(n)uv = 0
for all (u, v) 6∈ E(n). As a result, we simply consider estimating the
partial correlation coefficients and designate these as the edge values
in G(n):

E(n) = {ρ(n)uv : |ρ(n)uv | > 0}. (2)

2.2 Neighborhood Selection
A number of recent papers have studied how to estimate this model
from data that are assumed to be i.i.d. samples from the model,
and the asymptotic guarantee of the estimator (Wainwright et al.,
2007; Bresler et al., 2008). In particular, an efficient neighborhood
selection algorithm (Meinshausen and Bühlmann, 2006) based on
`1-norm regularized regression has been proven effective (often
called neighborhood selection). In this approach, the neighborhood
of each gene u is estimated independently using a penalized linear
regression with a lasso-style (i.e., `1-norm) regularization over edge
weights. The regression goes around every gene in the network,
leading to completion of a network. In every neighbor estimation
step, gene u is treated as a response variable, all the other genes
are the covariates, and the weights are the correlations between the
other genes and u. More formally, let X\u indicate the p− 1 vector
of the values of all genes except u. Similarly, θ\u := {θuv : v ∈
V \ u}. Using a well known result (Lauritzen, 1996) that the partial
correlation coefficients can be related to the following regression
model:

X(n,s)
u =

∑
v 6=u

X(n,s)
v θ(n)uv + ε(n,s)u , u ∈ [p], (3)

where ε(n,s)u is uncorrelated with X
(n,s)

\u if and only if

θ(n)uv = −ω
(n)
uv

ω
(n)
uu

= ρ(n)uv

√
ω

(n)
vv

ω
(n)
uu

. (4)

Some algebra gives that

ρ(n)uv = sign(θ(n)uv )

√
θ
(n)
uv θ

(n)
vu . (5)

The above equations basically indicate that we can solve for the
regression coefficients θ\u using a linear regression, where the
response variable corresponds to Xu and the covariates correspond
to X\u. The corresponding partial correlation coefficients can be
recovered using Eq. 5. An `1 penalty is applied to encourage a sparse
solution, as in the lasso (Tibshirani, 1996).

This surprisingly simple method, when applied over i.i.d.
nodal samples (e.g., i.i.d. microarray measurements), has very
strong theoretical guarantees about recovering the correct network
structure. It has been shown that under certain variable conditions it
is possible to obtain an estimator of the edge set E that achieves a
property known as sparsistency (Meinshausen and Bühlmann, 2006;
Wainwright et al., 2007), which refers to the case where a consistent
estimator of E , i.e., the network structure, can be attained when
the true degree (i.e., number of neighbors) of each node is much
smaller than the size of the graph p (even when the sample size is
significantly smaller than the number of genes).

Unfortunately, in the case of the tree-evolving network concerned
in this paper, we have to deal with a much harder problem since
our samples are no longer i.i.d., and our networks are no longer
independent of each other. For this purpose, we need to extend
the basic neighborhood selection lasso algorithm as shown in the
following subsections.

2.3 Tree-Evolving Gene Networks Over Biological
Lineages

We are interested in reconstructing a set of networks G(1), ...,G(N)

that are not independent of each other, but are related by a genealogy
over their respective host cell-types, thereby constituting a tree
evolving network. Formally, given a genealogy over members of a
cell bank B, we introduce an ordering over networks G(1), ...,G(N)

encoded by the following inheritance relationship: for each cell type
n ∈ B, let π(n) be the parent of type n in the tree, thus G(n) is
a descendant of G(π(n)). For a pair of networks identified by the
genealogy, we assume that their topology should be similar while
allowing for differences. For example, consider again Figure 1. In
this case, π(blood stem cell) = NULL, π(lymphoid stem cell) =
blood stem cell, π(lymphoblast) = lypmhoid stem cell, etc. Note
that this framework is flexible and allows for various types of trees
since each parent can have a different number of children. We
assume without loss of generality that G(1) is the root of the tree.

