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Abstract

Clustering is an important data mining task for exploration
and visualization of different data types like news stories,
scientific publications, weblogs, etc. Due to the evolving
nature of these data, evolutionary clustering, also known
as dynamic clustering, has recently emerged to cope with
the challenges of mining temporally smooth clusters over
time. A good evolutionary clustering algorithm should
be able to fit the data well at each time epoch, and
at the same time results in a smooth cluster evolution
that provides the data analyst with a coherent and easily
interpretable model. In this paper we introduce the temporal
Dirichlet process mixture model (TDPM) as a framework
for evolutionary clustering. TDPM is a generalization of
the DPM framework for clustering that automatically grows
the number of clusters with the data. In our framework,
the data is divided into epochs; all data points inside the
same epoch are assumed to be fully exchangeable, whereas
the temporal order is maintained across epochs. Moreover,
The number of clusters in each epoch is unbounded: the
clusters can retain, die out or emerge over time, and the
actual parameterization of each cluster can also evolve over
time in a Markovian fashion. We give a detailed and intuitive
construction of this framework using the recurrent Chinese
restaurant process (RCRP) metaphor, as well as a Gibbs
sampling algorithm to carry out posterior inference in order
to determine the optimal cluster evolution. We demonstrate
our model over simulated data by using it to build an
infinite dynamic mixture of Gaussian factors, and over real
dataset by using it to build a simple non-parametric dynamic
clustering-topic model and apply it to analyze the NIPS12
document collection.

1 Introduction

Clustering is an important data mining task for explo-
ration and visualization of different data types like news
stories, scientific publications, weblogs, etc. Due to the
evolving nature of these data, evolutionary clustering,
also known as dynamic clustering, has recently emerged

to cope with the challenges of mining temporally smooth
clusters over time [16][17][18]. A good evolutionary clus-
tering algorithm should be able to efficiently incorpo-
rates all background knowledge about the dynamics of
different aspects of the evolving clusters, namely:

e Cluster parameters dynamics: if the cluster pa-
rameters, like the mean and covariance for mixture
of Gaussians, evolve according to a given time se-
ries model, for example linear dynamics, or Kalman
filter, then this source of information should be ex-
ploited in aligning clusters over time.

e Cluster popularity over time: can we make any
prediction about how popular a cluster will be at
time ¢ 4+ 1 if we already knew that it was a rich-
cluster at time ¢, or equivalently if we knew that
many data points were assigned to it at time ¢? The
rich gets richer phenomenon seems like a plausible
assumption in many domains — for instance, a hot
news topic is likely to stay hot for a given time
period.

e Cluster membership stability: if a data point
at time t persists until time ¢ 4+ 1, how likely
it is to change its cluster membership? Should
this likelihood be uniform across all points, or
should the model be able to accommodate different
volatility patterns? For instance, when modeling
user communities in weblogs [17][18], data points
correspond to users, and one would expect, and
perhaps desire, that the evolutionary clustering
algorithm should be able to enforce stability over
user-community /cluster relationship over time

The above aspects are not orthogonal and instead
are highly interdependent. Moreover, most, if not
all, the approaches proposed for evolutionary clustering
[16][17][18], reduce the above points to smoothness con-
straints over time-evolving clustering in terms of: clus-
ter parameters, cluster popularity, and cluster member-



ship stability. However, it would be advantageous for
an evolutionary clustering algorithm to be able to in-
corporate more involved dynamic/volatility models.

There are other challenges that any evolutionary
clustering model should be able to handle:

e Data size variability: the number of data points
may vary between time epochs, for instance, data
items may arrive or leave, or move in space [17] and

this should be efficiently handled.

e Number of clusters variability: the number of
clusters may, and in general should, vary over time
and the model should be able to adjust its capacity
accordingly, and if possible automatically.

Moreover, evolutionary clustering algorithms can be
either online or offline. In the online setting [16][18],
the algorithm must provide the clustering of the data
items at time ¢ before seeing the data items at time
t+ 1, whereas in the offline setting, the whole sequence
of data points are available for the algorithm in a batch
mode [17].

In this paper, we extend the Dirichlet process
mixture (DPM) model to address most of the above
challenges in a unified and probabilistically principled
framework. DPMs provide a flexible Bayesian frame-
work for estimating a distribution as an infinite mixture
of simpler distributions that could identify latent clus-
ters in the data [1]. However, the full exchangeability
assumption they employs makes them an unappealing
choice for modeling longitudinal data such as text, au-
dio and video streams that can arrive or accumulate as
epochs, where data points inside the same epoch can
be assumed to be fully exchangeable, whereas across
epochs both the structure (i.e., the number of mixture
components) and the parameterizations of the data dis-
tributions can evolve and therefore unexchangeable.

We model this partial exchangeability using the
temporal Dirichlet process mixture model (TDPM) in
which the number of mixture ' components at each
time point is unbounded: the components themselves
can retain, die out or emerge over time; and the actual
parameterization of each component can also evolve
over time in a Markovian fashion. In the context
of text-stream model, each component can thus be
considered as a common themes or latent cluster that
spans consecutive time points. For instance, when
modeling the temporal stream of news articles on a,
say, weekly basis, moving from week to week, some old
themes could fade out (e.g., the mid-term election is

TIn this paper, we use ”cluster” and ”mixture component” as

synonymous

now over in US), while new topics could appear over
time (e.g., the presidential debate is currently taking
place). Moreover, the specific content of the lasting
themes could also change over time (e.g, the war in
Traq is developing with some slight shift of focus). Our
framework is an offline framework and we assumes that
we have access to the whole sequences of data items.
Moreover, our framework, can handle all the previously
desired properties except class membership stability,
however, later in the paper, we will show how to easily
accommodate this.

The rest of this paper is organized as follows. In
section 2, we briefly discuss the relevant literature.
Then, in section 3 we review the Dirichlet process
mixture model, and use it to motivate the TDPM
model which we introduce in section 4. Section 4 also
gives two different, and equivalent, constructions for
the TDPM model: via the recurrent Chinese restaurant
process (section 4.2) and as the infinite limit of a finite
dynamic mixture model (section 4.3) — in Appendix
A, for completeness, we give a third construction via
a temporally dependent random measures, which can
be safely skipped without any loss of continuity. In
section 5, we give a Gibbs sampling algorithm to carry
out posterior inference. In section 6, we show how
to extend the framework to model higher-order (i.e.
beyond first-order) Markovian dependencies and then
further examine its implications. In section 7, we use the
TDPM to built an infinite dynamic mixture of factors
model and illustrate it on simulated dataset. Then in
section 8, we give a simple non-parametric topic model
on top of the TDPM and use it to analyze the NIPS12
collection. In section 9, we discuss our findings and
relate this work to other approaches for introducing
dependencies across Dirichlet processes. Finally, we
conclude and give pointer for future problems in section
10.

2 Literature Survey

Evolutionary clustering is rather a new problem defined
and introduced in [16], however, many recent data min-
ing techniques that address the problem of incremental
clustering or stream clustering merit discussion.

In incremental clustering[19]{20][21][22] , the main
focus is on efficiency. In other words, given a clustering
of a data set, and some new data items, the question
address by these techniques is how to modify the
existing clustering to account for the new data as
well as the old one, and provide an approximation to
the clustering that would have been obtained if a re-
clustering operation was performed on the whole new
data set. However, at any given time point, only one
clustering of the data set is of importance to the data



analyst.

Algorithms for clustering data streams [23][24][25]
have to deal with many of the issues that evolutionary
clustering algorithms must handle, namely, insertion
and deletion of data points, cluster size variation over
time, and cluster parameters movement. However,
they differ from the problem addressed in this paper
in that they always have to work under the constraint
that a data item can only be seen once, whereas some
evolutionary clustering algorithms may operate in an
offline mode[17]. Moreover, as in incremental clustering,
the main focus of data stream clustering algorithms is
on how to solve the problem under memory and time
constraints, as opposed to how to mine the data set for
interpretable cluster evolutions.

Since the introduction of the problem of evolution-
ary clustering in [16], two other algorithms have been
proposed in [17] and [18]. Perhaps, the setting in [17] is
more relevant to this paper as it operates in an offline
mode and has access to the whole data sequence. How-
ever, all of the above methods, reduce all the points dis-
cussed in section 1 to smoothness constraints. [16] and
[18] operate in an online mode. In [16], the clustering
at time t is used to initialize the clustering at time ¢t — 1
by leveraging the smoothness assumption over cluster
centroid in a k-mean framework, as in example. In [18],
this idea has been taken a step further and a measure of
cluster membership stability has been defined and used
to derive an evolutionary spectral clustering algorithm,
then a set on clever heuristics were defined to deal with
data size variabilities across time epochs. However, in
all of the above models, the number of clusters must to
be specified as an input,or discovered independently at
each epoch using BIC related measures [17,18]. While
BIC-related measures have shown success in static clus-
tering settings, we believe that doing model selection at
each epoch might be rather sub-optimal, as it ignores
the role of context in model selection, in other words,
as argued in [17], local optima problems in cluster iden-
tifications at each epoch will accumulate and results in
globally suboptimal solution.

In [17], this problem has been addressed by cast-
ing evolutionary clustering as an inference problem in
a semi hidden Markov model with multiple emissions
framework. However, the maximum number of clusters
must be given as an input. In a nutshell, each state in
the semi-HMM in [17] corresponds to a clustering config-
uration that specifies which cluster is alive in this epoch.
An EM-like algorithm is then used to learn the parame-
ters of each cluster, and a veterbi like algorithm is used
to discover cluster evolutions. Although this approach
is interesting, according to section 1, it still lacks an
explicit model for cluster parameter evolution beyond

smoothness, and does not include a mean to force clus-
ter membership stability explicitly, rather, achieves it as
a side effect of the smooth transition enforced by the ar-
chitecture of the semi-HMM. As we discussed earlier, it
would be advantageous to model different volatility lev-
els for each user in order to discover more insights with
regard to the structure of the data set and its evolution
over time.

The approach presented in this paper, as in [17],
casts evolutionary clustering as an inference problem,
but it differs from [17] in some points. First, the tech-
nique presented here is non-parametric while [17] uses
a fixed upper bound on the number of clusters. Second,
our approach provides an explicit modeling of cluster
parameters evolution, for which temporal smoothness
falls as a special case. Third, while we do not address
the problem of modeling cluster membership stability
in this paper, our approach can be very easily extended
to accommodate this feature as we will show later in
section 9.2. Moreover, the approach presented here is a
framework that can be used in conjunction with other
probabilistic models to derive interesting applications
that involve dynamic clustering. We demonstrate that
by using our model to build a simple non-parametric
dynamic clustering-topic model in section and use it to
analyze NIPS12 collection in Section 8.