Based on the GGM representation of gene networks described
in the previous subsection, we have a set of GGMs whose edges
(partial correlation coefficients) ρ(n),∀n are evolving across the
genealogy. Since the partial correlations are functions of the
conditions rather than constants such a model is an instance of a
varying-coefficient model (Fan and Yao, 2005). Varying-coefficient
models were popularized in the work of (Cleveland and Grosse,
1991) and (Hastie and Tibshirani, 1993), and have been applied to
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a variety of domains to model and predict time- or space- varying
response to multidimensional inputs. In our case, we are particularly
interested in a certain type of parameter change: the change between
zero and non-zero values between ρ(n) and ρ(π(n)), also known as
the structural change of the model.

The tree evolving networks described above are effective for
modeling a plethora of biological processes such as the growth and
reversion of cancer. A biologist may apply several treatments to a
malignant cancer cell and would like to analyze the effects of the
treatments on the regulatory network. The tree structure naturally
expresses the dependence of the treated cells on the malignant cell
without forcing the two treated cells to be identical. We explore this
application in more detail later in the paper.

2.4 Estimating Tree-Evolving Networks
When the network is tree-evolving, our goal is to learn the
structure of a tree-varying GGM, which is a special case of
the general varying-coefficient varying-structure (VCVS) model
studied in (Kolar et al., 2009). This formulation allows us to
formally encode the topology of the network into the parameters
ρ(n) of the model; for example, the absence of an edge between
nodes u and v in cell type n, corresponds to the partial correlation
coefficient ρ(n)uv = 0.

Thus, in our formulation, recovering the structure of the N gene
regulatory networks in the cell genealogy can be done by estimating
ρ(n) for each 1 ≤ n ≤ N . 1 Our goal is to capture the sharp
differences (i.e., edge re-rewiring), rather than small correlation
changes, in the tree evolving network. As a result, we concentrate
on recovering the correct edge set E(n) rather than on the exact
values of ρ(n), although these are attainable as a side product of
our algorithm.

In line with this goal, we make three assumptions:

• Sparsity: Most of the ρ(n)uv are zero, leading to graphs with few
edges.

• Sparsity of change: The edge set E(n) is similar to that of its
parent E(π(n)).
• Sharpness of change: There do exist a few key differences

between E(n) and E(π(n)) that must be captured.

These assumptions hold in a wide variety of biological
applications. Sparsity is usually well justified. For example, a
transcription factor controls (and is controlled by) only a few genes
under specific conditions (Davidson, 2001). A sparsity bias can
effectively prevent estimating all elements in ρ(n) to be non-zero,
which leads to a meaningless complete graph. Similarly, in many
biological processes the gene regulatory network in the parent cell
type and the one in the child often contain only a few, but sharp
differences. For example, if the parent network is a malignant cancer
cell and the child networks are treated cancer cells with various
drugs, we expect that the treated and cancer cells should have largely
similar networks due to close developmental relationship. However,
the genes that are affected by the drug should behave dramatically
differently, causing a few large changes in the regulatory networks.

It is important to reiterate here that estimating networks for each
cell type separately and independently is either invalid or extremely

1 Note that this is technically not the pairwise potential function in a GGM

error-prone, because in common laboratory conditions only a few
measurements of the gene expression are obtained, leading to
either degeneracy of the likelihood function or high variance in
the estimator. We overcome this problem by enabling information
sharing across different cell types through a joint estimation of all
networks under a single loss function, as opposed to a loss function
defined on each individual network.

To estimate ρ(1), ...,ρ(n) jointly, we adopt the neighborhood
selection idea described previously, and additionally penalize the
difference between the neighborhoods of adjacent cell types in
the genealogy. More specifically, to recover the neighborhood of
gene u for all cell types jointly, we propose the following convex
optimization problem for estimating tree evolving networks.

θ̂
(1)

\u , ..., θ̂
(n)

\u = arg min
θ
(1)

\u ,...,θ
(n)

\u

( N∑
n=1

Sn∑
s=1

(x(n,s)u − θ
(n)

\u x
(n,s)

\u )
2

(6)

+λ1

N∑
n=1

‖θ(n)

\u ‖1 + λ2

N∑
n=2

‖θ(n)

\u − θ
(π(n))

\u ‖
1

)
.

In Eq. 6, x(n,s)u refers to the realization of variable X(n,s)
u . The `1

penalty associated with λ1 enforces sparsity by setting most of the
edge weights to 0 as shown in (Tibshirani, 1996). The total variation
(TV) penalty associated with λ2 enforces sparsity of difference and
encourages most of the elements of θ

(n)

\u to be identical to those

of θ
(π(n))

\u along the genealogy. However, since the `1 instead of
the `2 penalty is used, outliers are not strongly penalized, allowing
for large differences for a small set of edges. This allows us to
have a large amount of information sharing among samples from
related regulatory networks, while still allowing sharp differences
to capture key changes as the network evolves.