3 The Dirichlet Process Mixture Model

In this section we introduce the basic and well-known
DPM model via three constructions. First, as a distri-
bution over distributions, then via the intuitive Chinese
restaurant process (CRP), and finally as a the limit of a
finite mixture model. All of these views are equivalent,
however, each one provides a different view of the same
process, and some of them might be easier to follow,
especially the CRP metaphor.

Technically, the Dirichlet process (DP) is a dis-
tribution over distributions [2]. A DP, denoted by
DP(Gy, ), is parameterized by a base measure, Gy,
and a concentration parameter, o. We write G ~
DP(Gy, ) for a draw of a distribution G from the
Dirichlet process. G itself is a distribution over a given
parameter space, 6, therefore we can draw parameters
0.y from G. The parameters drawn from G follow a
Polya-urn scheme [3], also known as the Chinese restau-
rant process (CRP), in which previously drawn values
of # have strictly positive probability of being redrawn
again, thus making the underlying probability measure
G discrete with probability one [2]. By using the DP at
the top of a hierarchical model, one obtains the Dirichlet
process mixture model, DPM for non-parametric clus-
tering [4]. The generative process for the DPM proceeds
as follows:



(31) G| 017G0 ~ DP(O(,G()),
0.|G ~ G,
0, ~ F(.|6n),

where F' is a given likelihood function parameter-
ized by 6, for instance in the cause of a Gaussian emis-
sion, F' is the normal pdf, and @ is its mean and co-
variance. The clustering property of the DP prefers
that fewer than N distinct 6 are used. This notion is
made explicit via the equivalent CRP metaphor. In the
CRP metaphore, there exists a Chinese restaurant with
an infinite numbers of tables. Customer z; enters the
restaurant and sits on table k£ that has n; customers
with probability i_’}‘jm, and shares the dish (parame-
ter), ¢, served there, or picks a new table with proba-
bility ;= and orders a new dish sampled from Gp.
Putting everything together, we have:

(3.2)

0i]01.:-1,Go, a ~ —_—
‘1' 1,50, & zk:z—l—i—a

ng [0

3(or) + m Go.

Equation 3.1 can also be obtained by integrating
out G from the equations in (3.2), and this shows the
equivalence of the two schemes. Finally, the DPM
can be arrived at if we consider a fixed K-dimensional
mixture model, like K-means, and then take the limit
as K — oo. In other words, a DPM can potentially
model an infinite-dimensional mixture model and thus
has the desirable property of extending the number of
clusters with the arrival of new data (which is made
explicit using the CRP metaphor — a new customer
can start a new cluster by picking an unoccupied
table). This flexibility allows the DPM to achieve
model selection automatically. However, it is vitally
important now to clear some myths with regards to the
DPM. While DPM is known as a non-parametric model,
it still does have parameters, namely, «, albeit being
dubbed as hyperparmaters. The reason for calling « a
hyperparmater is to distinguish between it and between
the effective parameters of the model which are: K,
the number of mixture components and their associated
parameters, like mean and covariance in the of case
a mixture of Gaussian distributions. These effective
parameters need not be specified for a DPM model,
but must be specified for any parametric model like
K-means; Hence came the name non-parametric. In
essence, the role played by the hyper-parameter « is
to specify the rate at which the effective parameters of
the model grow with the data. Hyperparmaters can
be either supplied by the user to encode their prior

knowledge, or desirable outcome (finer vs. coarser
clustering), or can be learnt automatically using an EM-
like algorithm called empirical Bayes [30].

4 The Temporal Dirichlet Process Mixture
Model

In many domains, data items are not fully exchangeable,
but rather partially exchangeable at best. In the TDPM
model? to be presented, data are assumed to arrive in
T consecutive epochs, and inside the same epoch all
objects are fully exchangeable.

Intuitively the TDPM seek to model cluster pa-
rameters evolution over time using any time series
model, and to capture cluster popularity evolution over
time via the rich-gets-richer effect, i.e. the popularity
of cluster k£ at time ¢ is proportionable to how many
data points were associated with cluster k at time ¢t — 1.
In the following subsections, we will formalize these
notions by giving two equivalent constructions for the
TDPM as summarized in Figure 1 (a third technical
construction is provided for completeness in Appendix
A). However, before giving these constructions that par-
allel those given for the DPM in section 3, we first start
by specifying some notations.

4.1 Notations and Conventions: We let n; de-
notes the number of data points in the t** epoch, and
xy,; denotes the i*" point in epoch ¢t. The mixture com-
ponents (clusters) that generate the data can emerge,
die out, or evolve its parametrization evolve over time in
a Markovian fashion, therefore, we generalize the notion
of a mixture into a chain that links the parameters of the
mixture component over time. We let ¢; denote chain
k, ¢, denoted the state (parameter value) of chain k
at time ¢, and nj+ denotes the number of data points
associated with chain k£ at time t. Moreover, we use
n,(j)t to denote the same quantity just before the arrival
of datum x¢ ;. Note that the chains need not have the
same life span; however, once retained over time they
keep the same chain index. Moreover, the set of chain
indexes available at time ¢ might not be contiguous (be-
cause some chains may have died out). Therefore, we
define I; to denote the set of chain indexes available at
time t. We sometimes overload notation and use It(l)
to denote the same quantity just before the arrival of
datum z;;. Each data item x;; is generated from a
mixture with parameter 6, ;, if we let ¢;; denotes the
chain index associated with this datum, then we have
Oti = ¢c,,t — in other words, the set of ¢’s define
the unique mixtures/clusters, or put it equivalently, two