One complication that results from the above approach is that
since each neighborhood is estimated independently and because
the regularization encourages some of the coefficients to be zero,
the sign of θ̂(n)uv is not guaranteed to equal the sign of θ̂(n)vu for finite
sample sizes. This makes directly using Eq. 5 to estimate the partial
correlation coefficients difficult. One common way to address is
“max” symmetrization, which is defined below.

θ̂sym,(n)uv =

{
θ̂
(n)
uv : |θ̂(n)uv | ≥ |θ̂(n)vu |
θ̂
(n)
vu : |θ̂(n)uv | < |θ̂(n)vu |

(7)

We can now define our estimate of the partial correlation
coefficients using Eq. 5 2.

ρ̂(n)uv = sign(θ̂sym,(n)uv )

√
θ̂
sym,(n)
uv θ̂

sym,(n)
vu . (8)

The estimated edge set is then defined as:

Ê(n) = {(u, v) : |ρ̂(n)uv | > 0}. (9)

The total variation penalty makes this algorithm significantly
different from KELLER (Song et al., 2009a). KELLER uses

2 Note that the symmetrization may not make this a good estimate of the
magnitude of ρ(n)uv , but it is an accurate estimate of whether or not ρ(n)uv

is positive, negative, or zero, which is all we need to recover the network
structure.
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kernel reweighting to recover smoothly evolving networks where
the correlations between genes are changing gradually over time.
However, in both the stem cell evolution and breast cancer
progression-reversion problems that motivate us, the networks are
evolving sharply at some points while remaining almost constant
in others. For example, different microarray measurements taken
from a blood stem cell renewing itself while remaining in the
undifferentiated state are expected to exhibit almost the same
correlations among the genes. However, once the blood stem cell
evolves into a myleoid or lymphoid stem cell as shown in Fig. 1, we
expect there to be sharp changes in the regulatory network reflecting
the new function of the more specialized cell. This sudden change
can be effectively captured by the TV penalty in our algorithm
but not by the kernel reweighting of KELLER. In this way, our
algorithm is similar to that of TESLA (Ahmed and Xing, 2009)
which also uses a TV penalty to estimate time evolving networks
(a chain of graphs). However, our algorithm generalizes this idea to
tree-evolving networks which are more suitable for investigating a
wider range of biological processes. Algorithmically the genealogy-
induced TV penalty defines more complex constraints on the model
space than that of TESLA, where network structures should be
inferred. It also uses a GGM approach, and thus involves a linear
regression, instead of the binary MRF approach of TESLA, which
involves a logistic regression. We believe that the GGM approach,
which allows for continuous measurements, is more suitable for our
breast cancer application, because the sample size is small.

2.5 Optimization
We employed the CVX solver (Grant et al., 2008) provided in
MATLAB to solve the underlying convex optimization problem for
tree-evolving network estimation under our proposed model. At its
core, CVX uses the SPDT3 solver (Toh et al., 1999). SPDT3 is
an interior point method for solving conic programming problems,
where the constraints are convex cones, and the objective function
is linear (plus the log-barrier terms for the constraints).

For larger scale problems, one can use the method proposed by
Chen et al. 2010 that uses the accelerated gradient method.

3 SIMULATION RESULTS
To assess the performance of Treegl, we evaluated its performance
on simulated microarray data with a known topology of the
underlying tree-evolving network. Consider the following artificial
tree evolving network with N = 70:

1. A graph A with 30 nodes, average degree 4, and max degree 6
is generated from a Gaussian Graphical Model. For the first
10 generations, i.e., n = 1 to 10, A remains unchanged.
However, we assume that each of these generations correspond
to a different cell type in the genealogy (for reasons that will be
made clear later).

2. After n = 10, the graph branches into two child graphs, B
and C. To generate each child graph, 25% of the edges are
randomly deleted and the same number are randomly added.
This represents a sharp, sparse change in the network. These
child graphs stay unchanged for another 10 generations (n =
11 to 20 for B, n = 21 to 30 for C). Again, each generation
indicates a different cell type.

Fig. 2. Results on simulations. Our method (in blue) performs favorably to
existing methods. See text for details.

S1 

T4 

T4R1 

T4R2 

T4R3 

Fig. 3. Breast cancer genealogy. Solid arrows correspond to the genealogy.
The dotted lines correspond to extra penalties between the T4R and S1 cells.

3. B and C then branch further. 25% of the edges are randomly
removed/added to generate graphsD andE fromB, and F and
G from C. The resulting graphs then stay constant for another
10 generations (N = 31 to 40 for D, n = 41 to 50 for E,
n = 51 to 60 for F , and N = 61 to 70 for G).

Note that our algorithm does not know at which points the network
structure changes. Our goal is to examine if it can detect the change-
points as well as take advantage of the samples that come from cell
types with identical structure between the change-points.

To evaluate Treegl, we plot a ROC curve showing the recall for
different values of precision. Precision = 1

N

∑N
n=1

|Ê(n)∩E(n)|
|Ê(n)| ,

and Recall = 1
N

∑N
n=1

|Ê(n)∩E(n)|
|E(n)| .

To produce the curve, cross validation is used to select λ1 and
λ2. A threshold t is then varied from the smallest absolute edge
weight to the largest absolute edge weight. An edge is included in
the network if and only if it has an edge weight greater than t (in
absolute value). We calculate precision/recall for a large number of
values of t and produce the curve. To average different trials, we
used binning, averaging points using a bin width of .05.

The results are shown in Figure 2 for two different sample
sizes. Our method (in blue) performs favorably to estimating a
single static network (green) or estimating each graph independently
(red). It should be noted that our method can produce different
graphs compared to the static method which only produces one. The
independent method also produces different graphs but it performs
very poorly.

4 AN APPLICATION TO BREAST CANCER DATA
We now demonstrate an application of our algorithm to the study of
progression and reversion of breast cancer cells. Pioneered by Dr.
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Mina Bissell’s research team, functional analysis of physiologically
more realistic 3D culture models of breast cancer has yielded
a wealth of insight into the mechanisms of cancer development
(Petersen et al., 1992). From tumor cells cultured in 3D matrices, it
was found that microenvironmental factors and signaling inhibitors
have a dramatic influence on the growth dynamics and malignancy
of the cells (Weaver et al., 1997; Itoh et al., 2007). Further,
tumorigenicity of breast cancer cells is tightly linked to the integrity
of their acinar structures (Petersen et al., 1992). However, except
for a sketchy outline, little is known about how the cells interpret
signaling cues from their surroundings and selectively regulate
genes in a temporal-spatially specific manner.

Our goal is to investigate the gene regulatory networks of normal
breast cells (S1 cells), malignant breast cancer cells (T4 cells), and
nontumorigenic breast cancer cells reverted by different drugs (T4R
cells). The exact tree-genealogy underlying these cell-type specific
networks is shown in Figure 3: S1 cells with polarized acinar
structures evolve into tumorigenic T4 cells which form disorganized
apolar colonies, and then 3 drugs are applied individually to T4 cells
and different reverted cells (T4R) with organized structures which
resemble S1 cells are produced.

4.1 Experimental Setup
We have 15 microarray measurements of 22,000 genes detailed
below, that we grouped into 5 categories of 3 samples each (based
on their similarities): 3 samples of S1 cells, 3 samples of T4
cells, 3 samples of T4R cells reverted by MMP inhibitors (later
referred to as MMP-T4R), 3 samples of T4R cells reverted by either
PI3K or MAPKK inhibitors (PI3K-MAPKK-T4R), and 3 samples
of T4R cells reverted by either EGFR or integrin β1 inhibitors
(EGFR-ITGB1-T4R).

Our experimental procedure started with feature selection to
reduce noise. Since some probes on Affymetrix arrays have multiple
replicates, we combined measurements from these probes by taking
the median, which resulted in 12,977 unique genes. Next, for each
gene we calculated its median fold ratios of expression levels among
each pair of the 5 groups of cells. If any of the fold ratios for a gene
was greater than 1.3, it was selected for the next step. We picked
5,440 genes using this criterion.