2A preliminary earlier version of the TDPM model first ap-

peared in [29]
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Figure 1: Two constructions for the TDPM. a) The recurrent Chinese restaurant process and b) The infinite
limit of a finite dynamic mixture model. In b, diamonds represent hyper-parameters, shaded circles are observed
variables, and unshaded ones are hidden variables, plates denote replications, where the number of replica is
written inside the plate, for instance n; — for a third construction, please see Appendix A

data items might have equal 6 values if they belong to
the same cluster. Moreover, we might use the follow-
ing abbreviations for notational simplicity (z denotes a
generic variable):

e {2 } to denote {21,212, -}

e 21, to denote {z,1,212, - , 21}

4.2 The Recurrent Chinese Restaurant Process
The RCRP, showin in Figure 1-a, is a generalization of
the CRP introduced in section 3. The RCRP operates
in epochs, say, days. Customers entered the restaurant
in a given day are not allowed to stay beyond the end
of this day. At the end of each day, the consumptions
of dishes are analyzed by the owner of the restaurant
who assumes that popular dishes will remain popular in
the next day, and uses this fact to plan the ingredients
to be bought, and the seating plan for the next day.
To encourage customers in the next day to try out
those pre-planed dishes, he records on each table the
dish which was served there, as well as the number
of customers who shared it. As another incentive, he
allows the first customer to set on such a table to order
a (flavored) variation of the dish recorded there. In
this metaphor, dishes correspond to chains, and the
variation correspond to the dynamic evolution of the
chain. The generative process proceeds as follows. At
day t, customer ¢ can pick an empty table, k, that was
used to serve dish ¢y ;—1, with probability equals to
%, he then chooses the current flavor of the
dish, @y ¢, distributed according to ¢r¢ ~ P(.|dkt—1).

If this retained table k has already n](j)tcustomers, then

()
he joins them with probability %

the current flavor of the dish there. Alternatively, he

and shares

can pick a new empty table that was not used in the
previous day,t — 1, i.e., not available in I;_;, with
probability m,lets call it K*, and orders a
dish ¢+, ~ Go — this is the mechanism by which
a new chain/cluster emerges. Finally, he can share
a new table k, with n,(fzf customers, with probability

i

~—1r—7 and shares the newly ordered dish with
t—1t+ita—1
them. Putting everything together, we have:

(4.3)
1

0 [ 0 70 — aG , & Y .
til{0-1,.} 0r,1:0-1, Go, Nt,l—i—z—i—a—lx
[ Z (nk,t—l + n,(j)t)5(¢kt) +
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Z ";@5(%,0 + OZGO},

keIl” -1, 4

where in the first summation ¢y ¢ ~ P(.|¢r.—1) (i-e.
retained from the previous day), and in the second one
¢kt ~ Go which is drawn by the j* customer at time
t for some j < i (i.e. new chains born at epoch t). If

we conveniently define ny+ to be 0 for k € I,_; — It(i)
(chains which died out) and similarly ny,—1 be 0 for

ke It(i) — I;_1 (i.e. newly born chains at time ¢), then
we can compactly write Equation 4.3 as:

(4.4)

1
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4.3 The infinite Limit of a finite Dynamic Mix-
ture Model In this section we show that the same sam-
pling scheme in Equation (4.4) can be obtained as the
infinite limit of the finite mixture model in Figure 1-b.
We consider the following generative process for a finite

dynamic mixture model with K mixtures. For each ¢
do:

1. Vk: Draw ¢y ~ P(.|¢r,t-1)
2. Draw my ~ Dir(n1 -1 + /K, -+ ,ngi—1 + a/K)
3. Vi € Ny Draw cy; ~ Multi(my) , x4 ~ F(.|¢c, ;1)

By integrating over the mixing proportion m;, It
is quite easy to write the prior for ¢;; as conditional
probability of the following form:

(4.5)
Ngt—1 + n,(;)t +a/K
Nt—l + Z + o — 1

P(cri = klei—1,0:n8, 15 C1im1) =

If we let K — oo, we find that the conditional
probabilities defining the c; ; reachs the following limit:

(4.6)
n + (0
kt—1 T Ty

Nt_1+7:+0471

P(c;; = a new cluter) = I _’_g_'_ .
t—1 T 1T Q—

P(cti = klei—1,10:8, 15 C1:im1) =

Putting Equations (4.5) and (4.6) together, we can
arrive at Equation (4.4).

5 Gibbs Sampling Algorithms

Given the previous constructions for the TDPM model,
we are ready to derive a Gibbs sampling scheme equiva-
lent to algorithm 2 in [1]. The state of the sampler con-
tains both the chain indicator for every data item, {c;;},
as well as the value of all the available chains at all time
epochs, {¢y . }. We iterate between two steps: given the
current state of the chains, we sample a class indicator
for every data item, and then given the class indicators
for all data item, we update the current state of the
chains. We begin by the second step, let qb,(f) denote
the collection of data points associated with chain k at
all time steps, that is qﬁ,(f) = {Vt(Vi € Ny) zy4|crs = k.
Note also that conditioning on the class indicators,
each chain is conditionally independent from the other
chains. Therefore, P(¢x|{cti}) = P({¢k’t}|¢§€x)). This
calculation depends on both the chain dynamic evolu-
tion model P(.|) and the data likelihood F(.|.), there-
fore, this posterior should be handled in a case by case

fashion, for instance, when the dynamic evolution model
is a linear state-space model with Gaussian emission
(likelihood), this posterior can be calculated exactly via
the RTS smoother [5,6]. Once this posterior is calcu-
lated, we can update the current state of the chains by
sampling each chain over time as a block from this pos-
terior. Now, we proceed to the first step, for a given
data point, z;;, conditioning on the state of the chains
and other indicator variables (i.e. how data points other
than x;,; are assigned to chains), we sample ¢;; as fol-
lows:

(5.7)
P(ctilci—1,¢t—is Copt, Triy { Ok be,t—1, Go, @) o
P(crilci—1,ct—is @i {Or }e—1, Go, @) P(crya|ce),

where we introduce the following abbreviations:
c¢t—1,ct+1 denotes all indicators at time ¢ — 1 and ¢
respectively. ¢; —; denotes the chain indicators at time
t without ¢;;, and {¢y}1—1 denotes all chains alive at
either time epoch t or t — 1, i.e., ¢pVk € I;_1 U I;. We
also let n,(cﬂ) denote ny  without the contribution of
data point z,;. The first factor in Equation (5.7) can
be computed using Eq. (4.4) as follows:

(5.8)

n +nlY

~ k,t—1 nk:,t
Nt—l + Nt +a-—1

«
F(20.4|0)dGo(0),
e | Felo)iGo(®)

P(Ct’i =kel;_ 11U It|)

F(l’t’i

Pler; = K*|..)

where K denotes a globally new chain index (i.e.,
a new chain is born). It should be noted here that in
the first part of Equation (5.8), there is a subtlety that
we glossed over. When we consider a chain from time
t — 1 that has not been inherited yet at time ¢ (that
isk € It_l,n,(;tl) = 0), we must treat it exactly as we
treat sampling a new chain from Gy with Gy replaced
by P(¢k,t|¢k,t71).

The second factor in Equation (5.7) can be com-
puted with reference to the construction in section 4.3
as follows (note that ¢; here includes the current value
of ¢;; under consideration in Equation 5.7). First, note
that computing this part is equivalent to integrating
over the mixture weights m;4; which depend on the
counts of the chain indicators at time ¢. The subtlety
here is that in section 4.3 we let K — oo; however,
here we only need to let the two count vectors be of
equal size, which is Ky 411 = |l ¢14+1], where as defined
before I; 11 = I; U I;41, by padding the counts of the
corresponding missing chains with zeros. It is straight-
forward to show that:

Oh,t)



(5.9)

F(ZkelmJrl Nt + a/Kt,t+1)
erlmﬂ C(ngs +a/Kii41)
erl,,,,,+1 L(nge + np 1 + o/ Ky p1)
F( Dokl iy Tt T Mgt + a/Kt,t+1)

It should be noted that the cost of running a full
Gibs iteration is O(n) where n is the total number of
data points.

X

P(ciialer) =

6 Modeling Higher-Order Dependencies

One problem with the above construction of the TDPM
is that it forgets too quickly especially when it comes
to its ability to model cluster popularity at time t + 1
based on its usage pattern at time ¢, while ignoring all

previous information before time epoch ¢t. Moreover,
once a cluster is dead, i.e. its usage pattern at time
t is 0, it can no longer be revived again. Clearly, in

some applications one might want to give a slack for a
cluster before declaring it dead. For example, when the
TDPM is used to model news stories on a daily basis,
if a theme that was active in time epoch t — 1 had no
documents associated with it at time ¢, then the TDPM
will consider it dead, however, in practice, this might
not be the case.

By analogy to the RCRP equivalent construction,
the owner who plans the restaurant ingredients based
on a daily usage is less prudent than an owner who
considers a larger time frame, perhaps a week. However,
one should not treat the usage pattern of cluster k at
time ¢t and at time, say, t — h, as contributing equally to
our prediction of this cluster’s popularity at time ¢ + 1.
A possible solution here is to incorporate historic usage
patterns by decaying their contribution exponentially
over time epochs. A similar idea has been proposed
n [14], however in [14], each epoch has exactly one
data point, and the width of the history window used
in [14] is rather infinity — or more precisely at most
n. This in fact makes the cost of running a single
Gibbs iteration, i.e. sampling all data items once,
O(n?). 1In the solution we propose here, we define
two new hyperparmaters, kernel width, X\, and history
size, W. We will describe our approach only using
the RCRP for simplicity since as shown before, it is
equivalent to the other constructions. To model higher
order dependencies, the only difference is that the owner
of the restaurant records on each table, not only its
usage pattern on day ¢t — 1, but its weighted cumulative
usage pattern over the last W days. Where the weight
associated with the count from day ¢t — h is given

by exp%h, and as such the contribution from epoch
t — h decays exponentially over time. A customer z;,
entering the restaurant at time t will behave exactly in
the same way as before using the new numbers recorded
on the table.

There are two implications to this addition. First,
the cost of running one Gibbs iteration is O(n x W),
which is still manageable as W must be smaller than
T, the number of epochs, which is in turn much smaller
than the total number of data points, n, thus we still
maintain a linear time complexity. Second, an active
cluster is considered dead if and only if, it is not used
for exactly W contiguous echoes, which creates the
necessary slack we were looking for. Changing the Gibbs
sampling equations in section 5 to accommodate this
new addition is very straightforward and removed for
the light of space.
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Figure 2: Simulating various clustering patterns from a

TDPM(c,A\,W). Top: DPM, middle: a TDPM and bottom:
a set of independent DPM at each epoch. See section 6 for more
details

It is interesting to note that these two new hyper-
parameters allow the TDPM to degenerate to either a
set of independent DPMs at each epoch when W=0, and
to a global DPM, i.e ignoring time, when W = T and
A = 0. In between, the values of these two parameters
affect the expected life span of a given cluster/chain.
The larger the value of W and A, the longer the expected
life span of chains, and vice versa.