Then, we applied Treegl to the 5,440 genes. In addition to taking
advantage of the similarity between the T4 and T4R networks, we
also explicitly penalize the difference between the S1 and T4R
networks, since the T4R networks are expected to lie somewhere
in between the S1 and T4. As a result, we add extra TV penalty
terms between the T4R and S1 to enforce this intuition (dotted
lines in Figure 3). These extra penalty terms are assigned the
same parameter λ2 as the other total variation penalties. The new
optimization problem is given below (n = 1 corresponds to S1,
n = 2 corresponds to T4, and n = 3, 4, 5 correspond to the T4R).

θ̂
(1)

\u , ..., θ̂
(n)

\u = arg min
θ
(1)

\u ,...,θ
(n)

\u

( N∑
n=1

Sn∑
s=1

(x(n,s)u − θ
(n)

\u x
(n,s)

\u )
2

+λ1

N∑
n=1

‖θ(n)

\u ‖1 + λ2

N∑
n=2

‖θ(n)

\u − θ
(π(n))

\u ‖
1

+λ2

N∑
n=3

‖θ(n)

\u − θ
(1)

\u ‖1

)
. (10)

All results described here are with the parameter settings of λ1 =
4 and λ2 = 2.

Finally, functional analysis was performed to examine genes in
the identified networks. We focused our analysis on the genes in
the networks which are distinct in each of the 5 groups of cell
types and have positive edges. To investigate how genes involved
in different biological processes interact with each other in the
recovered networks, we first classified the genes in the networks
into the second level Gene Ontology (GO) groups, then we used
TVNViewer (http://cogito-b.ml.cmu.edu/tvnviewer/) to visualize
interactions between these functional groups. Moreover, the GOstat
program (Beissbarth and Speed, 2004) was employed to identify
significantly enriched functional groups in the identified networks.
Fisher’s exact test was used by GOstat to find overrepresented
functional groups among a given list of genes. Our gene universe
consisted of all 12,977 genes on the arrays. A functional group was
considered significant if its p < 0.10 with the FDR controlling
procedure of Benjamini & Hochberg (Benjamini and Hochberg,
1995). We also used the GOstat program to find GO groups enriched
in the subnetworks of T4 cells. A functional group was selected if
its p < 0.10.

5 ANALYSIS OF RESULTS
5.1 Results overview
Figure 4 gives an overview of all the recovered networks using
Cytoscape (Shannon et al., 2003). As one can see the networks
exhibit many different topologies reflecting their underlying
biological differences. To shed more light on these differences,
Figure 5 shows the interactions among the second level GO groups
in the recovered networks. The thickness of a link between two
groups is proportional to the number of edges present between genes
that are members of these GO groups. T4 cells display increased
activities in cell proliferation and signaling, both indicative of their
malignant state, compared to S1 cells. The T4R cells lie somewhere
in between: MMP-T4R cells tend to have only a few interactions,
since the network is quite sparse. While both the PI3K-MAPKK-
T4R and EGFR-ITGB1 networks show reduced activities in growth
and locomotion compared to S1 cells, the former network has more
activities in cell proliferation and reduced signaling than the latter
one. Taken together, these data suggest that although T4 cells can be
morphologically reverted back to the normal-looking T4R cells, the
underlying molecular mechanisms in the reverted cells are different
from those in either S1 or T4 cells.

5.2 GO analysis of networks
Next, we performed GO analysis to discover significantly enriched
functional groups specific to each network. Our results are
illustrated in Table 1.

Our data shows that highly enriched GO groups in S1 cells
correspond to metabolic processes or other housekeeping functions,
such as cellular respiration and DNA replication, reflecting the
normal nature of these cells. On the other hand, T4 cells are enriched
with genes involved in cell proliferation, growth factor activity,
intracellular signaling cascade, angiogenesis, and actin binding
group, all of which are known to play important roles in T4 as
well as other cancer cells (Weaver et al., 1997; Wang et al., 2002;
Liu et al., 2004; Hanahan et al., 2000). These results show that our
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(a) (b) (c) (d) (e)

Fig. 4. Overview of the identified networks for (a) S1, (b) T4, (c) MMP-T4R, (d) PI3K-MAPKK-T4R, and (e) EGFR-ITGB1-T4R. Only edges of absolute
weight > 0.1 are shown. Hubs (i.e., nodes with > 5 edges) are in orange and enlarged proportional to their degrees.