To illustrate this phenomenon, we sampled different
cluster configurations from the TDPM model by run-
ning the RCRP metaphor for T" = 50 epochs and seating
300 customers at each epoch. We simulated three hyper-
parameter configurations («, A, W) as follows. The con-
figuration used at the top of Figure 2 is (5,00,50=T)
which reduces the TDPM to a DPM. The configura-



tion at the middle is a TDPM with hyperparmaters
(5,.4,4), while the bottom TDPM degenerates to a set of
independent DPMs at each epoch by setting the hyper-
parameters to (5,.5,0) — in fact the value of X\ here is
irrelevant. For each row, the first panel depicts the du-
ration of each chain/cluster,the second panel shows the
popularity index at each epoch, i.e. each epoch is rep-
resented by a bar of length one, and each active chain is
represented by a color whose length is proportional to
its popularity at this epoch. The third panel gives the
number of active chains at each epoch and the fourth
panel shows the number of chains with a given life-span
(duration). This fourth panel is a frequency curve and
in general all TDPMs exhibit a power-law (Zipf’s) dis-
tribution as the one in the middle, but with different tail
lengths, while a DPM and independent DPMs show no
such power-law curves. Another interesting observation
can be spotted in the second column: note how clus-
ter intensities change smoothly over time in the TDPM
case, while it is abrupt in independent DPMs or rarely
changing in a global DPM. This shows that TDPM with
three tunable variables can capture a wide range of clus-
tering behaviors.

7 Infinite of Gaussian
Factors

In this section we show how to use the TDPM model
to implement an infinite dynamic mixture of Gaussian
factors. We let each chain represent the evolution of
the mean parameter of a Gaussian distribution with a
fixed covariance ¥. The chain dynamics is taken to be
a linear state-space model, and for simplicity, we reduce
it to a random walk. More precisely, for a given chain
Sk PrtlPri—1 ~ N(dre—1,pl) and x4ifciy = k ~
N(¢xt,%). The base measure Gg = N(0,0). Using
the Gibbs sampling algorithm in section 5, computing

Dynamic Mixture

the chain posterior given its associated data points, (b,(f)7
can be done exactly using the RTS smoother algorithm
[6]. We simulated 30 epochs, each of which has 100
points from the TDMP with the above specification,
and with hyperparmaters as follows: a = 25, W =
1,A = .8,0 =10,p = 0.1and ¥ = 0.1I. We ran Gibbs
sampling for 1000 iterations and then took 10 samples
every 100 iterations for evaluations. The results shown
in Figure 3 are averaged over these 10 samples. To
measure the success of the TDPM, we compared the
clustering produced by the TDPM to the ground truth,
and to that produced from a fixed dynamic mixture
of Kalman Filters [6] with various number of chains,
K =(5,10,15,20,25,30). For each K, we ran 10 trials
with different random initializations and averaged the
results.

We compared the clustering produced by the two

methods, TDPM, and the one with fixed number of
evolving chains over time, to the ground truth using the
variation of information measure in [31]. This measure
uses the mutual information between the two clustering
under consideration, and their entropy to approximate
the distance between them across the lattice of all
possible clustering (see [31] for more details). We
explored two ways of applying this measure to dynamic
clustering, the global variation of information, GVI,
and the local variation of information, LVI. In GVI, we
ignored time, and considered two data points to belong
to the same cluster if they were generated from the same
chain at any time point. In LVI, we applied the VI
measure at each time epoch separately and averaged the
results over epochs. GVI captures global consistency
of the produced clustering, while LVI captures local
consistency (adaptability to changes in the number of
clusters). The results are shown in Figure 3-a, 3-b
(lower values are better)and show that the TDPM is
superior to a model in which the number of clusters are
fixed over time, moreover, setting K to the maximum
number of chains over all time epochs does not help. In
addition to these measures, we also examined the ability
of the TDPM to track the evolution of the number of
chains (Figure 3-c)and their duration over time (Figure
3-e). These two figures show that in general, the TDPM
tracks the correct ground-truth behavior, and in fact
most of the errors are due to insignificant chains, i.e.
chains/clusters which contain a very small (1-3) data
points as shown in Figure 3-d and Figure 3-f. It is worth
mentioning that the fixed dimension models produce the
same number of chains over time, which we omit from
Figure 3-(c-f) for clarity.

8 A Simple Non-Parametric Dynamic Topic
Model

Statistical admixture topic models have recently gained
much popularity in managing large document collec-
tions. In these models, each document is sampled from
a mixture model according to a document’s specific mix-
ing vector over the mixture components (topics), which
are often represented as a multinomial distribution over
a given vocabulary. An example of such models is the
well-known latent Dirichlet allocation (LDA)[7]. Re-
cent approaches advocate the importance of modeling
the dynamics of different aspects of topic models: topic
trends [10], topic word distributions [8] and topic cor-
relations [9]. In this section we show how to implement
a simple non-parametric dynamic topic model. The
model presented here is simpler than mainstream topic
models in that each document is generated from a single
topic rather than from a mixture of topics as in LDA.
However, this is not a restriction of our framework, as we
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Figure 3: Tllustrating results on simulated data. Panels (a,b) contrast the accuracy of the recovered clustering, using global and local
consistency measures, against that estimated using fixed dimensional models (see text for details). Panels (c-f) illustrate the TDPM
ability to vary the number of clusters/chains over time, results from fixed-dimensional models, which is fixed over time, are not shown
to avoid cluttering the display. Panel (d) and (f) illustrate that most omissions (errors) are due to insignificant chains. All results
are averaged over 10 samples taken 100 iterations apart for the TDPM, and over 10 random initializations for the fixed-dimensional
models. Error bars are not shown in panels (c-f) for clarity, however,the maximum standard error is 1.4

will mention in the future work section how this simple
model can be extend to a full-fledged one. The model
we present here is only meant as another illustration of
the generality of our framework.

To implement this simple non-parametric dynamic
topic model, SNDTM for short, let x;; represent a
document composed of word frequency counts. Each
chain represents the natural parameter of the multino-
mial distribution associated with a given topic, similar
to the the dynamic LDA model in [8]. Each topic’s
natural parameter chain, ¢, evolves using a random
walk model [8]. To generate a document, first map
the natural parameter of its topic ¢ to the sim-
plex via the logistic transformation in Equation (8-10),
and then generate the document, ie. z;lc,; = k ~
Multinomial(xy ;| Logistic(¢x ¢ ))-

In Equations (8-10), C(¢x,+) is a normalization con-
stant (i.e., the log partition function). We denote this
logistic transformation with the function Logisitc(.).

Furthermore, due to the normalizability constrain of the
multinomial parameters, B}Wg only has M — 1 degree of
freedom, where M is the vocabulary length. Thus we
only need to represent and evolve the first M — 1 com-
ponents of ¢+ and leave ¢+ = 0. For simplicity, we
omit this technicality from further consideration.

(8.10)
ﬂk,t,m = exp{¢k,t,m - C(¢k¢,t)}a Vm = 17 sy M
M
where C(bre) = log( Z exp{¢k,t7m}>.
m=1

One problem with the above construction is the
non-conjugacy between the multinomial distribution
and the logistic normal distribution. In essence, we can
no longer use vanilla RTS smoother to compute the pos-
terior over each chain as required by the Gibbs sampling
algorithm in section 5. In [8], numerical techniques were
proposed to solve this problem; here, for simplicity, we
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Figure 4: Tlustrating results on the NIPS12 dataset. Right-top: chains (topics) death-birth over time. Right-bottom: the
popularity of some topics over the years, where topics names are hand labeled. Left: keywords over time in some topics.

use a deterministic Laplace approximation to overcome
this non-conjugacy problem. We first put the emission
of chain ¢ at time ¢ in the exponential family represen-
tation. It is quite straightforward to show that:

(8.11)

M
H H p(xt,i,m‘ﬁbk,t) = eXP{Uk:,t¢k,t - |’Uk,t‘ X C(¢k,t)}

xeqbzyt m=1
where vy, is an M-dimensional (row) vector that
represents the histogram of word occurrences from topic
k at time step ¢ . And |.| is the L1 norm of a given vector.
Equation (8.11) still does not represent a Gaussian
emission due to the problematic C(¢y,). Therefore,
we approximate it with a second-order quadratic Taylor
approximation around (ng,t — to be specified shortly
This results in a linear and quadratic term of ¢y +.
If we let H and ¢ to be the hessian and gradient of
such expansion, we can re-arrange equation (8.11) into a
gaussian emission with mean x i and covariance ¢z, ,

given by:

inV(|'Uk,t|H(¢3k7t))’

Prt + at (Vkt — [0t 9(dre))-

Using this Gaussian approximation to the non-
gaussian emission, we can compute the posterior over
¢k7t|¢§:t) using the RTS smoother with observations,
and observation noises as given by Equations (8.13) and
(8.12) respectively. Due to the high-dimensionality of
the associated vectors in this linear state-space model,
we approximate the Hessian in the above calculations
with its diagonal, which results in an M-independent
linear state-space models, one for each word. More-

Vk,t

e ), which is the

inverse logistic transformation of the MLE (maximum
likelihood estimation) of the topic’s & multinomial dis-
tribution at time ¢.

We used this simple model to analyze the NIPS12
collection that contains the proceedings of the Neural
Information Processing Conference from 1987-19992.
Stop words were removed from this collection, we also
removed infrequent words and kept only the top most
frequent 2000 words. We divided the collection into
13 epochs based on the publication year of the paper.
We set the hyperparmaters of the TDPM as in Section

over, ¢y ¢ is set to inverseLogisitic(

3 Available from http://www.cs.toronto.edu/ roweis/data.html



7 with o = .1, and we ran Gibbs sampling for 1000
iterations. To speed up convergence, we initialized
the sampler from the result of a global non-parametric
clustering using the method in [13] which resulted in
around 7 clusters, each of which spans the whole 13
years. In figure 4, we display topic durations, which
shows that the model indeed captures the death and
birth of various topics. In the same figure, we also show
the top keywords in some topics (chains) as they evolve
over time. As shown in this figure, regardless of the
simplicity of the model, it captured meaningful topic
evolutions.