S1 (with labels) 

S1 T4 

MMP PI3K-MAPKK EGFR-ITGB1 

Fig. 5. Overview of results for the identified networks. Note that the nodes
on the circles are not actual genes but correspond to GO process groups. The
thickness of a line between two GO groups A and B is proportional to how
many genes in A interact with those in B.

algorithm is able to reveal what has already been known about S1
and T4 cells, and thus demonstrate the validity of our method.

Since little is known about T4R cells, we next examined the
networks of the different T4R cells to gain more insight into
these reverted cells. Our results show that the MMP-T4R network,
like S1 cells, contains many enriched GO groups involved in
metabolic processes, such as fatty acid and cofactor metabolic
processes. On the other hand, however, the PI3K-MAPKK-
T4R network contains genes involved mainly in post-translational
protein modification, chromatin modification, thiolester hydrolase
activity, and vacuole, while the EGFR-ITGB1-T4R network
is predominantly overrepresented with genes participating in
chromatin modification, cytoskeletal protein binding, intracellular
junctions, among others. These data therefore suggest that at the
molecular level T4R cells are indeed different from S1 and T4 cells,
as well as from one another.

5.3 Analysis of Hubs in the T4 network
Finally, to identify potential novel drug targets in T4 cells, we
examined several hubs which have high degrees as well as their
neighborhood genes in these cells. Figure 6 shows the subnetworks
of 5 hubs: ANXA3, CA9, HSF2BP, PTGS2, and SCG5. As
expected, many of the functional gene groups enriched in the

Table 1. Significantly enriched GO groups found in networks for (a) S1,
(b) T4, (c) MMP-T4R, (d) PI3K-MAPKK-T4R, and (e) EGFR-ITGB1-T4R.
Note that the T4 network contains many groups related to cell proliferation,
growth, and angiogenesis, while the S1 network does not (See text for
details).

(a)

GO group p-value 
(FDR) 

mitochondrion 2.6E-12 

energy derivation by oxidation 
of organic compounds 1.6E-07 

macromolecular metabolic 
process 1.8E-05 

cellular respiration 1.4E-04 
biopolymer metabolic process 2.7E-04 

ribosome 4.0E-04 

RNA metabolic process 4.1E-04 

DNA replication 9.6E-02 

(b)

GO group p-value 
(FDR) 

GTP binding 1.5E-05 
cell proliferation 1.2E-03 

blood vessel 
morphogenesis 4.8E-03 

angiogenesis 1.2E-02 
intracellular 

signaling cascade 1.5E-02 

actin binding 2.1E-02 
growth factor activity 9.3E-02 

(c)

GO group p-value 
(FDR) 

mitochondrion 3.8E-10 
fatty acid metabolic 

process 3.2E-03 

cofactor metabolic 
process 6.0E-03 

membrane enclosed 
lumen 1.3E-02 

oxidative phosphorylation 1.3E-02 
primary metabolic 

process 3.0E-02 

(d)

GO group p-value 
(FDR) 

lysosomal membrane 7.4E-04 

vacuole 1.2E-03 

endomembrane 
system  8.8E-03 

post-translational 
protein modification 4.1E-02 

chromatin modification 4.1E-02 
thiolester hydrolase 

activity 6.0E-02 

(e)

GO group p-value 
(FDR) 

chromatine modification 2.2E-02 
cytochrome-b5 

reductase activity 3.3E-02 

intracellular junction 4.6E-02 
organelle organization 

and biogenesis 6.0E-02 

DNA packaging 8.2E-02 
cytoskeletal protein 

binding 8.6E-02 

subnetworks reflect our intuition that these hubs interact closely
with genes influential in cancer.

1. ANXA3 (degree: 61) - encodes a protein belonging to the
annexin family, and is known to play a role in the regulation
of cell growth and is thought to be a biomarker of cancer (Jung
et al., 2010). In the ANXA3-subnetwork, it interacts with a
number of genes related to cell proliferation, growth factor
activity, and the MAP kinase signaling pathway, the latter of
which is known to be one of the key signaling pathways in T4
cells (Liu et al., 2004).