9 Discussion

9.1 Relation to Other DPM Approaches: We
have purposefully delayed discussing the relationship
between the TDPM and other dependent DPM models
until we lay down the foundation of our model in order
to place the discussion in context. In fact, several
approaches have been recently proposed to solve the
same fundamental problem addressed in this paper:
how to add the notion of time into the DPM. With
the exception of [14], most of these approaches use the
stick-breaking construction of the DPM [26][27]. In
this construction, the DPM is modeled as an infinite
mixture model, where each mixture component has a
weight associated with it. Coupling the weights and/or
(component parameters) of nearby DPMs results in a
form of dependency between them. This new process
is called ordered-based (Dependent) DPMs. However,
we believe that utilizing the CRP directly is easier as
we have explained in section 4.2, and more importantly,
this approach enables us to model the rich-gets-richer
phenomenon, which we believe captures, in a wide range
of applications, how a cluster popularity evolves over
time. As for the work in [14], we have already explained
one difference in section 6. Another difference is that in
[14] cluster parameters are fixed and do not evolve over
time. Recently, a simple clustering-topic model built on
top of [26] was proposed in [28]. This is similar to the
experiments we carried in section 8, however, in [28] the
cluster (topic) parameters were fixed over time.

9.2 Handling Cluster Membership Stability:
As noted earlier in section 1, our approach does not deal
specially with a data item that persists across epochs
— it just simply treats it as a different point in each
epoch. Therefore, it can not explicitly enforce its clus-
ter membership stability across epochs. However, our
TDPM can be easily extended to accommodate that,
and we will illustrate this using the RCRP metaphor.
Lets associate a Bernoulli random variable p; with the
it" customer , x;. In the first time this customer enters

the restaurant, its volatility, p;,is sampled from a beta
distribution (a conjugate distribution to the Bernoulli
distribution). When this customer re-enters the restau-
rant, he first flips a coin whose bias is given by p;. If it
is head, he sits on the same table (cluster) he used to sit
on in the most recent time he was in the restaurant, oth-
erwise, he behaves as a new customer and can choose
other tables— but can not change p;. Changing the
Gibbs sampling algorithm in section 5 to accommodate
this process is again very straightforward and is omitted
for the light of space. In this case, posterior inference
can infer the value of p; for each user, which gives valu-
able information about the volatility and dynamics of
each user.

10 Conclusions and Future Work

In this paper we presented the temporal Dirichlet pro-
cess mixture model as a framework for modeling com-
plex longitudinal data. In the TDPM, data is divided
into epochs, where the data items within each epoch
are partially exchangeable. Moreover, The number of
mixture components used to explain the dependency
structure in the data is unbounded. Components can
retain, die out or emerge over time, and the actual pa-
rameterization of each component can also evolve over
time in a Markovian fashion. We gave various con-
structions of the TDPM as well as a Gibbs sampling
algorithm for posterior inference. We also showed how
to use the TDPM to implement an infinite mixture of
Kalman filters as well as a simple non-parametric dy-
namic topic model. We also gave possible extensions to
the basic framework presented here that could be eas-
ily used to model higher-order dependencies and user
volatilities. These two additions illustrate the advan-
tage of using a probabilistic approach to evolutionary
clustering: ease of extensions by leveraging the modu-
larity /compositionality of probabilistic graphical mod-
els.

In the future we plan to explore other techniques
for posterior inference like variational inference as in
[11,12] and search based techniques [13] that showed
promising results in the DPM case and achieved up to
200-300 speedup over using Gibbs sampling. At the
application level, we plan to extend the simple non-
parametric dynamic topic model into a full-fledged topic
model by replacing the Logistic Normal likelihood with
another DPM for each document as in [15].
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11 Appendix A: The Temporarily Dependent

Random Measures view of the TDPM

Here we show that the same process in section 4 can
be arrived at if we model each epoch using a DPM and
connect the random measures G; as shown in Figure 5.
This appendix is rather technical and is provided only
for completeness, however it can be skipped without any
loss of continuity.

Figure 5: Time dependent random measure construction of the
TDPM. Diamonds represent hyper-parameters, shaded circles are
observed variables, and unshaded ones are hidden variables

The derivation here depends on the well known fact
that the posterior of a DP is a also a DP [4]. That

iSv G‘(bl, 7¢]€7G07a ~ DP(O& + n, Ek: nik(;(qﬁk) +

n+aoa

Je
n+aoa

of #1., sampled from G. Now, we consider the following
generative process. For each ¢, do:

Go), where {¢y} are the collection of unique values

1. Vk € I4_1 draw ¢k,t ~ P(-‘d)k,tfl)
2. Draw Gt‘{(ﬁk’t}Vk € li—1,Go,a ~ DP(OZ-‘rNtfl,G{‘))
3. Vie Nt, Draw Gt,i\Gt ~ Gt xt,n‘et,n ~ F(-|9t,n)

where G = Y .c; | %’iiiﬁ&(qﬁm) + 575 Go.
Now by integrating Gy ~ DP(Ny;—1 + a, G). We can
easily show that:

1
04,; {915—1,‘},9@1;1'—1,G0,a ~

i+ (4 Ne—1) =1
[ S 08600 + (o + Ne)GS].

ker®

Now substituting G§ into the above equation plus some
straightforward algebra, we arrive at:

1
NNt,1+i+Oé—1

[ Z ng,)t‘s(ﬁbk,t)'f' Z nk,t—15(¢k,t)+OtGo:|,

kEIEi) kel

9t,i|{t91—1,.}, 0915,1:1‘—1, Go, (e

which when rearranged is equivalent to Equation 4.4