2. CA9 (degree: 37) - encodes carbonic anhydrase IX. It has
been implicated in cell proliferation, and has been found to
be important in renal cell carcinoma (Jubb et al., 2004). We
see that CA9’s neighborhood consists of genes involved in
cell proliferation, the MAP kinase signaling pathway, golgi
apparatus part, and transcription factor activity.

3. HSF2BP (degree: 80) - encodes heat shock transcription factor
binding protein. Like the previous two hubs, HSF2BP has
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neighbors related to cell proliferation and the MAP kinase
signaling pathway. It also has neighbors related to “response
to wounding” which is known to be linked with tumorigenesis
and tumor development (Fukumura et al., 1998; Chang et al.,
2005).

4. PTGS2 (degree: 88) - encodes prostaglandin-endoperoxide
synthase 2, which is a key enzyme in prostaglandin
biosynthesis. Previous evidence suggests that it is associated
with risk of breast cancer (Langsenlehner et al., 2006). Again,
we see neighbors participating in similar activities to the
previous hubs, such as cell proliferation and wound healing.
Another interesting group is cell motility which suggests that
the subnetwork of PTGS2 potentially plays a role in tumor cell
spread. (Yamazaki et al., 2005).

5. SCG5 (degree: 78) - encodes secretogranin V, which has been
found to be involved in medullary carcinoma (Marcinkiewicz
et al., 1988) as well as human lung cancer (Roebroek et al.,
1989). Again many of its neighbors are involved in cell
proliferation, response to wound healing, and cell motility.
Another interesting group of neighbors is those related to
GTPase activity; as ras oncogenes happen to be members of
the family of GTPases (Sahai and Marshall, 2002), this group
of genes may also have activities implicated in cancer.

In summary, these results suggest that hubs with high degrees
in the T4 network contribute to the growth, proliferation, and
malignancy of T4 cells, and thus may serve as potential novel targets
for breast cancer treatment.

6 DISCUSSION AND CONCLUSION
Statistically and algorithmically, the problem of estimating tree-
evolving networks from multiple biological systems in the
genealogy simultaneously, as solved by Treegl, is fundamentally
different from estimating multiple networks separately from every
cell type, or estimating a single ”average” network from samples
pooled from all cell-types (or all cell stages) in the genealogy
and subsequently ”trace-out” active subnetworks corresponding to
each cell-type from the average network (Luscombe et al., 2004),
which are common practices in current system biology community.
The latter two approaches either directly or indirectly assume that
the network in question is a static one, and samples of nodal
states, such as microarray measurements of gene expressions are
i.i.d. within or (when pooled) across cell types. In reality, such
an assumption is not only biologically invalid, but is statistically
unsubstantiated and hard to leverage. First, such an assumption can
lead to severe underuse of the data, and makes an already serious
curse-of-dimensionality problem even harder for the following
reason. Typically, in many gene expression profiling experiments,
especially those from biomedical studies, the size of the sample
can be extremely small (e.g., often 2-3 replica per condition or
specimen) compared to the number of genes (typically 103 ∼ 104

for human) due to the difficulty of procuring many samples in
laboratory experiments, which makes the directly estimated network
over these genes extremely unreliable. In reality, these different cell
types at different positions in the genealogy should not be drastically
different, and one should expect that samples from closely related
types may offer additional information to the cell type in question.
Thus, estimating each point in the genealogy independently using

a static reverse engineering algorithm would be largely ineffective,
because there is not enough data and there are too many variables.
Next, due to the presence of the genealogy that related all cell-type
specific networks, the samples from all types are not identically
distributed. Therefore when naively pooling them together to obtain
an average network, the result may suffer from high variance,
since the regulatory network could change significantly from the
beginning to the end of the genealogy. The Treegl algorithm
elegantly couples all the inference problems pertained to each
network in the genealogy, and achieves a globally optimal and
statistically well behaving solution based on a principled VCVS
model and a convex optimization formulation.

To demonstrate our method, we applied our algorithm to a
microarray dataset obtained from a progression and reversion series
of breast cancer cells. Our results showed that we not only were
able to identify previously known molecular signatures specific to
different cell types, but also that we could provide deeper insight
into the unknown molecular mechanisms underlying these cells, and
therefore demonstrating the strength of our method.

Some important future directions are to consider genealogies
other than a tree, and network representations beyond undirected
Gaussian Graphical Models, such as a Bayesian network which is
directed and can offer causal insight into the gene interactions.
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